首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王君  沙丽清  李检舟  冯志立 《生态学报》2008,28(8):3574-3583
青藏高原由于高寒低温限制了有机碳的分解,大量的碳积累在土壤碳库中,对全球升温的反应很敏感.放牧可能会对该区草甸的碳排放产生显著影响.采用闭合箱动态法测定了云南香格里拉地区不同放牧管理方式下的亚高山草甸生态系统呼吸与土壤呼吸.常年放牧草甸与季节性放牧草甸的生态系统呼吸和土壤呼吸均呈现相似且明显的单峰季节变化特征,7月份达最大值,生态系统呼吸分别为9.77、8.03 μmol CO2 m-2 s-1,土壤呼吸分别为8.05、7.74 μmol CO2 m-2 s-1;1月份达最低值,生态系统呼吸分别为0.21、0.48 μmol CO2 m-2 s-1,土壤呼吸分别为0.16、0.49 μmol CO2 m-2 s-1.受一天中气温和土温的影响,常年放牧草甸的生态系统呼吸与土壤呼吸的日变化在夏季与冬季均呈现明显的单峰曲线变化,最高值都出现在14:00左右,最低值出现在凌晨.在夏季6~10月份,常年放牧草甸的呼吸显著大于季节性放牧草甸,表明较高的放牧强度增加了亚高山草甸的碳排放.土壤温度的指数模型F = aebT比土壤水分能更好地解释呼吸的变异性(R2 = 0.50~0.78,P < 0.0001).二元回归模型F=aebTWc比单因子模型的效果更好(R2=0.56~0.89,P < 0.0001).土壤呼吸在整个亚高山草甸生态系统呼吸中占主导地位,在常年放牧草甸与季节性放牧草甸分别为63.0%~92.7%和47.5%~96.4%,地上植物呼吸随生长季的变化而变化,在生长旺季占有较大的比例.生态系统呼吸和土壤呼吸的长期Q10(1a)是短期Q10(1d)的2倍左右.季节性放牧草甸的长期Q10小于常年放牧草甸,表明在温度上升的背景下,放牧压力较小的草甸碳库较为稳定,具有较好的碳截存能力.  相似文献   

2.
阳小成  阿舍小虎  苗原  刘银占 《生态学报》2016,36(17):5371-5378
采用土壤二氧化碳(CO_2)通量自动测量系统,对不同放牧模式(全年禁牧、夏季放牧、冬季放牧和自由放牧)下川西北高寒草甸的土壤呼吸进行监测,比较了不同放牧模式下土壤呼吸的季节动态和温度敏感性。研究发现:1)放牧模式可以改变高寒草甸土壤呼吸的季节动态变化。禁牧、夏季放牧以及自由放牧样地的土壤呼吸在季节上的变化趋势基本相似,而冬季放牧样地的土壤呼吸最大值与前者相比明显向后推迟;2)放牧模式并不改变高寒草甸年平均土壤呼吸速率,但对不同季节土壤呼吸速率的影响不同;3)不同放牧模式可以改变土壤呼吸对温度的敏感性(Q_(10))。不同放牧模式下土壤呼吸Q_(10)值大小依次为:禁牧1a(8.13)冬季放牧(7.49)禁牧3a(5.46)夏季放牧(5.20)自由放牧(4.53)。该地区土壤呼吸的Q_(10)值均明显高于热带和其它温带草地土壤呼吸的Q_(10)值。结果表明,放牧模式是影响高寒草甸土壤碳排放的一个重要因素。此外,在未来全球气候变暖背景下,在生长季节无放牧干扰的高寒草甸可能比放牧干扰的高寒草甸释放出更多的CO_2到大气中。  相似文献   

3.
高寒矮嵩草草甸冬季CO2释放特征   总被引:1,自引:0,他引:1  
吴琴  胡启武  曹广民  李东 《生态学报》2011,31(18):5107-5112
冬季碳排放在高寒草地年内碳平衡中占有重要位置。为探讨高寒草地冬季碳排放特征及温度敏感性,于2003-2005年在中国科学院海北高寒草甸生态系统研究站,利用密闭箱-气相色谱法连续观测了高寒矮嵩草草甸2个冬季的生态系统、土壤呼吸通量特征。结果表明:1)高寒矮嵩草草甸冬季生态系统呼吸、土壤呼吸均具有明显的日变化和季节变化规律,温度是其主要的控制因子,能够解释44%以上的呼吸速率变异。2)冬季生态系统呼吸与土壤呼吸速率在统计上没有显著差异,土壤呼吸占生态系统呼吸的比例高达85%以上。3)2003-2004年冬季生态系统呼吸、土壤呼吸的Q10值分别为1.53,1.38;2004-2005年冬季生态系统呼吸与土壤呼吸的Q10值为1.86,1.68,2个冬季生态系统呼吸的Q10值均高于土壤呼吸。4)未发现高寒矮嵩草草甸冷冬年份的Q10值高于暖冬年份以及冬季的Q10值高于生长季。  相似文献   

