首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 742 毫秒
1.
The cells that express the genes for the fibrillar collagens, types I, II, III and V, during callus development in rabbit tibial fractures healing under stable and unstable mechanical conditions were localized. The fibroblast-like cells in the initial fibrous matrix express types I, III and V collagen mRNAs. Osteoblasts, and osteocytes in the newly formed membranous bone under the periosteum, express the mRNAs for types I, III and V collagens, but osteocytes in the mature trabeculae express none of these mRNAs. Cartilage formation starts at 7 days in calluses forming under unstable mechanical conditions. The differentiating chondrocytes express both types I and II collagen mRNAs, but later they cease expression of type I collagen mRNA. Both types I and II collagens were located in the cartilaginous areas. The hypertrophic chondrocytes express neither type I, nor type II, collagen mRNA. Osteocalcin protein was located in the bone and in some cartilaginous regions. At 21 days, irrespective of the mechanical conditions, the callus consists of a layer of bone; only a few osteoblasts lining the cavities now express type I collagen mRNA.We suggest that osteoprogenitor cells in the periosteal tissue can differentiate into either osteoblasts or chondrocytes and that some cells may exhibit an intermediate phenotype between osteoblasts and chondrocytes for a short period. The finding that hypertrophic chondrocytes do not express type I collagen mRNA suggests that they do not transdifferentiate into osteoblasts during endochondral ossification in fracture callus.  相似文献   

2.
K Elima  E Vuorio 《FEBS letters》1989,258(2):195-198
Cell cultures were initiated from epiphyseal cartilages, diaphyseal periosteum, and muscle of 16-week human fetuses. Total RNAs isolated from these cultures were analyzed for the levels of mRNAs for major fibrillar collagens, two proteoglycan core proteins and osteonectin. In standard monolayer cultures the differentiated chondrocyte phenotype was replaced by a dedifferentiated one: the mRNA levels of cartilage-specific type II collagen decreased upon subculturing, while those of types I and III collagen, and the core proteins increased. When the cells were transferred to grow in agarose, redifferentiation (reappearance of type II collagen mRNA) occurred. Fibroblasts grown from periosteum and muscle were found to contain mRNAs for types I and III collagen and proteoglycan cores. When these cells were transferred to agarose they acquired a shape indistinguishable from chondrocytes, but no type II collagen mRNA was observed.  相似文献   

3.
Paraffin sections of human skeletal tissues were studied in order to identify cells responsible for production of types I, II, and III collagens by in situ hybridization. Northern hybridization and sequence information were used to select restriction fragments of cDNA clones for the corresponding mRNAs to obtain probes with a minimum of cross-hybridization. The specificity of the probes was proven in hybridizations to sections of developing fingers: osteoblasts and chondrocytes, known to produce only one type of fibrillar collagen each (I and II, respectively) were only recognized by the corresponding cDNA probes. Smooth connective tissues exhibited variable hybridization intensities with types I and III collagen cDNA probes. The technique was used to localize the activity of type II collagen production in the different zones of cartilage during the growth of long bones. Visual inspection and grain counting revealed the highest levels of pro alpha 1(II) collagen mRNAs in chondrocytes of the lower proliferative and upper hypertrophic zones of the growth plate cartilage. This finding was confirmed by Northern blotting of RNAs isolated from epiphyseal (resting) cartilage and from growth zone cartilage. Analysis of the osseochondral junction revealed virtually no overlap between hybridization patterns obtained with probes specific for type I and type II collagen mRNAs. Only a fraction of the chondrocytes in the degenerative zone were recognized by the pro alpha 1(II) collagen cDNA probe, and none by the type I collagen cDNA probe. In the mineralizing zone virtually all cells were recognized by the type I collagen cDNA probe, but only very few scattered cells appeared to contain type II collagen mRNA. These data indicate that in situ hybridization is a valuable tool for identification of connective tissue cells which are actively producing different types of collagens at the various stages of development, differentiation, and growth.  相似文献   

