首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A study was undertaken to examine the extent of root colonization by four locally isolated ectomycorrhizal (ECM) fungi (Hebeloma theobrominum, Boletus dryophilus, Scleroderma citrinum and Suillus luteus) and their effects on seedling growth in Pinus wallichiana and Cedrus deodara under nursery conditions. Seedlings of the two conifers were inoculated with mycelium of ECM fungi and were grown in pots containing sterilized forest soil for six months. The percentage of ECM colonization of roots was 38%-52% in Pinus wallichiana and 33%-48~ in Cedrus deodara. ECM colonization increased shoot height, needle number, shoot and root biomass and survival of inoculated seedlings. Among the four ECM fungi Hebeloma theobrominum was more effective with Pinus wallichiana and Scleroderma citrinum with Cedrus deodara in promoting seedling survival and overall growth. All the four ECM fungi used enhanced growth of inoculated seedlings and thus can be used in afforestation and regeneration programmes in degraded forests ecosystems.  相似文献   

2.
Pot experiments were conducted to evaluate the possible interaction of salinity (osmotic potential -0.3, -0.9 and -1.2 MPa) and occurrence of Azospirillum lipoferum or exogenous gibberellic acid (GA3) (100 μg g-1) on growth and some physiological parameters of maize. 15N-uptake as well as the percentage of nitrogen derived from 15N-fertilizer were decreased by increasing the NaCl concentrations and completely inhibited at concentrations corresponding to osmotic potentials -0.9 and -1.2 MPa. The percentage of nitrogen originating from N2 fixation was significantly correlated to the total counts of Azospirillum cells that colonized the histosphere. At high NaCl concentrations although no significant changes in N % in shoot dry mass either in inoculated or uninoculated plants were observed, the total N-yield [mg(N) pot-1] was decreased. Fresh and dry shoot mass significantly increased by Azospirillum inoculation. Azospirillum and GA3 treatments were positively correlated with most of the parameters analysed. Azospirillum inoculation or GA3 application at NaCl concentrations up to -1.2 MPa significantly increased the chlorophyll, K, Ca, soluble saccharides and protein contents as compared with control plants. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Forty different medicinal plants were investigated for arbuscular mycorrhizal association in the Rajshahi University Campus in Bangladesh. The results indicated that 35 different plants were infected by AM (arbuscular mycorrhizal) fungi as found by trypan blue staining procedure. The percentage of root colonization by AM fungi varied from 13.3% to 100%. Mangifera indica and Morus indica have maximum percentage of colonization (100%). The intensity of root colonization were abundant in the plants belonging to the families Anacardiaceae, Asclepiadaceae, Moraceae, Leguminosae and Apocynaceae whereas the intensity of colonization of crop roots were moderate and poor belonging to Gramineae and Leguminosae. The presence of greater number of spore in soil was always associated with the incidence of abundant mycelia. In plant roots the formation of spore and mycelia was restricted by low pH. Number of mycorrhizal fungus spores ranged between 35 to100 per 100g air dried soil in different family respective soils. The frequency of mycorrhizal fungus infection showed positive correlation with soil pH, moisture, water holding capacity, texture, total nitrogen, organic carbon, phosphorus, calcium, potassium, and magnesium. Especially phosphorus and nitrogen in the soil greatly influenced the plant root infection by AM fungi.  相似文献   

4.
Li H L  Zhi Y B  Zhao L  An S Q  Deng Z F  Zhou C F  Gu S P 《农业工程》2007,27(7):2725-2732
Nitrogen and phosphorus are both important life elements. N, P and combined N-P fertilizers were added to the declining population Spartina anglica Hubbard in coastal China. Some growth parameters and eco-physiological responses of S. anglica to different fertilizer treatments (N, P and combined N-P fertilizer addition with high, medium and low levels, respectively) were measured. The fertilizer addition had a highly significant effect on the dynamics of its height-growth, number of leaves, number of roots and total biomass. Only N addition had a significant effect on leaf area and leaf thickness in all fertilizer treatments. On the dynamics of its height-growth, the effect of N addition was the most apparent, and the effect of N-P addition was not greater than those of N and P addition separately. The photosynthesis rate was enhanced and the yield was the highest with the highest N, the highest N-P and the medium P addition. The rates were higher than those of CK by 19.08 μmol·m?2·s?1, 15.47 μmol·m?2·s?1 and 11.23 μmol·m?2·s?1, respectively. The activity of SOD and POD increased with the treatments after freshwater stress for 14 days. Effects of medium N and P addition were significant for SOD activity. However, POD activity was significantly higher with the treatment of higher N and higher N-P addition. In a word, fertilizer addition improved the growth of the declining population S. anglica. The results indicated that the decline of S. anglica was correlated with the nutriment deficiency in soil, especially with the lack of N.  相似文献   