4.
Understanding the response of ecosystem respiration (ER) to major environmental drivers is critical for estimating carbon sequestration and large-scale modeling research. Temperature effect on ER is modified by other environmental factors, mainly soil moisture, and such information is lacking for switchgrass (Panicum virgatum L.) ecosystems. The objective of this study was to examine seasonal variation in ER and its relationship with soil temperature (T s) and moisture in a switchgrass field. ER from the nighttime net ecosystem CO2 exchange measurements by eddy covariance system during the 2011 and 2012 growing seasons was analyzed. Nighttime ER ranged from about 2 (early growing season) to as high as 13 μmol m?2 s?1 (peak growing period) and showed a clear seasonality, with low rates during warm (>30 °C) and dry periods (<0.20 m3 m?3 of soil water content). No single temperature or moisture function described variability in ER on the seasonal scale. However, an exponential temperature–respiration function explained over 50 % of seasonal variation in ER at adequate soil moisture (>0.20 m3 m?3), indicating that soil moisture <0.20 m3 m?3 started to limit ER. Due to the limitation of soil–atmosphere gas exchange, ER rates declined markedly in wet soil conditions (>0.35 m3 m?3) as well. Consequently, both dry and wet conditions lowered temperature sensitivity of respiration (Q 10). Stronger ER–T s relationships were observed at higher soil moisture levels. These results demonstrate that soil moisture greatly influences the dynamics of ER and its relationship with T s in drought prone switchgrass ecosystems.  相似文献   

5.
氮沉降和放牧是影响草地碳循环过程的重要环境因子,但很少有研究探讨这些因子交互作用对生态系统呼吸的影响。在西藏高原高寒草甸地区开展了外源氮素添加与刈割模拟放牧实验,测定了其对植物生物量分配、土壤微生物碳氮和生态系统呼吸的影响。结果表明:氮素添加显著促进生态系统呼吸,而模拟放牧对其无显著影响,且降低了氮素添加的刺激作用。氮素添加通过提高微生物氮含量和土壤微生物代谢活性,促进植物地上生产,从而增加生态系统的碳排放;而模拟放牧降低了微生物碳含量,且降低了氮素添加的作用,促进根系的补偿性生长,降低了氮素添加对生态系统碳排放的刺激作用。这表明,放牧压力的存在会抑制氮沉降对高寒草甸生态系统碳排放的促进作用,同时外源氮输入也会缓解放牧压力对高寒草甸生态系统生产的负面影响。  相似文献   

6.
降雨对草地土壤呼吸季节变异性的影响   总被引:4,自引:0,他引:4  
王旭  闫玉春  闫瑞瑞  杨桂霞  辛晓平 《生态学报》2013,33(18):5631-5635
利用土壤碳通量自动观测系统(LI-8150)对呼伦贝尔草原在自然降雨条件下的土壤呼吸作用进行了野外定位连续观测,研究结果表明:降雨对土壤呼吸作用存在激发效应和抑制效应,降雨发生后1-2 h内土壤呼吸速率可增加约1倍,当单次或者连续降雨累积量大于7-8 mm,或土壤含水量大于29%-30%时,降雨对土壤呼吸会产生明显的抑制作用。土壤呼吸的激发效应往往体现在次日,表现为次日平均土壤呼吸速率的显著升高;而抑制效应则在当日即可体现出来,表现为观测当日平均土壤呼吸速率的明显下降。土壤呼吸季节变异性与降雨频率和降雨强度密切相关,在降雨量一定的情况下,较低的降雨频率和较高的降雨强度会增加土壤呼吸的变异性。呼伦贝尔草甸草原而言,在生长季土壤平均含水量为16.5%时,土壤呼吸的温度敏感性值(Q10)为2.12;而平均土壤含水量为26%时,Q10值为2.82,明显高于前者,土壤含水量与Q10之间存在正相关关系。降雨导致土壤呼吸的激发效应和抑制效应交替发生,使草地土壤呼吸的季节变异性增加,降雨格局变化必然会对草地碳循环和碳通量特征产生深刻影响。  相似文献   

