首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yan J  Zhu X  Zhao J H 《农业工程》2009,29(3):150-154
Effects of grassland conversion to cropland and forest on soil organic carbon (SOC), dissolved organic carbon (DOC) in the farming-pastoral ecotone of Inner Mongolia were investigated by direct field sampling. SOC content and DOC content in soil decreased after grassland were shifted to forest or cropland, in the sequence of grassland soil > forest soil > cropland soil. SOC stock declined by 18% after grassland shifted from to forest. Reclamation of cropland for 10 years, 15 years and 20 years lost SOC in 0–30 cm soil layer, by 34%, 14% and 18%, respectively, compared with that of grassland. DOC in 3 soil layers was within 21.1–26.5 mg/L in grassland, 12.1–14.6 mg/L in forest soil, and 8.0–14.0 mg/L in cropland soil. Correlation analysis indicated that SOC content and DOC content were positively dependent on total nitrogen content (p < 0.05), but negatively on bulk density or land use type (p < 0.05). DOC was positively correlated SOC (p < 0.01). Moreover, SOC content could be quantitatively described by a linear combination of land use types (p = 0.000, r2 = 0.712), and DOC content by a linear combination of two soil-related variables, land use types and SOC (p = 0.000, r2 = 0.861).  相似文献   

2.
杨桦  彭小瑜  杨淑琪  张云斌  赵才  黄勇 《生态学报》2022,42(17):7105-7117
土地利用方式是影响土壤有机碳库的重要因素,为探究喀斯特断陷盆地土壤有机碳库对土地利用方式及环境因素的响应,以滇南喀斯特地区5种典型土地利用方式(耕地、草地、灌丛、人工林、天然林)为研究对象,分析不同土地利用方式土壤有机碳(SOC)及活性有机碳(LOC)组分,即可溶性有机碳(DOC)、易氧化性有机碳(EOC)及微生物量碳(MBC)的含量、储量及分配比例在土壤垂直剖面(0-60 cm)的变化特征。结果表明:5种土地利用方式的SOC含量随土层深度的增加逐渐降低,其储量依次为灌丛(191.77 t/hm2)、草地(166.86 t/hm2)、耕地(142.47 t/hm2)、人工林(134.31 t/hm2)和天然林(102.62 t/hm2);EOC和MBC的平均含量及储量均以草地及灌丛最高、人工林及天然林次之,二者在土壤垂直剖面上与SOC含量的变化特征一致,但EOC和MBC含量在土层间的下降幅度大于SOC;土地利用方式和土层深度对DOC无显著影响(P>0.05);活性有机碳的分配比例受土地利用方式及土层深度的显著影响(P<0.01),其中人工林的EOC/SOC和MBC/SOC显著低于草地、灌丛及天然林。通径分析指出SOC和EOC主要受C/P比、全磷、砂粒和交换性钙的影响,砂粒和C/P比是影响MBC的主要因子。研究阐明在喀斯特断陷盆地地区EOC和MBC对土地利用方式的响应比SOC更敏感。另外,今后在土壤碳库的研究中应更多关注土壤磷和物理结构对其的影响。  相似文献   

3.
丁一阳  毛子军  张玲  丁力 《植物研究》2015,35(4):604-611
土壤有机碳含量是全球生态系统碳储量变化的重要指标之一,本研究以空间替代时间序列的方法,分别选取了小兴安岭地区原始阔叶红松林和枫桦次生林并测定土壤有机碳库、土壤全氮含量、土壤微生物量碳及土壤相关理化性质,结果表明,土壤有机碳含量(SOC)、土壤全氮含量(TN)、土壤微生物量碳(MBC)、土壤含水率等指标随着土壤层的深度增加而逐渐减少最后趋于稳定,而土壤容重随着土壤层的加深而增大。在原始林中0~10和10~20cm层的SOC、TN含量差异不显著,而次生林则差异显著。原始阔叶红松林和枫桦次生林的土壤有机碳密度(SOCD)分别为21.46和21.3 kg·m-2,差异不显著。原始林和次生林的平均有机碳含量分别为35.79,28.6 g·kg-1,土壤全氮含量分别为2.86,1.83 g·kg-1,枫桦次生林MBC与SOC的线性相关性高于原始林。结果表明原始林土壤肥力高于次生林,在今后次生林的管理中应适当混栽针叶树种,原始林中应适当间伐使地下碳储量增加。  相似文献   