5.
The transformation of sodium arsenite and sodium arsenate by the rhizospheric nitrogen-fixing bacterium Azospirillum brasilense Sp245 in association with wheat (Triticum aestivum L. ‘Saratovskaya 29’) was studied. The effect produced by the A. brasilense strain on the morphological parameters of wheat in an As-polluted environment was examined. The plants were cultivated in a hydroponic system, with glass beads serving as a support for root growth. The plant-growth medium (an artificial soil solution) was deficient in P and Fe. The total initial As concentrations used were 75, 750, and 7500 μg l−1. The As compounds used contained sodium arsenate and sodium arsenite at an As(V):As(III) ratio of 1:3.6 (in terms of As) in all experiments. Inoculation of A. brasilense Sp245 led to a decrease in the overall root length and to the formation of lateral roots; both effects are possibly related to the bacteria’s ability to synthesize auxins. Inoculation also changed the As(V): As(III) ratio of the plant-growth medium. In all experiments, the concentration of As(V) in the nutrient medium increased relative to the initial one and was approximately 1.5-fold higher than that in the medium of uninoculated plants. This value slightly decreased (1.6 > 1.5 > 1.4) with increasing concentration of As in the medium. Azospirillum-inoculated plants accumulated less As than did the surface-sterilized uninoculated plants. This study shows that A. brasilense Sp245 in association with wheat changes the speciation, bioavailability, and plant uptake of As.  相似文献   

6.
Although boron (B) is a micronutrient essential for the growth of vascular plants, it reduces growth and seed yield when present in excessive amounts. A hydroponic assay of nineteen Brassica rapa genotypes resulted in the identification of two tolerant genotypes, WWY Sarson and Local at a range of boron concentrations (15–165 μM). The most tolerant and sensitive genotypes were assessed for shoot boron concentrations in a soil assay with 4, 29 and 54 mg B kg−1 soil. The soil assay confirmed the results of the hydroponic screening. Shoot boron uptake was at least three times lower and shoot boron concentrations about 10 times lower in the tolerant than sensitive genotypes, indicating that boron tolerance involved boron exclusion from the shoot.  相似文献   

7.
Wei J  Wu G 《农业工程》2006,26(7):2087-2092
Pinus tabulaeformis carr. and Hippophae rhamnoides are widely planted in the low mountainous upland and loess plateau and are the main species for afforestation in the semiarid region. To expound their roles in controlling severe soil and water losses and the mechanism of their roles, a study on the hydro-ecological effects of the woods was carried out during 2002–2004, using the runoff plot method set up in different woods and conducting a physical and chemical analyses of the soil. The experimental woods are located in the low mountainous upland of Western Liaoning Province, China where the annual average air temperature is 5.4–8.7C, the annual precipitation is 450–580 mm, of which June averages 238.9 mm, and the annual average humidity is 38%–82%. The coverage rate of vegetation is 28%. The age of Pinus tabulaeformis carr. is 28 a, its distribution density is 2825 ind.·hm2, and its coverage rate is 0.75, while those of Hippophae rhamnoides are 11a, 8950 ind.·hm2 and 0.90, respectively. The results showed that the intercepting rates of canopy in Pinus tabulaeformis carr. and Hippophae rhamnoides were 23.08% and 32.28%. The litter intercepting rate averaged 14.17% in the Pinus tabulaeformis carr. woods and 20.8% in the Hippophae rhamnoides woods, respectively. The runoff depths in Pinus tabulaeformis carr. and Hippophae rhamnoides were 2.516 mm and 0.893 mm, while erosion amounts were 15.57 t·km-2 and 0.76 t·km-2, respectively. Under the comprehensive action in the artificial woods, the runoff depth and erosion amount from the woodland were 1/20 and 1/50 of those from the wasteland, respectively, which indicated the immense hydro-ecological functions of Pinus tabulaeformis carr. and Hippophae rhamnoides woods Litter and dead roots would decompose into organic matter and nutrient substances with the help of microbes, and would thus distinctly improve the physical and chemical properties of the soil. In comparison with the wasteland, the bulk density of soil decreased in the woodland, while the content of organic matter, total N, total K, and available K significantly increased. The physical properties of soil in the woodland, such as total porosity, noncapillary porosity, saturated moisture content, noncapillary water-holding capacity, were distinctly higher in surface soil (0–20 cm) than those in the soil at the depth of 20–40 cm. There was no significant difference of pH, total P, and available P among different land types or at different soil depths. The noncapillary water-holding capacities in Pinus tabulaeformis carr. and Hippophae rhamnoides were 182.1% and 275.9% times those of wasteland, respectively.  相似文献   