4.
Total RNA extracted from developing calvarial bones of 15- to 18-week human fetuses was studied by Northern hybridization: in addition to high levels of type I collagen mRNAs, the presence of mRNAs for type III and type IV collagen, TGF-beta and c-fos was observed. In situ hybridization of sections containing calvarial bone, overlying connective tissues, and skin was employed to identify the cells containing these mRNAs. Considerable variation was observed in the distribution of pro alpha 1(I) collagen mRNA in osteoblasts: the amount of the mRNA in cells at or near the upper surface of calvarial bone was distinctly greater than that in cells at the lower surface, indicating the direction of bone growth. High levels of type I collagen mRNAs were also detected in fibroblasts of periosteum, dura mater, and skin. Type III collagen mRNA revealed a considerably different distribution: the highest levels were detected in upper dermis, lower levels were seen in fibroblasts of the periosteum and the fibrous mesenchyme between bone spiculas, and none was seen in osteoblasts. Type IV collagen mRNAs were only observed in the endothelial cells of blood capillaries. Immunohistochemical localization of type III and IV collagens agreed well with these observations. The distribution of TGF-beta mRNA resembled that of type I collagen mRNA. In addition, high levels of TGF-beta mRNA were observed in osteoclasts of the calvarial bone. These cells, responsible for bone resorption, were also found to contain high levels of c-fos mRNA. Production of TGF-beta by osteoclasts and its activation by the acidic environment could form a link between bone resorption and new matrix formation.  相似文献   

5.
6.
7.
8.
Cultured human articular and costal chondrocytes were used as a model system to examine the effects of recombinant gamma-interferon (IFN-gamma) on synthesis of procollagens, the steady state levels of types I and II procollagen mRNAs, and the expression of major histocompatibility complex class II (Ia-like) antigens on the cell surface. Adult articular chondrocytes synthesized mainly type II collagen during weeks 1-3 of primary culture, whereas types I and III collagens were also produced after longer incubation and predominated after the first subculture. Juvenile costal chondrocytes synthesized no detectable alpha 2(I) collagen chains until after week 1 of primary culture; type II collagen was the predominant species even after weeks of culture. The relative amounts of types I and II collagens synthesized were reflected in the levels of alpha 1(I), alpha 2(I), and alpha 1(II) procollagen mRNAs. In articular chondrocytes, the levels of alpha 1(I) procollagen mRNA were disproportionately low (alpha 1(I)/alpha 2(I) less than 1.0) compared with costal chondrocytes (alpha 1 (I)/alpha 2(I) approximately 2). Recombinant IFN-gamma (0.1-100 units/ml) inhibited synthesis of type II as well as types I and III collagens associated with suppression of the levels of alpha 1(I), alpha 2(I), and alpha 1(II) procollagen mRNAs. IFN-gamma suppressed the levels of alpha 1(I) and alpha 1(II) procollagen mRNAs to a greater extent than alpha 2(I) procollagen mRNA in articular but not in costal chondrocytes. Human leukocyte interferon (IFN-alpha) at 1000 units/ml suppressed collagen synthesis and procollagen mRNA levels to a similar extent as IFN-gamma at 1.0 unit/ml. In addition, IFN-gamma but not IFN-alpha induced the expression of HLA-DR antigens on intact cells. The lymphokine IFN-gamma could, therefore, have a role in suppressing cartilage matrix synthesis in vivo under conditions in which the chondrocytes are in proximity to T lymphocytes and their products.  相似文献   

9.
We have studied the expression of the desmin gene, a muscle-specific intermediate filament protein in the granuloma cells of mouse liver infected with Schistosoma mansoni. In situ hybridization using a desmin DNA probe showed that fibroblastic cells in the granuloma strongly expressed desmin mRNAs, while in normal liver these cells did not express this mRNA to a detectable degree. The quantitative analysis of total RNAs demonstrated that the proportion of specific desmin mRNA increased from 14 to 18 weeks after infection and decreased at 20 weeks. The analysis of collagen gene expression indicated that the amount of type III collagen mRNAs was still increasing after 18 weeks from infection; in contrast, the amount of type I collagen mRNAs remained unchanged at that stage. A good correlation was observed between the detection of the specific mRNAs and the detection of both desmin and collagen molecules. Therefore, these data point to a coordinate induction of desmin and collagen gene expression during Schistosomal granuloma formation. They also suggest that the expression of the myofibroblast phenotype involves the induction of both genes.  相似文献   