4.
江西官山常绿阔叶林土壤有机碳组分沿海拔的变化   总被引:5,自引:0,他引:5  
习丹  余泽平  熊勇  刘小玉  刘骏 《应用生态学报》2020,31(10):3349-3356
对江西官山国家级自然保护区不同海拔(400、600、800、1000、1200 m)常绿阔叶林土壤总有机碳、惰性有机碳和活性有机碳进行分析,研究土壤有机碳的海拔分布特征。结果表明: 土壤总有机碳、惰性有机碳及活性有机碳含量在土壤表层最高,随土层加深而逐渐下降。随海拔升高,土壤总有机碳、惰性有机碳、易氧化有机碳、微生物生物量碳及0~20 cm土层土壤颗粒有机碳含量均出现先增后降的趋势, 且在海拔1000 m达到峰值,而土壤水溶性有机碳及20~40 cm土层土壤颗粒有机碳含量无明显变化。在0~10 cm土层,土壤惰性有机碳占总有机碳的比例在海拔800和1200 m显著高于海拔400和1000 m,而土壤活性有机碳占总有机碳的比例在海拔400 m最高;土壤惰性有机碳和活性有机碳占总有机碳的比例在10~40 cm土层随海拔的增加均呈先增加后降低的趋势,峰值分别在1000和600 m处。各组分有机碳与土壤湿度、微生物生物量氮、可溶性有机氮均呈显著正相关,而且活性有机碳与铵态氮呈显著正相关。海拔显著影响常绿阔叶林土壤有机碳组分的分布,惰性有机碳、易氧化有机碳和微生物生物量碳对海拔变化的响应更敏感。高海拔土壤惰性有机碳和活性有机碳在水分和氮素充足条件下易发生分解与转化,降低土壤碳库的稳定性。在全球气温持续升高背景下,要加强高海拔地区森林土壤有机碳的动态变化研究。  相似文献   

5.
As the largest carbon pool of the terrestrial ecosystem, forest plays a key role in sequestrating and reserving greenhouse gases. With the method of replacing space with time, the typical restoration ecosystems of herb (dominated by Deyeuxia scabrescens, P1), shrub (dominated by Salix paraqplesia, P2), broadleaf (dominated by Betula platyphylla, P3), mixed forest (dominated by Betula spp. and Abies faxoniana, P4), and climax (dominated by Abies faxoniana, P5) were selected to quantify the carbon stock and allocation in the subalpine coniferous forest in Western Sichuan (SCFS). The results indicated that the soil organism carbon (SOC) stock decreased with the depth of soil layer, and the SOC per layer and the total SOC increased largely with the vegetation restoration. The contribution of SOC to the carbon stock of ecosystems decreased with the vegetation restoration from 89.45% to 27.06%, while the quantity was from 94.00 to 223.00 t C hm?2. The carbon stock in ground cover increased with the vegetation restoration, and its contribution to the carbon stock of ecosystems was similar (3–4% of the total). Following the vegetation restoration, the plant carbon stock multiplied and reached to 430.86 ± 49.49 t C hm?2 at the climax phase. During the restoration, the carbon stock of different layers increased, and the contribution of belowground to the carbon stock of ecosystems decreased sharply. The carbon stock on ecosystem scale of the climax phase was 5.89 times that of the herb phase. Our results highlighted that the vegetation restoration in SCFS was a large carbon sink.  相似文献   