8.
Zhang Y D  Liu S R  Ma J M 《农业工程》2006,26(9):2775-2781
The water-holding functions of soils and ground covers in terms of moss and litters in the three major shrubs at different altitude gradients were studied using field investigation. The water-holding functions were measured and expressed with Biomass (t/hm2) of moss and litters, along with their maximal water holding capacity (MWHC, t/hm2) and maximal water holding rate (MWHR, %). The physical characteristics of the soils included bulk density, MWHC, capillary water holding capacity (CWHC), and least water holding capacity (LWHC). The result showed that Rhododendron przewalskii shrub exhibited the highest water-holding capacity among the three types. The average MWHC of the moss, litters, and at a depth of 0–40cm in R. przewalskii at different elevation gradients was 46.73,139.98 t/hm2, and 2216.92 t/hm2, respectively, whereas the average MWHC of the moss, litters, and soils in Quercus aquifolioides was 1.64, 72.08 t/hm2 and 2114.88 t/hm2, respectively. There was no moss in Quercus cocciferoides, and the average MWHC of litters and soils at a depth of 0–40 cm at different elevation gradients was 84.55 t/hm2 and 2062.83 t/hm2, respectively. The biomass and MWHC of the moss layer in R. przewalskii shrub significantly decreased with increasing elevation, whereas the reverse occurred in Q. aquifolioides before the maximum was reached at 3400 m, and then the SCM and MWHC decreased. MWHR of the moss layer in R. przewalskii was higher than that in Q. aquifolioides. The biomass and MWHC of the litters in R. przewalskii and Q. aquifolioides decreased with increasing elevation, whereas the reverse occurred in Q. cocciferoide. Regardless of shrub types, soil bulk density increased significantly with increasing soil depth, whereas MWHC decreased significantly with increasing soil depth. Significant decrease in CWHC and LWHC were found only in certain shrub communities. The MWHC with respect to the 0–40cm soil depth significantly decreased with increasing elevation only in R. przewalskii shrub, whereas there was no significant difference in MWHCs among the different elevation gradients for the other two types.  相似文献   

9.
Phosphorus (P) uptake by plant roots depends on P intensity (I) and P quantity (Q) in the soil. The relative importance of Q and I on P uptake is unknown for soils with large P sorption capacities because of difficulties in determining trace levels of P in the soil solution. We applied a new isotope based method to detect low P concentrations (<20 μg P l−1). The Q factor was determined by assessment of the isotopically exchangeable P in the soil (E-value) and the I factor was determined by measurement of the P concentration in the pore water. A pot trial was set up using four soils with similar labile P quantities but contrasting P buffering capacities. Soils were amended with KH2PO4 at various rates and pigeon pea (Cajanus cajan L.) was grown for 25 days. The P intensity ranged between 0.0008 and 50 mg P l−1 and the P quantity ranged between 10 and 500 mg P kg−1. Shoot dry matter (DM) yield and P uptake significantly increased with increasing P application rates in all soils. Shoot DM yield and P uptake, relative to the maximal yield or P uptake, were better correlated with the P concentration in the pore water (R 2 = 0.83–0.90) than with the E-value (R 2=0.40–0.53). The observed P uptakes were strongly correlated to values simulated using a mechanistic rhizosphere model (NST 3.0). A sensitivity analysis reveals that the effect of P intensity on the short-term P uptake by pigeon pea exceeded the effect of P quantity both at low and high P levels. However, DM yield and P uptake at a given P intensity consistently increased with increasing P buffering capacity (PBC). The experimental data showed that the intensity yielding 80% of the maximal P uptake was 4 times larger in the soil with the smallest PBC compared to the soil with the largest PBC. This study confirms that short-term P uptake by legumes is principally controlled by the P intensity in the soil, but is to a large extent also affected by the PBC of the soil. Section Editor: N. J. Barrow  相似文献   