10.
Collagen gene expression during mouse molar tooth development was studied by quantitative in situ hybridization techniques. Different expression patterns of type I and type III collagen mRNAs were observed in the various mesenchymal tissues that constitute the tooth germ. High concentration for pro-alpha 1(I) and pro-alpha 2(I) collagen mRNAs were found within the osteoblasts. We found that the cellular content of type I collagen mRNAs in the odontoblasts varies throughout the tooth formation: whereas mRNA concentration for pro-alpha 1(I) collagen decreases and that of pro-alpha 2(I) increases, during postnatal development. Moreover, different amounts of pro-alpha 1(I) and pro-alpha 2(I) collagen mRNAs were observed in crown and root odontoblasts, respectively. Type III collagen mRNAs were detected in most of the mesenchymal cells, codistributed with type I collagen mRNAs, except in odontoblasts and osteoblasts. Finally, this study reports differential accumulation of collagen mRNAs during mouse tooth development and points out that type I collagen gene expression is regulated by distinct mechanisms during odontoblast differentiation process. These results support the independent expression of the collagen genes under developmental tissue-specific control.  相似文献   

11.
12.
Fracture repair recapitulates in adult organisms the sequence of cell biological events of endochondral ossification during skeletal development and growth. After initial inflammation and deposition of granulation tissue, a cartilaginous callus is formed which, subsequently, is remodeled into bone. In part, bone formation is influenced also by the properties of the extracellular matrix of the cartilaginous callus. Deletion of individual macromolecular components can alter extracellular matrix suprastructures, and hence stability and organization of mesenchymal tissues. Here, we took advantage of the collagen IX knockout mouse model to better understand the role of this collagen for organization, differentiation and maturation of a cartilaginous template during formation of new bone. Although a seemingly crucial component of cartilage fibrils is missing, collagen IX-deficient mice develop normally, but are predisposed to premature joint cartilage degeneration. However, we show here that lack of collagen IX alters the time course of callus differentiation during bone fracture healing. The maturation of cartilage matrix was delayed in collagen IX-deficient mice calli as judged by collagen X expression during the repair phase and the total amount of cartilage matrix was reduced. Entering the remodeling phase of fracture healing, Col9a1(-/-) calli retained a larger percentage of cartilage matrix than in wild type indicating also a delayed formation of new bone. We concluded that endochondral bone formation can occur in collagen IX knockout mice but is impaired under conditions of stress, such as the repair of an unfixed fractured long bone.  相似文献   

13.
14.
The expression of mRNAs for type I and type II procollagens, transforming growth factor-beta (TGF-beta) and c-fos was studied in developing human long bones by Northern blotting and in situ hybridization. The cells producing bone and cartilage matrix were identified by hybridizations using cDNA probes for types I and II collagen, respectively. Northern blotting revealed that the highest levels of TGF-beta mRNA were associated with the growth plates. By in situ hybridization, this mRNA was localized predominantly in the osteoblasts and osteoclasts of the developing bone, in periosteal fibroblasts and in individual bone marrow cells. These findings are consistent with the view that TGF-beta may have a role in stimulation of type I collagen production and bone formation. Only a low level of TGF-beta mRNA was detected in cartilage where type II collagen mRNA is abundant. In Northern hybridization, the highest levels of c-fos mRNA were detected in epiphyseal cartilage. In situ hybridization revealed two cell types with high levels of c-fos expression: the chondrocytes bordering the joint space and the osteoclasts of developing bone. These differential expression patterns suggest specific roles for TGF-beta and c-fos in osseochondral development.  相似文献   

15.
A differentiation method of human bone marrow mesenchymal stem cells (MSCs) to chondrocytes was developed for the construction of a three-dimensional (3D) cartilage tissue. The adhesive cells, which were isolated from a human bone marrow aspirate were embedded in type I collagen in a poly-l-lactate-glycolic acid copolymer (PLGA) mesh and cultivated for 4 week together with growth factors. The degree of cellular differentiation was estimated by quantitative RT-PCR of aggrecan and type II collagen mRNAs and by staining with Safranin O. The 3D culture showed a higher degree of differentiation even without growth factors than the conventional pellet culture with growth factors, namely, dexamethasone and transforming growth factor (TGF)-β 3. The 3D culture for 2 week with the combined addition of dexamethasone, TGF-β 3, and insulin-like growth factor (IGF)-I reached a 30% expression of aggrecan mRNA compared with that in primary human chondrocytes, while the aggrecan mRNA expression in the conventional pellet culture was less than 2%. The sequential two-step differentiation cultivation, during which the cells were cultivated in 3D for 1 week after the conventional two-dimensional (2D) culture for 1 week, could markedly accelerate the expression of aggrecan mRNA compared with the 3D cultivation for 2 week.  相似文献   