6.
The impact of conservation tillage practices on soil carbon has been of great interest in recent years. Conservation tillage might have the potential to enhance soil carbon accumulation and alter the depth distribution of soil carbon compared to conventional tillage based systems. Changes in the soil organic carbon (SOC) as influenced by tillage, are more noticeable under long-term rather than short-term tillage practices. The objective of this study was to determine the impacts of long-term tillage on SOC and dissolved organic carbon (DOC) status after 19 years of four tillage treatments in a Hydragric Anthrosol. In this experiment four tillage systems included conventional tillage with rotation of rice and winter fallow system (CTF), conventional tillage with rotation of rice and rape system (CTR), no-till and ridge culture with rotation of rice and rape system (NT) and tillage and ridge culture with rotation of rice and rape system (TR). Soils were sampled in the spring of 2009 and sectioned into 0–10, 10–20, 20–30, 30–40, 40–50 and 50–60 cm depth, respectively.Tillage effect on SOC was observed, and SOC concentrations were much larger under NT than the other three tillage methods in all soil depths from 0 to 60 cm. The mean SOC concentration at 0–60 cm soil depth followed the sequence: NT (22.74 g kg?1) > CTF (14.57 g kg?1) > TR (13.10 g kg?1) > CTR (11.92 g kg?1). SOC concentrations under NT were significantly higher than TR and CTR (P < 0.01), and higher than CTF treatment (P < 0.05). The SOC storage was calculated on equivalent soil mass basis. Results showed that the highest SOC storage at 0–60 cm depth presented in NT, which was 158.52 Mg C ha?1, followed by CTF (106.74 Mg C ha?1), TR (93.11 Mg C ha?1) and CTR (88.60 Mg C ha?1). Compared with conventional tillage (CTF), the total SOC storage in NT increased by 48.51%, but decreased by 16.99% and 12.77% under CTR and TR treatments, respectively. The effect of tillage on DOC was significant at 0–10 cm soil layer, and DOC concentration was much higher under CTF than the other three treatments (P < 0.01). Throughout 0–60 cm soil depth, DOC concentrations were 32.92, 32.63, 26.79 and 22.10 mg kg?1 under NT, CTF, CTR and TR, and the differences among the four treatments were not significant (P > 0.05). In conclusion, NT increased SOC concentration and storage compared to conventional tillage operation but not for DOC.  相似文献   

7.
小兴安岭4种典型阔叶红松林土壤有机碳分解特性   总被引:6,自引:0,他引:6  
土壤有机碳分解是陆地生态系统碳循环的重要组成部分.主要采用土壤有机碳释放速率的室内培养实验的方法,并根据三库一级动力学模型,对小兴安岭地区4种典型阔叶红松林的土壤有机碳分解特征及各组分含量进行研究.实验结果如下:(1)土壤有机碳的分解趋势表现为前期迅速,后期缓慢,并且土壤腐殖质层(A)大于淀积层(B);在4种阔叶红松林中,云冷杉红松林土壤有机碳的分解速率最大,枫桦红松林最小;土壤有机碳的分解速率与土壤总有机碳、活性碳及土壤的C/N呈显著的正相关关系(P<0.05).(2)在土壤A层和B层,4种阔叶红松林的活性碳分别占总有机碳的0.89%-1.78%和1.91%-2.87%,平均驻留时间为12-35 d和27-58 d.缓效性碳占总有机碳的22.58%-28.44%和23.87%-42.63%,平均驻留时间为4-19 a和18-37 a.惰性碳占总有机碳的69.98%-76.24%和54.50%-74.22%,平均驻留时间为173 a;土壤有机碳各组分含量及驻留时间的大小顺序均为:云冷杉红松林>椴树红松林>枫桦红松林>蒙古栎红松林.  相似文献   