10.
In order to explore the correlation between soil microbial community function and plant growth, using 30 year continuous cropping soil of grapevines as research object, we studied the effects of sterilization of continuous cropping soil at different temperatures on the growth of grapevines and the microbial community function of rhizosphere soil. The results showed that plant height and stem diameter of grapevines grown in continuous cropping soil were lower than those in the other treatments. With the increasing sterilization temperature, the plant height and stem dia meter of grapevines increased. The ratio of bacteria to fungi in rhizosphere soil increased with the increasing sterilization temperature. The activity of rhizosphere microbes using carbon source was in order of continuous cropping soil sterilized at 100 ℃ > non continuous cropping soil > continuous cropping soil sterilized at 60 ℃ > continuous cropping soil. The regression analysis showed that amino acid (carbon source) in Biolog ECO plate had a significant correlation with microbial metabolic activity of rhizosphere soil. PCA analysis showed that lysine in root exudate had a highest contribution to the variance of principal components in each treatment, and it may play an important role in the obstacle of continuous cropping of grapevines.  相似文献   

11.
The effects of inoculation with arbuscular mycorrhizal (AM) fungi, organic fertilizer (F) applications, and soil sterilization on maize growth were evaluated in a pot experiment. The experiment was in a completely randomized factorial design (2 × 4 × 2) with six replicates for each treatment. There were two soil treatments (sterilized soil, SS and unsterilized soil, US), four organic fertilizer treatments (0.0, 0.5, 1.0 and 2.0 g kg?1 soil), and two AM fungi treatments (inoculation with Glomus mosseae, +AM and uninoculated control, ?AM). Inoculated plants generally had greater AM colonization, plant height, dry weight and phosphorus (P) uptake than uninoculated controls, and these parameters were significantly increased as the organic fertilizer application increased up to 0.5 g kg?1 but decreased or had no significant effect compared to the uninoculated plants at the highest fertilizer rate (2.0 g kg?1). Plant growth, P uptake and AM colonization of root system were significantly higher in sterilized soil compared to the unsterilized control. Our results indicated that the inoculation of AM fungi in field soil with optimal organic fertilizer application greatly improved maize growth and nutrient uptake, and the effect was greater under sterilized soil condition.  相似文献   

12.
张林  丁效东  王菲  田芷源  冯固 《生态学报》2012,32(13):4079-4086
通过30μm尼龙网将根盒分成根室和菌丝室,菌丝室中的低磷土壤施加75 mg P/kg土壤的植酸钙,研究了菌丝室土壤中丛枝菌根(AM)真菌Glomus intraradices和解磷细菌Bacillus megaterium C4对有机磷的矿化和吸收.结果表明,在试验条件下,植酸钙的溶解性很低,对土壤溶液有机磷的贡献不大.接种解磷细菌C4提高了土壤中磷酸酶的活性,减少了土壤中有机磷的含量.但是,由于存在解磷细菌与AM真菌对磷的竞争,解磷细菌矿化出的磷大部分被自身利用,AM真菌的生长受到抑制,解磷细菌对植物磷营养的改善没有表现出显著的贡献.  相似文献   

13.
A greenhouse experiment was conducted to evaluate the effectiveness of arbuscular mycorrhizal (AM) fungi in phytoremediation of lead (Pb)-contaminated soil by vetiver grass. Experiment was a factorial arranged in a completely randomized design. Factors included four Pb levels (50, 200, 400, and 800 mg kg?1) as Pb (NO3)2, AM fungi at three levels (non mycorrhizal (NM) control, Rhizophagus intraradices, Glomus versiforme). Shoot and root dry weights (SDW and RDW) decreased as Pb levels increased. Mycorrhizal inoculation increased SDW and RDW compared to NM control. With mycorrhizal inoculation and increasing Pb levels, Pb uptake of shoot and root increased compared to those of NM control. Root colonization increased with mycorrhizal inoculation but decreased as Pb levels increased. Phosphorus concentration and uptake in shoot of plants inoculated with AM fungi was significantly higher than NM control at 200 and 800 mg Pb kg?1. The Fe concentration, Fe and Mn uptake of shoot in plants inoculated with Rhizophagus intraradices in all levels of Pb were significantly higher than NM control. Mycorrhizal inoculation increased Pb extraction, uptake and translocation efficiencies. Lead translocation factor decreased as Pb levels increased; however inoculation with AM fungi increased Pb translocation.  相似文献   