7.
随着全球大气氮沉降的明显增加,将有可能显著影响我国西部地区受氮限制的亚高山森林生态系统。土壤微生物是生态系统的重要组成部分,是土壤物质循环和能量流动的重要参与者。由于生态系统类型、土壤养分、氮沉降背景值等的差异,土壤呼吸和土壤生物量碳氮对施氮的响应存在许多不确定性。而施氮会不会促进亚高山森林生态系统中土壤呼吸和微生物对土壤碳氮的固定?基于此假设,选择了川西60年生的四川红杉(Larix mastersiana)亚高山针叶林为研究对象,通过4个水平的土壤施氮控制试验(CK:0 g m~(-2) a~(-1)、N1:2 g m~(-2)a~(-1)、N2:5 g m~(-2) a~(-1)、N3:10 g m~(-2)a~(-1)),监测了土壤呼吸及土壤微生物生物量碳氮在一个生长季的动态情况。结果表明:施氮对土壤呼吸各指标和土壤微生物碳氮都有极显著的影响,施氮能促进土壤全呼吸、自养呼吸、异养呼吸通量和土壤微生物生物量碳氮的增长,施氮使土壤呼吸通量提高了11%—15%,土壤微生物量碳提高了5%—9%,土壤微生物量氮提高了23%—34%。在中氮水平下(5 g m~(-2) a~(-1))对土壤呼吸的促进最显著。相关分析发现,土壤呼吸与微生物生物量碳氮和微生物代谢商极呈显著正相关,微生物量碳氮与土壤温度呈极显著的正相关,与土壤湿度呈极显著负相关。通过一般线性回归拟合土壤呼吸速率与土壤10 cm温湿度的关系,发现土壤呼吸速率与土壤温度呈极显著的正相关,与土壤湿度极显著负相关(P0.001),中氮水平下土壤温度敏感性系数Q_(10)值(7.10)明显高于对照(4.26)。  相似文献   

8.
增温对青藏高原高寒草甸呼吸作用的影响   总被引:1,自引:0,他引:1  
生态系统呼吸(ER)和土壤呼吸(SR)是草地生态系统碳排放的关键环节,其对气候变化极为敏感。高寒草甸是青藏高原典型的草地生态系统,其呼吸作用对气候变化的响应对区域碳排放具有重要的影响。以高寒草甸生态系统为对象,于2012—2016年采用模拟增温的方法研究呼吸作用对增温的响应。结果表明:增温对高寒草甸ER的影响存在年际差异,2013年和2014年增温对ER无显著影响,其他年份显著增加ER(P0.05),综合5年结果,平均增幅达22.3%。增温显著促进了高寒草甸SR(P0.05),较对照处理5年平均增幅高达67.1%;增温总体上提高了SR在ER中的比例(P0.05),最高增幅达到59.9%。ER和SR与土壤温度有显著的正相关关系(P0.05),与土壤水分没有显著的相关关系(P0.05)。对照样地中,土壤温度分别能解释33.0%和18.5%的ER和SR变化。在增温条件下,土壤温度可以解释20.5%和13.0%的ER和SR变化。在增温条件下,SR的温度敏感性显著增加,而ER的温度敏感性变化较小,导致SR的比重进一步增加。因此,在未来气候变暖条件下,青藏高原高寒草甸生态系统碳排放,尤其是土壤碳排放有可能进一步增加,土壤碳流失风险增加。  相似文献   