8.
Zong C  Ma Y  Rong K  Ma J Z  Cheng Z B 《农业工程》2009,29(6):362-366
Cone-cores discarded by Eurasian red squirrels were used to study the habitat selection of Korean pine-seeds hoarding, in forest patch Nos. 16 and 19 in Liangshui Nature Reserve, China. Ten transects with a total length of 15 km were uniformly set, and data from 343 valid samples were collected in a 369 hm2 area. One hundred and eighty four were hoarding samples which were determined according to the cluster analysis based on the number of the cone-cores, while the other 159 were control samples. The principal component analysis, using 11 habitat factors, suggested that the distance from Korean pine forest, forest type, number of Korean pine seedlings, density and type of bush significantly influenced the habitat selection of hoarding by Eurasian red squirrels. The results of Bailey’s method indicated that the squirrels showed (1) preference for natural coniferous forest, natural fir and spruce forest and planted spruce forest; (2) avoidance of planted Korean pine forest and planted larch forest; and (3) random use of natural Korean pine forest. Moreover the distance from the Korean pines in the range of 150–600 m showed no effect on the habitat selection of hoarding by the Eurasian red squirrels. More than 50% of the cone-cores were discarded in either fringe or gap of the Korean pine forest with more cone-cores found at <300 m than at 300 m away (One-Way ANOVA; df = 3, 183, F = 5.76, p = 0.0009). This demonstrated that the Eurasian red squirrels could take the cone-cores out of the Korean pine forest. The density of bushes in samples of hoarding area was significantly lower than that in control samples (Kruskal–Wallis test; df = 1, χ2 = 83.99, p < 0.0001). The number of the Korean pine seedlings in samples of hoarding area was significantly higher than that in the control samples (Kruskal–Wallis test; df = 1, χ2 = 104.13, p < 0.0001). This illustrated that the hoarding habitat favoured the germination of the Korean pine seedlings. In conclusion the behavior of hoarding Korean pine seeds by the Eurasian red squirrels can promote the regeneration and dispersal of the Korean pines.  相似文献   

9.
Plantations play an important role in absorbing atmospheric CO2 and plantation soil can serve as an important carbon (C) sink. However, the stocks and dynamics of soil C in differently aged plantation forests in north China remain uncertain. In this study, we measured soil inorganic carbon (SIC), soil organic carbon (SOC) and total nitrogen content (STN), the light (LF) and heavy fractions (HF) of soil organic matter (SOM) to a depth of 1 m in 3 different ages (10-, 30-, 40-year-old) of Pinus sylvestris var. mongolica (Mongolia pine) plantations in 2011 and 2012. Soil pH, texture and moisture were also measured to explore the causes of SOC dynamics for different stand ages. Our results showed that no significant difference in SIC content was observed at different soil depths. As forest age increases, SIC content as well as the C and N content in SOM, LF and HF initially rose and then decreased, while the LF in SOC initially decreased and then increased. Although the C:N ratio of SOC and HF did not significantly change, the C:N ratio of LF increased with depth. SOC dynamics at different stand ages were significantly correlated with soil moisture and clay content. Soil pH and moisture explained 58.63% of the overall variation of SOC at different depths. Moreover, the SOC increased during the early stage of afforestation, mostly because of the increase in recalcitrant C; however, the decrease of SOC with increasing stand age was also mainly affected by C loss in the recalcitrant C pool.  相似文献   

10.
中国东部森林土壤有机碳组分的纬度格局及其影响因子   总被引:4,自引:0,他引:4  
王春燕  何念鹏  吕瑜良 《生态学报》2016,36(11):3176-3188
土壤有机碳是森林碳库的重要组成部分,其活性有机碳组分不仅是土壤碳周转过程的重要环节,还是气候变化最敏感的指标。以中国东部南北森林样带(NSTEC,North-South Transect of Eastern China)为对象,选择了9个典型森林生态系统(尖峰岭、鼎湖山、九连山、神农架、太岳山、东灵山、长白山、凉水和呼中),涵盖了我国热带森林、亚热带森林和温带森林的主要类型,测定其0—10 cm土壤有机碳(SOC)、易氧化有机碳(EOC)、微生物碳(MBC)和可溶性有机碳(DOC)含量,结合气候、土壤质地、土壤微生物和植被生物量等因素,探讨了森林土壤有机碳组分的纬度格局及其主要影响因素。实验结果表明:SOC、EOC、MBC和DOC含量分别为23.12—77.00 g/kg、4.62—17.24 g/kg、41.92—329.39 mg/kg和212.63—453.43 mg/kg。SOC、EOC和MBC随纬度增加呈指数增长(P0.05),而DOC则随纬度增加呈指数降低(P0.05)。在不同气候带上,SOC和EOC含量表现为热带森林亚热带森林温带森林(P0.05),DOC含量表现为热带森林亚热带森林温带森林(P0.001)。气候、植被生物量、土壤质地和土壤微生物可解释土壤有机碳组分纬度格局的大部分空间变异(SOC 74%;EOC 65%;MBC 51%和DOC 76%)。其中,气候是土壤有机碳组分呈现纬度格局的主要影响因素,土壤质地是SOC和EOC的次要影响因素,而土壤微生物和植被生物量是MBC和DOC的次要影响因素。  相似文献   