14.
A pot experiment was conducted to investigate the uptake of Zn from experimentally contaminated calcareous soil of low nutrient status by maize inoculated with the arbuscular mycorrhizal (AM) fungus Glomus caledonium. EDTA was applied to the soil to mobilize Zn and thus maximize plant Zn uptake. The highest plant dry matter (DM) yields were obtained with a moderate Zn addition level of 300 mg kg?1. Plant growth was enhanced by mycorrhizal colonization when no Zn was added and under the highest Zn addition level of 600 mg kg?1, while application of EDTA to the soil generally inhibited plant growth. EDTA application also increased plant Zn concentration, and Zn accumulation in the roots increased with increasing EDTA addition level. The effects of inoculation with Gcaledonium on plant Zn uptake varied with Zn addition level. When no Zn was added, Zn translocation from roots to shoots was enhanced by mycorrhizal colonization. In contrast, when Zn was added to the soil, mycorrhizal colonization resulted in lower shoot Zn concentrations in mycorrhizal plants. The P nutrition of the maize was greatly affected by AM inoculation, with mycorrhizal plants showing higher P concentrations and P uptake. The results indicate that application of EDTA mobilized soil Zn, leading to increased Zn accumulation by the roots and subsequent plant toxicity and growth inhibition. Mycorrhizal colonization alleviated both Zn deficiency and Zn contamination, and also increased host plant growth by influencing mineral nutrition. However, neither EDTA application nor arbuscular mycorrhiza stimulated Zn translocation from roots to shoots or metal phytoextraction under the experimental conditions. The results are discussed in relation to the environmental risk associated with chelate-enhanced phytoextraction and the potential role of arbuscular mycorrhiza in soil remediation.  相似文献   

15.
The effects of soil inoculation with arbuscular mycorrhizal (AM) fungi and a mycorrhiza helper bacterium (MHB) were investigated on mulberry and papaya plants already established in the field. Ten-year-old mulberry plants (var. M5) were inoculated with Glomus fasciculatum and 1.5-year-old papaya plants (var. Solo) were inoculated with a mixed culture of G. mosseae and G. caledonium with or without Bacillus coagulans at two levels of P fertilizer. Growth, P uptake, yield and AM colonization levels were monitored. Leaf yield in mulberry and fruit yield in papaya were minimal in uninoculated plants given 50% recommended P. However, crop yields of both mulberry and papaya inoculated with AM fungi alone or together with the bacterium and given 50% recommended P were statistically on a par with that of uninoculated plants given 100% recommended P. As inoculation of B. coagulans increased mycorrhiza levels in AM fungal-inoculated plants, this may be included in the class of MHB. Thus, mulberry and papaya already established in the field may respond to AM inoculation and MHB may increase symbiosis development by efficient AM fungi.  相似文献   

16.
针对西北干旱半干旱地区土壤贫瘠与水分缺乏的问题,利用微生物与作物形成互惠互利的共生关系,本研究设置两个水分梯度:干旱胁迫(供试土壤最大持水量的35%)和正常水分(供试土壤最大持水量的75%),两个覆膜方式:无覆膜(NM)和覆膜(FM),4个接种微生物水平:单接AM真菌(AM)、单接解磷细菌(PSB)、联合接种AM真菌与解磷细菌(AM+PSB)以及对照(CK),研究不同水分和覆膜条件下4个接种微生物对玉米生长特性、地上养分吸收与水分利用效率的影响.结果表明: 与正常水分处理相比,干旱胁迫能够显著提高接种AM真菌处理的侵染率,但正常水分处理下土壤根外菌丝密度、总球囊霉素(T-GRSP)与易提取球囊霉素(EE-GRSP)含量明显提高.干旱胁迫下,单接AM真菌处理的促生作用和菌根效应表现最好,能够提高玉米生物量、水分利用效率和土壤有机碳含量,促进土壤N、P、K的吸收与运输,从而增加玉米地上部分N、P、K吸收量;而正常水分下,联合接种AM+PSB处理表现要好于单接AM和PSB处理,且其与覆膜的互作效果最好.相关分析结果表明,玉米生物量、叶片SPAD值和地上部分N、P、K吸收量均与土壤根外菌丝密度呈显著正相关,玉米水分利用效率与其呈显著负相关.  相似文献   