9.
In order to investigate the annual variation of soil respiration and its components in relation to seasonal changes in soil temperature and soil moisture in a Mediterranean mixed oak forest ecosystem, we set up a series of experimental treatments in May 1999 where litter (no litter), roots (no roots, by trenching) or both were excluded from plots of 4 m2. Subsequently, we measured soil respiration, soil temperature and soil moisture in each plot over a year after the forest was coppiced. The treatments did not significantly affect soil temperature or soil moisture measured over 0–10 cm depth. Soil respiration varied markedly during the year with high rates in spring and autumn and low rates in summer, coinciding with summer drought, and in winter, with the lowest temperatures. Very high respiration rates, however, were observed during the summer immediately after rainfall events. The mean annual rate of soil respiration was 2.9 µ mol m?2 s?1, ranging from 1.35 to 7.03 µmol m?2 s?1. Soil respiration was highly correlated with temperature during winter and during spring and autumn whenever volumetric soil water content was above 20%. Below this threshold value, there was no correlation between soil respiration and soil temperature, but soil moisture was a good predictor of soil respiration. A simple empirical model that predicted soil respiration during the year, using both soil temperature and soil moisture accounted for more than 91% of the observed annual variation in soil respiration. All the components of soil respiration followed a similar seasonal trend and were affected by summer drought. The Q10 value for soil respiration was 2.32, which is in agreement with other studies in forest ecosystems. However, we found a Q10 value for root respiration of 2.20, which is lower than recent values reported for forest sites. The fact that the seasonal variation in root growth with temperature in Mediterranean ecosystems differs from that in temperate regions may explain this difference. In temperate regions, increases in size of root populations during the growing season, coinciding with high temperatures, may yield higher apparent Q10 values than in Mediterranean regions where root growth is suppressed by summer drought. The decomposition of organic matter and belowground litter were the major components of soil respiration, accounting for almost 55% of the total soil respiration flux. This proportion is higher than has been reported for mature boreal and temperate forest and is probably the result of a short‐term C loss following recent logging at the site. The relationship proposed for soil respiration with soil temperature and soil moisture is useful for understanding and predicting potential changes in Mediterranean forest ecosystems in response to forest management and climate change.  相似文献   

10.
The respiratory CO2 exchange and the growth of the annual shoots were followed in Scots pine (Pinus sylvestris L.) trees growing under extreme continental forest-steppe conditions near the lake Baikal. The temperature coefficient of dark respiration (Q10) in growing shoots dropped down from 3.2–4.0 (in the temperature range of 10–20°C) to 1.5–2.0 (in the temperature range of 20–30°C). The changes in averaged daily respiration rates correlated with the changes in shoot growth increments and temperature (with the multiple determination coefficient of 0.94). Growth respiration of the axial shoots during the phenophase reached 80% of the total respiration costs, with the coefficients of growth respiration and maintenance respiration 0.32 and 0.021. In young crown shoots, the average value of CO2 evolution in the light combined for the whole observation period (years 1976–2004) was about 1 kg/dm2, that is 9% of CO2 evolution from the trunk surface.  相似文献   

11.
量化森林土壤呼吸及其组分对温度的响应对准确评估未来气候变化背景下陆地生态系统的碳平衡极其重要。该文通过对神农架海拔梯度上常绿阔叶林、常绿落叶阔叶混交林、落叶阔叶林以及亚高山针叶林4种典型森林土壤呼吸的研究发现: 4种森林类型的年平均土壤呼吸速率和年平均异养呼吸速率分别为1.63、1.79、1.74、1.35 μmol CO2·m-2·s-1和1.13、1.12、1.12、0.80 μmol CO2·m-2·s-1。该地区的土壤呼吸及其组分呈现出明显的季节动态, 夏季最高, 冬季最低。4种森林类型中, 阔叶林的土壤呼吸显著高于针叶林, 但阔叶林之间的土壤呼吸差异不显著。土壤温度是影响土壤呼吸及其组分的主要因素, 二者呈显著的指数关系; 土壤含水量与土壤呼吸之间没有显著的相关关系。4种典型森林土壤呼吸的Q10值分别为2.38、2.68、2.99和4.24, 随海拔的升高土壤呼吸对温度的敏感性增强, Q10值随海拔的升高而增加。  相似文献   

12.
To better understand the effects of local topography and climate on soil respiration, we conducted field measurements and soil incubation experiments to investigate various factors influencing spatial and temporal variations in soil respiration for six mixed‐hardwood forest slopes in the midst of the Korean Peninsula. Soil respiration and soil water content (SWC) were significantly greater (P=0.09 and 0.003, respectively) on north‐facing slopes compared to south‐facing slopes, while soil temperature was not significantly different between slopes (P>0.5). At all sites, soil temperature was the primary factor driving temporal variations in soil respiration (r2=0.84–0.96) followed by SWC, which accounted for 30% of soil respiration spatial and temporal variability. Results from both field measurements and incubation experiments indicate that variations in soil respiration due to aspect can be explained by a convex‐shaped function relating SWC to normalized soil respiration rates. Annual soil respiration estimates (1070–1246 g C m?2 yr?1) were not closely related to mean annual air temperatures among sites from different climate regimes. When soils from each site were incubated at similar temperatures in a laboratory, respiration rates for mineral soils from wetter and cooler sites were significantly higher than those for the drier and warmer sites (n=4, P<0.01). Our results indicate that the application of standard temperature‐based Q10 models to estimate soil respiration rates for larger geographic areas covering different aspects or climatic regimes are not adequate unless other factors, such as SWC and total soil nitrogen, are considered in addition to soil temperature.  相似文献   