11.
Soil organic matter (SOM), typically measured as soil organic carbon (SOC), has been widely recognized as a critical linkage between forest management and long-term site productivity. However, its use as an indicator of sustainable forest management practices has been limited both by difficulties in detecting changes in soil carbon due to inherent high variability and by challenges associated with determining appropriate thresholds for loss. In this study we evaluate a methodology for using field measures of total SOC (forest floor to 60 cm depth in mineral soil) in conjunction with a mechanistic forest growth model to derive threshold values for total SOC with respect to the maintenance of ecosystem productivity for a lodgepole pine (Pinus contorta) forest in the central interior region of British Columbia. We also examine the practicality of implementing a sustainable forest management (SFM) monitoring program around this measure and the potential long-term impact of alternative management scenarios on the indicator.Total SOC contents for the different site types sampled in the Quesnel region ranged from 35 to 57 t ha?1. Long-term simulations of biomass extraction over several rotations showed a near 1:1 ratio in the relative decline of ecosystem productivity associated with relative declines in total SOC. A power analysis revealed that a mean sampling intensity of n = 12–25 and n = 8–17 would be required to detect 20% and 30% losses of total SOC, respectively, depending on the level of statistical power desired. The sampling intensity required for an effective monitoring program was significantly reduced by summing SOC for all soil layers to limit sampling error related to determination of layer boundaries. A modelling analysis of the effect of rotation length on SOC for the Quesnel forest types, suggests that rotation lengths shorter than 75 years should be avoided to prevent declines in ecosystem productivity. Our results confirm that the combination of modelling and statistical techniques can be successfully used to develop cost-efficient monitoring plans of sustainability of forest management, with SOC as a valid indicator of ecosystem productivity.  相似文献   

12.
Soil organic carbon (SOC) is a key indicator of ecosystem health, with a great potential to affect climate change. This study aimed to develop, evaluate, and compare the performance of support vector regression (SVR), artificial neural network (ANN), and random forest (RF) models in predicting and mapping SOC stocks in the Eastern Mau Forest Reserve, Kenya. Auxiliary data, including soil sampling, climatic, topographic, and remotely-sensed data were used for model calibration. The calibrated models were applied to create prediction maps of SOC stocks that were validated using independent testing data. The results showed that the models overestimated SOC stocks. Random forest model with a mean error (ME) of −6.5 Mg C ha−1 had the highest tendency for overestimation, while SVR model with an ME of −4.4 Mg C ha−1 had the lowest tendency. Support vector regression model also had the lowest root mean squared error (RMSE) and the highest R2 values (14.9 Mg C ha−1 and 0.6, respectively); hence, it was the best method to predict SOC stocks. Artificial neural network predictions followed closely with RMSE, ME, and R2 values of 15.5, −4.7, and 0.6, respectively. The three prediction maps broadly depicted similar spatial patterns of SOC stocks, with an increasing gradient of SOC stocks from east to west. The highest stocks were on the forest-dominated western and north-western parts, while the lowest stocks were on the cropland-dominated eastern part. The most important variable for explaining the observed spatial patterns of SOC stocks was total nitrogen concentration. Based on the close performance of SVR and ANN models, we proposed that both models should be calibrated, and then the best result applied for spatial prediction of target soil properties in other contexts.  相似文献   