17.
Though arbuscular mycorrhizal (AM) fungi are indigenous to agricultural soils, their beneficial effects to host plants could be further improved by inoculation with efficient species. The method of AM propagation described in the present study uses oil cake as a supporting medium for the simultaneous delivery of sesame seeds and AM inoculum to the field. Experiment was conducted in a farmer’s field located at Avoor, Kerala, India where sesame was cultivated as a winter crop in rice fallows. Oil cake entrapped with sesame seeds (var. Tilatara) and AM fungus (Funneliformis dimorphicus) inoculum was prepared by thoroughly mixing sterilized coconut cake and neem cake (5:1 v/v), surface sterilized sesame seeds and sterilized spore sieving of F. dimorphicus from a pot culture in a 10% solution of a polysaccharide gum obtained from the seeds of Strychnos potatorum L. Entire mix was moulded into 2.5 cm cubes (ca. 5g) containing approximately 25–30 seeds and 200–300 spores cube?1 and shade dried before application. The cubes were broadcast @ 600 kg ha?1 in inoculated treatments. In uninoculated treatments, the oil cake cubes devoid of the fungal component was used. Harvested root samples from the inoculated treatments showed a high frequency (%F) and intensity (%M) of colonization by AM fungi as well as frequency of vesicles (%V) and arbuscules (%A) compared to uninoculated control. The growth (root length, shoot length and leaf area) and yield characters (pod number, seed number, seed weight and oil content) of sesame plants were significantly (p=0.05) improved under the present method of AM propagation indicating its viability under field condition.  相似文献   

18.
As toxic pollutants commonly found in tobacco (Nicotiana tabacum L.) products, lead (Pb) and cadmium (Cd) can enter the human body via smoking and thus pose a potential health risk to smokers. We conducted a greenhouse experiment to study the effects of arbuscular mycorrhizal (AM) inoculation with Glomus intraradices BEG 141 and organic amendment with cattle manure, alone or in combination, on the growth, P nutrition, and heavy-metal uptake by tobacco plants grown in soil to which was added Pb-Cd at 0/0, 350/1, 500/10, and 1,000/100?mg?kg?1, respectively. In general, AM colonization and plant growth were greatly reduced by Pb-Cd contamination, whereas organic amendment alleviated Pb-Cd stress and showed some beneficial effects on AM symbiosis and some soil parameters. AM inoculation, alone or in combination with organic amendment, increased plant dry weights and improved P nutrition significantly at all Pb-Cd addition levels, and, in most cases, it decreased Pb and Cd concentrations in tobacco plants and DTPA-extractable concentrations in soil. AM inoculation increased total glomalin-related soil protein (GRSP) concentrations in soil to which Pb-Cd was added. The higher soil pH and GRSP contents and the lower DTPA-extractable Pb and Cd concentrations contributed by AM inoculation and/or organic amendment may be contributing factors that lead to higher growth promotion and lower metal toxicity and uptake by plants. Our findings suggest that AM inoculation in combination with organic manure may be a potential method for not only tobacco production but phytostabilization of Pb-Cd-contaminated soil.  相似文献   

19.
矿区分离丛枝菌根真菌对万寿菊吸Cd潜力影响   总被引:2,自引:0,他引:2  
盆栽试验研究土壤不同施Cd水平(0、5、20、50μg/g)下,接种矿区污染土壤中丛枝菌根真菌对万寿菊根系侵染率、植株生物量及Cd吸收与分配的影响。结果表明:接种丛枝菌根真菌显著提高Cd胁迫下万寿菊的根系侵染率和植株生物量;随着施Cd水平提高,各处理植株Cd浓度显著增加。各施Cd水平下万寿菊地上部Cd吸收量远远高于根系Cd吸收量,在土壤施Cd量达到50μg/g时,接种处理地上部Cd吸收量是根系的3.48倍,对照处理地上部Cd吸收量是根系的1.67倍;同一施Cd水平下接种处理植株Cd吸收量要显著高于对照。总体上,试验条件下污染土壤中分离的丛枝菌根真菌促进了万寿菊对土壤中Cd的吸收,并在一定程度上增加Cd向地上部分的运转,表现出植物提取的应用潜力。  相似文献   

20.
干旱胁迫下AM真菌对油蒿叶片保护系统的影响   总被引:4,自引:0,他引:4  
基利用盆栽试验在正常水分和干旱胁迫条件下研究了灭菌土接种AM真菌摩西球囊霉(Glomus mosseae)和土著AM真菌对油(蒿Artemisia ordosica)生长及叶片保护系统的影响。结果表明,干旱胁迫显著抑制了土著AM真菌对油蒿的侵染,但对G.mosseae的侵染影响较小。正常水分和干旱胁迫条件下,接种AM真菌显著增加了油蒿生物量和干重以及根系含磷量;提高了叶绿素、可溶性糖、可溶性蛋白含量并降低了脯氨酸和丙二醛含量;显著增强了过氧化氢酶(CAT)和过氧化物酶(POD)活性,增强了油蒿对干旱的防御能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号