13.
施肥对油茶园土壤呼吸和异养呼吸及其温度敏感性的影响   总被引:2,自引:0,他引:2  
油茶是中国南方重要的木本食用油料树种,研究施肥对油茶园土壤呼吸及其温度敏感性的影响,对于估算中国南方典型种植园林温室气体排放及其对气候变化的响应具有重要意义。设置对照(CK)、施肥(OF)、断根(CK-T)和断根施肥(OF-T)4个处理,采用静态箱-气相色谱法,通过多年观测,分析探讨施肥对油茶园土壤呼吸和异养呼吸及其温度敏感性的影响。结果表明:(1)施肥对油茶园土壤呼吸和异养呼吸无显著影响。研究期间,各处理(OF、CK、OF-T、CK-T)土壤CO_2通量依次为(77.91±2.59)、(73.71±0.97)、(66.82±1.02)mg C m~(-2)h~(-1)和(66.84±3.94)mg C m~(-2)h~(-1);(2)各处理土壤呼吸温度敏感性(Q_(10))表现为OF-T(1.96±0.01)CK-T(1.79±0.03)OF(1.77±0.01)CK(1.75±0.03),其中,OF-T处理下Q_(10)显著高于其他3个处理,即施肥显著增加了断根处理土壤呼吸Q_(10);(3)施肥显著增加了土壤表层NH_4~+-N和NO_3~--N含量,Q_(10)与土壤表层NH_4~+-N和NO_3~--N含量表现出显著的正相关关系。  相似文献   

14.
改变凋落物输入对川西亚高山天然次生林土壤呼吸的影响   总被引:1,自引:0,他引:1  
2019年5月-10月,采用LI-8100A土壤碳通量自动测量分析仪对川西米亚罗林区20世纪60年代采伐后经自然更新恢复形成的岷江冷杉(Abies faxoniana)次生针叶林(针叶林)、红桦(Betula albo-sinensis)+青榨槭(Acer davidii)+岷江冷杉次生针阔混交林(针阔混交林)和青榨槭+红桦+陕甘花楸(Sorbus koehneana Schneid)次生阔叶林(阔叶林)的土壤呼吸及土壤温湿度因子(对照、去除凋落物和加倍凋落物)进行观测。结果显示:去除和加倍凋落物对土壤温湿度的影响不显著,且3种林型之间的土壤呼吸速率差异不显著。与对照相比,去除凋落物使针叶林、针阔混交林、阔叶林的土壤呼吸速率分别降低了17.65%、21.01%和19.83%(P<0.05);加倍凋落物则分别增加6.76%、7.28%、8.16%(P>0.05)。3种林分土壤呼吸速率均与土壤温度极显著指数相关,与土壤湿度不相关。对照Q10值变幅为2.01-3.29,去除凋落物降低了3种林型的Q10值;加倍凋落物分别提高了针叶林和降低了针阔混交林和阔叶林的Q10值。土壤呼吸速率仅表现在天然次生林对照处理中受到土壤pH、有机质、可溶性有机氮和草本Pielou均匀度指数的显著影响。研究结果表明,天然次生阔叶林和针阔混交林凋落物对土壤呼吸的贡献及Q10值高于天然次生针叶林,说明在未来CO2浓度及温度升高背景下,地表凋落物增加并未引起天然次生林土壤呼吸速率成倍增加,更有利于该区域天然次生林尤其是针叶林的土壤碳吸存。  相似文献   