13.
米亚罗林区土地利用变化对土壤有机碳和微生物量碳的影响   总被引:22,自引:3,他引:22  
张于光  张小全  肖烨 《应用生态学报》2006,17(11):2029-2033
为了解土地利用变化对土壤有机碳和微生物量碳的影响,分析了川西米亚罗林区原始冷杉林、20世纪60年代云杉人工林、20世纪80年代云杉人工林和农地的土壤有机碳和微生物量碳状况.结果表明,土地利用变化明显地影响了土壤有机碳和微生物量碳含量.土壤有机碳和微生物量碳含量原始林最高,其次为60年代人工林和80年代人工林,农地最低.农地土壤有机碳含量分别比原始林、60年代人工林和80年代人工林低83%、53%和52%,微生物量碳含量分别低23%、25%和21%.土壤有机碳和微生物量碳含量均随土壤深度的增加而降低,并且两者在不同土地利用类型的变化趋势基本一致.相关分析表明,土壤有机碳和土壤微生物量碳与全氮、水解氮、速效磷呈极显著相关(P<0.01),说明土壤微生物量碳可作为衡量土壤有机碳变化的敏感指标,而土壤有机碳和微生物量碳含量可作为衡量土壤肥力和土壤质量变化的重要指标.  相似文献   

14.
温带森林不同海拔土壤有机碳及相关胞外酶活性特征   总被引:1,自引:1,他引:0  
研究测定了老秃顶子温带森林生态系统7个海拔土壤不同形态碳和相关水解酶、氧化还原酶活性,分析了土壤有机碳及相关酶活性沿海拔梯度的影响因素.结果表明: 随海拔升高,土壤有机碳(SOC)、颗粒有机碳(POC)和可溶性有机碳(DOC)含量显著增加,而在海拔825~1233 m之间没有显著变化,DOC/SOC则显著下降;土壤α葡萄糖苷酶、β葡萄糖苷酶、木糖苷酶和纤维二糖水解酶活性显著增加;土壤SOC、POC、DOC、全氮(TN)含量及土壤含水量(SMC)与土壤水解酶活性呈显著正相关;过氧化物酶(POD)活性在低海拔(675 m)落叶松人工林显著低于其他海拔,POD活性与土壤碳氮(SOC、TN、POC、DOC)含量及SMC呈显著正相关,而土壤多酚氧化酶(PPO)活性在海拔947 m落叶阔叶林带和海拔825 m红松林中较高,且仅与土壤pH呈显著正相关,表明土壤酸度是驱动PPO酶活性的主要因素.在温带森林生态系统中,土壤养分含量和含水量是影响土壤水解酶海拔分布的重要因素.  相似文献   

15.
小兴安岭两种森林类型土壤有机碳库及周转   总被引:1,自引:0,他引:1  
高菲  姜航  崔晓阳 《生态学杂志》2015,26(7):1913-1920
采用室内培养法测定了不同温度下(8、18、28 ℃)小兴安岭原始阔叶红松林和阔叶次生林土壤有机碳的矿化速率和矿化量,并用三库一级动力学模型对有机碳各库进行拟合.结果表明: 基于单位干土质量的阔叶次生林土壤有机碳矿化速率和累计矿化量均大于原始红松林,但有机碳累计矿化量占总有机碳的比率小于原始红松林.2种森林类型土壤活性碳库和缓效碳库随土层加深而减小,其占总有机碳的比例增加.尽管阔叶次生林土壤活性和缓效碳库均大于原始红松林,但其占总有机碳的比例却小于原始红松林,而土壤惰性碳库及其比例均大于原始红松林,表明阔叶次生林土壤有机碳整体上更稳定.土壤活性碳库平均驻留时间(MRT)为9~24 d,且随土层加深而缩短,而缓效碳库MRT为7~42 a,且随土层加深而延长.土壤活性碳库及其占总有机碳的比例随温度升高而线性增加,缓效碳库则降低;原始红松林土壤活性碳随温度的增速大于阔叶次生林,表明原始红松林土壤有机碳库对温度变化反应更敏感.  相似文献   