16.
Summary The distribution of types I, II, III, V and IX collagens in healing fractures of the rabbit tibia has been demonstrated by immunofluorescent techniques. It has also been shown that the mechanical stability of the healing fracture affects both the distribution and types of the collagens present.The initial fibrous matrix contains types III and V collagens; type I collagen was only located in this matrix if unfixed tissue was used. In mechanically stable fractures, cancellous bone forms over the entire periosteal surface by 5–7 days; type I collagen is laid down within the previous fibrous matrix. The trabeculae are heterogeneous in their collagen content. The cavities contain a matrix of types III and V collagens. Small nodules of cartilage may be present between 7 and 14 days; these contain types II and IX collagens.In mechanically unstable fractures, cancellous bone is initially formed away from the fracture gap. The fibrous tissue over the gap is replaced by cartilage; types II and IX collagens are laid down on the pre-existing fibrous matrix. The cartilage is replaced by endochondral ossification. At the ossification front, type I collagen is found around the chondrocyte lacunae of the spicules of cartilage. The new trabeculae contain a core of cartilage which is surrounded by a bone matrix of types I and V collagens.The fracture gaps are invaded by fibrous tissue, which contain types III and V collagens. This is later replaced by cancellous bone.  相似文献   

17.
18.
19.
Summary Normal transverse growth of long bones is by periosteal appositional bone formation, balanced by endosteal resorption. Changes in the distribution of cells that are expressing collagen mRNAs during growth were determined using digoxigeninlabelled riboprobes. In neonatal rabbit tibiae osteoblasts expressing type I collagen mRNA are found on periosteal, and at early stages on endosteal, bone surfaces and lining peripheral cavities. Occasional osteocytes express type I collagen mRNA very weakly. The pattern is disrupted when transforming growth factor-2 (TGF-2) is injected daily into the periosteum of neonatal animals; there is increased bone, and later cartilage, formation. Three injections of 20 ng TGF-2 onto the tibia of 3-day-old rabbits led to an increase of periosteal osteoblasts that express the mRNA for type I collagen. Some endosteal osteoblasts and osteocytes in newly-formed peripheral woven bone also express the mRNA. After five injections chondrocytes expressing type II collagen mRNA are found around the injection site. Similar injections of TGF-2 in old rabbits induce only fibrous tissue within which some cells express type I collagen mRNA. This precise localization of mRNAs shows that the expression of type I or II collagen mRNA is here restricted to osteoblasts and chondrocytes, respectively.  相似文献   

20.
The expression of dentin matrix protein 1 (Dmp1) mRNA has been compared with that of type I collagen and osteocalcin mRNAs during bone formation in the rat mandible, using in situ hybridization. At embryonic day 15 (E15), type I collagen and osteocalcin mRNAs were expressed by the majority of newly-differentiated osteoblasts attached to unmineralized bone matrices, whereas Dmp1 mRNA expression was confined to only a few osteoblasts. Expression of these genes increased as the number of osteoblasts increased in specimens from E16 to E18. At E20, expression of Dmp1, type I collagen and osteocalcin was also observed in osteocytes. Dmp1 expression continued in osteocytes as they matured up to the 90-day-old specimens, whereas type I collagen and osteocalcin expression in osteocytes almost disappeared at 30 days of postnatal life. In contrast, osteoblasts continued to express type I collagen and osteocalcin in 90-day-old rats, but transiently expressed Dmp1 mRNA, which was seen in the minority of osteoblasts at 14 days of postnatal life. These data show that the developmental expression patterns of Dmp1 in osteogenic differentiation differ from those of type I collagen and osteocalcin, and Dmp1 appears to be expressed by osteocytes throughout ossification in the skeleton. These observations indicate that Dmp1 may serve unique biological functions in osteocyte and bone metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号