15.
Soils are the largest store of carbon in the biosphere and cool‐cold climate ecosystems are notable for their carbon‐rich soils. Characterizing effects of future climates on soil‐stored C is critical to elucidating feedbacks to changes in the atmospheric pool of CO2. Subalpine vegetation in south‐eastern Australia is characterized by changes over short distances (scales of tens to hundreds of metres) in community phenotype (woodland, shrubland, grassland) and in species composition. Despite common geology and only slight changes in landscape position, we measured striking differences in a range of soil properties and rates of respiration among three of the most common vegetation communities in subalpine Australian ecosystems. Rates of heterotrophic respiration in bulk soil were fastest in the woodland community with a shrub understorey, slowest in the grassland, and intermediate in woodland with grass understorey. Respiration rates in surface soils were 2.3 times those at depth in soils from woodland with shrub understorey. Surface soil respiration in woodlands with grass understorey and in grasslands was about 3.5 times that at greater depth. Both Arrhenius and simple exponential models fitted the data well. Temperature sensitivity (Q10) varied and depended on the model used as well as community type and soil depth – highlighting difficulties associated with calculating and interpreting Q10. Distributions of communities in these subalpine areas are dynamic and respond over relatively short time‐frames (decades) to changes in fire regime and, possibly, to changes in climate. Shifts in boundaries among communities and possible changes in species composition as a result of both direct and indirect (e.g. via fire regime) climatic effects will significantly alter rates of respiration through plant‐mediated changes in soil chemistry. Models of future carbon cycles need to take into account changes in soil chemistry and rates of respiration driven by changes in vegetation as well as those that are temperature‐ and moisture‐driven.  相似文献   

16.
施肥方式对紫色土土壤异养呼吸的影响   总被引:2,自引:0,他引:2  
花可可  王小国  朱波 《生态学报》2014,34(13):3602-3611
采用静态暗箱-气相色谱法于2010年12月至2011年10月对不同施肥方式下的紫色土土壤呼吸进行了研究,以揭示施肥方式对紫色土异养呼吸的影响。结果表明:施肥可对土壤异养呼吸产生激发效应。施肥后第5天出现峰值,猪厩肥处理的异养呼吸峰值为2356.8 mg CO2m-2h-1,显著高于秸秆配施氮磷钾(970.1 mgCO2m-2h-1)和常规氮磷钾处理(406.8 mgCO2m-2h-1)(P0.01);小麦季常规氮磷钾、猪厩肥和秸秆配施氮磷钾处理的平均土壤异养呼吸速率为212.9、285.8和305.8mgCO2m-2h-1,CO2排放量为255.1、342.3和369.5 gC/m2,玉米季为408.2、642.8和446.4 mgCO2m-2h-1,CO2排放量为344.7、542.8和376.9 gC/m2,玉米季土壤异养呼吸平均速率及CO2排放量均高于小麦季。全年平均土壤异养呼吸速率分别为310.6、446.3和377.4 mg CO2m-2h-1,CO2排放总量分别为599.8、885.1和746.4 gC/m2。猪厩肥对土壤异养呼吸速率和CO2排放量的影响最大,秸秆配施氮磷钾肥次之,氮磷钾肥最小,说明有机物料的投入是紫色土土壤异养呼吸速率的主要调控措施,低碳氮比的有机物料能促进土壤异养呼吸和CO2的排放。猪厩肥和秸秆配施氮磷钾肥处理相应地表和地下5 cm温度的Q10值分别为2.64、1.88和2.77、1.99,表明低碳氮比的有机物料还能增加土壤异养呼吸Q10值,使土壤异养呼吸速率对温度的敏感性加强。  相似文献   

17.
青藏高原高寒草甸土壤CO2排放对模拟氮沉降的早期响应   总被引:5,自引:0,他引:5  
研究大气氮沉降输入对青藏高原高寒草甸土壤-大气界面CO2交换通量的影响,对于准确评价全球变化背景下区域碳平衡至关重要。通过构建多形态、低剂量的增氮控制试验,利用静态箱-气相色谱法测定土壤CO2排放通量,同时测定相关土壤变量和地上生物量,分析高寒草甸土壤CO2排放特征及其主要驱动因子。研究结果表明:低、高剂量氮输入倾向于消耗土壤水分,而中剂量氮输入有利于土壤水分的保持;施氮初期总体上增加了土壤无机氮含量,铵态氮累积效应更为显著;施氮显著增加地上生物量和土壤CO2排放通量,铵态氮的促进效应显著高于硝态氮。另外,土壤CO2排放通量主要受土壤温度驱动,其次为地上生物量和铵态氮储量。上述结果反映了氮沉降输入短期内可能刺激了植物生长和土壤微生物活性,加剧了土壤-大气界面CO2排放。  相似文献   