16.
The study was carried out in the Pinus roxburghii Sargent (Chir pine) forest in the sub-tropical region of Garhwal Himalaya to assess the effect of fire on soil nutrient status at different altitudes (700 m, 800 m and 1000 m), soil depths (0–20 cm, 20–40 cm and 40–60 cm) and on under storey vegetation. The soil nutrients and under storey vegetation were assessed before fire (pre-fire) and after fire (post-fire). The results of the study indicate that fire plays an important role in soil nutrient status and under storey vegetation. The nutrients (soil organic carbon, nitrogen, phosphorus and potassium), decreased in post-fire assessment and with increasing altitudes, and soil depths, compared to pre-fire assessment. The under storey vegetation diminished after fire in all forest sites. The study concludes that in Chir pine forest, fire plays a role in reducing soil nutrients along the altitudinal gradient, soil depths and under storey vegetation. Thus, these nutrients can be saved through some management practices e.g. by early controlled burning and by educating local villagers about the negative impacts of severe wild fires on soil and vegetation.  相似文献   

17.
Soil organic carbon (SOC) plays an important role in soil fertility and carbon sequestration, and a better understanding of the spatial patterns of SOC is essential for soil resource management. In this study, we used boosted regression tree (BRT) and random forest (RF) models to map the distribution of topsoil organic carbon content at the northeastern edge of the Tibetan Plateau in China. A set of 105 soil samples and 12 environmental variables (including topography, climate and vegetation) were analyzed. The performance of the models was evaluated using a 10-fold cross-validation procedure. Maps of the mean values and standard deviations of SOC were generated to illustrate model variability and uncertainty. The results indicate that the BRT and RF models exhibited very similar performance and yielded similar predicted distributions of SOC. The two models explained approximately 70% of the total SOC variability. The BRT and RF models robustly predicted the SOC at low observed SOC values, whereas they underestimated high observed SOC values. This underestimation may have been caused by biased distributions of soil samples in the SOC space. Vegetation-related variables were assigned the highest importance in both models, followed by climate and topography. Both models produced spatial distribution maps of SOC that were closely related to vegetation cover. The SOC content predicted by the BRT model was clearly higher than that of the RF model in areas with greater vegetation cover because the contributions of vegetation-related variables in the two models (65% and 43%, respectively) differed significantly. The predicted SOC content increased from the northwestern to the southeastern part of the study area, average values produced by the BRT and RF models were 27.3 g kg−1 and 26.6 g kg−1, respectively. We conclude that the BRT and RF methods should be calibrated and compared to obtain the best prediction of SOC spatial distribution in similar regions. In addition, vegetation variables, including those obtained from remote sensing imagery, should be taken as the main environmental indicators and explicitly included when generating SOC maps in Alpine environments.  相似文献   

18.
Soil respiration is the main form of carbon flux from soil to atmosphere in the global carbon cycle. The effect of temperature on soil respiration rate is important in evaluating the potential feedback of soil organic carbon to global warming. We incubated soils from the alpine meadow zone and upper rocky zone along an altitudinal gradient (4400–5500 m a.s.l.) on the Tibetan Plateau under various temperature and soil moisture conditions. We evaluated the potential effects of temperature and soil moisture on soil respiration and its variation across altitudes. Soil respiration rates increased as the temperature increased. At 60% of soil water content, they averaged 0.21–5.33 μmol g soil−1 day−1 in the alpine meadow zone and 0.11–0.50 μmol g soil−1 day−1 in the rocky zone over the experimental temperature range. Soil respiration rates in the rocky zone did not increase between 25 and 35 °C, probably because of heat stress. Rates of decomposition of organic matter were high in the rocky zone, where the CN ratio was smaller than in the middle altitudes. Soil respiration rates also increased with increasing soil water content from 10% to 80% at 15 °C, averaging 0.04–2.00 μmol g soil−1 day−1 in the alpine meadow zone and 0.03–0.35 μmol g soil−1 day−1 in the rocky zone. Maximum respiration rates were obtained in the middle part of the alpine slope in any case of experimental temperature and soil moisture. The change patterns in soil respiration rate along altitude showed similar change pattern in soil carbon content. Although the altitude is a variable including various environmental factors, it might be used as a surrogate parameter of soil carbon content in alpine zone. Results suggest that temperature, soil moisture and altitude are used as appropriate environmental indicators for estimating the spatial distribution of potential soil respiration in alpine zone.  相似文献   

19.
宫立  刘国华  李宗善  叶鑫  王浩 《生态学报》2017,37(14):4696-4705
土壤碳氮沿海拔梯度变化及其耦合关系是山地生态系统碳氮循环研究的重要内容。为分析不同土层土壤有机碳,土壤全氮及有机碳活性组分在海拔梯度上的分布规律及相互之间的耦合关系,选取亚高山物种岷江冷杉(Abies faxoniana)原始林为研究对象,以卧龙邓生野牛沟岷江冷杉原始林2920—3700 m的样地调查数据为基础,分析不同土层土壤碳氮及活性组分沿海拔的变化规律,总结土壤有机碳稳定性沿海拔主要规律,从土壤有机碳活性组分和碳氮关系的角度揭示其对土壤有机碳沿海拔变化的影响。结果表明:1)腐殖质层土壤有机碳(SOC)随海拔升高逐渐增加,与温度显著负相关,轻组有机碳(LFOC)及颗粒态有机碳(POC)随海拔上升均表现先增加后降低的趋势,土壤全氮(TN)随海拔变化不显著,但林线处LOFC、POC和TN均显著增加;0—10 cm土壤有机碳及全氮则表现为双峰特征,峰值分别在3089 m和3260 m处,与年均温度无显著关系。2)LFOC及POC在腐殖质层和0—10 cm土层中所占比例较大,是表征土壤有机碳含量沿海拔变化规律的主要活性组分,腐殖质层LFOC/SOC和POC/SOC随海拔上升逐渐增高,0—10 cm层则逐渐降低,暗示腐殖质层有机碳稳定性沿海拔逐渐降低,0—10 cm有机碳稳定性逐渐升高。3)SOC与TN显著正相关,SOC是影响TN的主要因子,但腐殖质层TN与有机碳活性组分无显著相关关系。4)土壤C/N和微生物量C/N在3177 m大于25:1,是引起土壤有机碳含量显著降低的主要因素。  相似文献   

20.
A number of studies have investigated regional and continental scale patterns of carbon (C) stocks in forest ecosystems; however, the altitudinal changes in C storage in different components (vegetation, detritus, and soil) of forest ecosystems remain poorly understood. In this study, we measured C stocks of vegetation, detritus, and soil of 22 forest plots along an altitudinal gradient of 700–2,000 m to quantify altitudinal changes in carbon storage of major forest ecosystems (Pinus koraiensis and broadleaf mixed forest, 700–1,100 m; Picea and Abies forest, 1,100–1,800 m; and Betula ermanii forest, 1,800–2,000 m) on Mt Changbai, Northeast China. Total ecosystem C density (carbon stock per hectare) averaged 237 t C ha−1 (ranging from 112 to 338 t C ha−1) across all the forest stands, of which 153 t C ha−1 (52–245 t C ha−1) was stored in vegetation biomass, 14 t C ha−1 (2.2–48 t C ha−1) in forest detritus (including standing dead trees, fallen trees, and floor material), and 70 t C ha−1 (35–113 t C ha−1) in soil organic matter (1-m depth). Among all the forest types, the lowest vegetation and total C density but the highest soil organic carbon (SOC) density occurred in Betula ermanii forest, whereas the highest detritus C density was observed in Picea and Abies forest. The C density of the three ecosystem components showed distinct altitudinal patterns: with increasing altitude, vegetation C density decreased significantly, detritus C density first increased and then decreased, and SOC density exhibited increasing but insignificant trends. The allocation of total ecosystem C to each component exhibited similar but more significant trends along the altitudinal gradient. Our results suggest that carbon storage and partitioning among different components in temperate forests on Mt Changbai vary greatly with forest type and altitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号