18.
沙坡头人工植被演替过程的土壤呼吸特征   总被引:3,自引:0,他引:3  
为探讨人工植被演替过程对土壤呼吸速率的影响,本文利用碱液吸收法同步测定了腾格里沙漠东南缘1956、1964、1981、1987、1989、2007年始植的人工植被区和2007年新铺设的草方格固沙区及流沙区的土壤呼吸速率变化,同时分析了土壤水分和温度对上述不同样地土壤呼吸的影响。结果表明:1) 总体而言,土壤呼吸速率随着人工植被演替时间的延长而逐渐增大。当土壤含水量较高时,不同始植年代人工植被区的土壤呼吸速率具有显著的差异(P<0.05);当土壤含水量较低时,不同始植年代植被区的土壤呼吸速率没有显著的差异(P>0.05)。2)土壤呼吸速率与土壤含水量呈正相关关系,且相关系数随着人工植被演替时间的延长而逐渐增大。3)利用土壤呼吸速率-土壤温度指数函数关系计算得到不同人工植被演替阶段土壤呼吸速率的Q10值均较低(平均值仅为1.02)。土壤温度对1987、1989年人工植被区内的土壤呼吸速率产生了显著影响(P<0.05),而对其他样地的土壤呼吸速率影响不显著 (P>0.05)。综合说明,人工植被的演替过程改变了土壤呼吸速率大小及其对土壤水分和温度的响应。  相似文献   

19.
Deep snow in sub-alpine ecosystems may reduce or eliminate soil freezing, thus contributing to the potential for winter soil respiration to account for a significant fraction of annual CO2 efflux to the atmosphere. Quantification of carbon loss from soils requires separation of respiration produced by roots and rhizosphere organisms from that produced by heterotrophic, decomposer organisms because the former does not result in a net loss of stored carbon. Our objective was to quantify winter soil respiration rates in a sub-alpine forest and meadow, and to partition that flux into its rhizosphere and heterotrophic components. We were particularly interested in comparing early winter soil respiration to late winter/early spring soil respiration of each component because previous work has shown a consistent increase in soil respiration of subalpine systems from early winter to late winter/spring. Field data on the total soil CO2 flux and its carbon isotope composition were coupled with data from laboratory incubations using a novel process-based stable isotope mixing model implemented in a hierarchical Bayesian framework. We found that soil respiration generally increased from early to later winter and was greatest mid-summer. After correcting for the effect of wind on snowpack δ13C–CO2, the δ13C of soil-respired CO2 varied little over winter, and the contributions of rhizospheric (~35 %) and heterotrophic (~65 %) respiration were relatively constant. The significance of winter respiration from the rhizosphere and apparent coupling of increases in rhizospheric and heterotrophic respiration in late winter are likely to be important for predicting changes in soil carbon in sub-alpine ecosystems.  相似文献   

20.
Response of soil respiration (CO2 emission) to simulated nitrogen (N) deposition in a mature tropical forest in southern China was studied from October 2005 to September 2006. The objective was to test the hypothesis that N addition would reduce soil respiration in N saturated tropical forests. Static chamber and gas chromatography techniques were used to quantify the soil respiration, following four‐levels of N treatments (Control, no N addition; Low‐N, 5 g N m?2 yr?1; Medium‐N, 10 g N m?2 yr?1; and High‐N, 15 g N m?2 yr?1 experimental inputs), which had been applied for 26 months before and continued throughout the respiration measurement period. Results showed that soil respiration exhibited a strong seasonal pattern, with the highest rates found in the warm and wet growing season (April–September) and the lowest rates in the dry dormant season (December–February). Soil respiration rates showed a significant positive exponential relationship with soil temperature, whereas soil moisture only affect soil respiration at dry conditions in the dormant season. Annual accumulative soil respiration was 601±30 g CO2‐C m?2 yr?1 in the Controls. Annual mean soil respiration rate in the Control, Low‐N and Medium‐N treatments (69±3, 72±3 and 63±1 mg CO2‐C m?2 h?1, respectively) did not differ significantly, whereas it was 14% lower in the High‐N treatment (58±3 mg CO2‐C m?2 h?1) compared with the Control treatment, also the temperature sensitivity of respiration, Q10 was reduced from 2.6 in the Control with 2.2 in the High‐N treatment. The decrease in soil respiration occurred in the warm and wet growing season and were correlated with a decrease in soil microbial activities and in fine root biomass in the N‐treated plots. Our results suggest that response of soil respiration to atmospheric N deposition in tropical forests is a decline, but it may vary depending on the rate of N deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号