首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We measured diurnal changes in photosynthetic rate, transpiration rate, stomatal conductance and water use efficiency in three species of herbaceous climbing plants (Luffa cylindrica, Trichosanthes kirilowii and Dioscorea opposita) exposed to two intensities of UV-B radiation: 3.0 μw cm?2 (R1) and 8.0 μw cm?2 UV-B (R2) radiation under ambient growth conditions. Responses differed per species and per treatment. In Luffa all values increased compared to the Control in both treatments, except for stomatal conductance in R2. In Trichosanthes photosynthetic rates and water use efficiency increased, while the transpiration rates decreased under both treatments, and stomatal conductance was lower in R1. In Dioscorea photosynthetic rates and water use efficiency decreased under both treatments, while the transpiration rates and stomatal conductance increased. The results suggested that to some extent increased UV-B radiation was beneficial to the growth of L. cylindrica and T. kirilowii, but detrimental to D. opposita.  相似文献   

2.
三种松树的生理生态学特性研究   总被引:12,自引:1,他引:12  
测定南亚热带丘陵地马尾松、湿地松和加勒比松光合速率、蒸腾速率、日同化量和水分利用效率的变化.结果表明,3种松树光合速率和蒸腾速率都具有明显的日变化和季节变化,夏季的光合速率和蒸腾速率最高,冬季最低;加勒比松的平均日同化量为9.34g·kg-1、平均水分利用效率为159.75μmolCO2·g-1H2O,高于其它树种;湿地松最低.加勒比松是很好的引种树种,更适合在当地推广  相似文献   

3.
Mangrove species more tolerant to salinity may function with less efficient water transport, which may be related to more conservative water use. To test the hypothesis, we investigate the gas exchange and hydraulic properties of three mangrove species: Rhizophora mangle L., Laguncularia racemosa Gaert and Avicennia germinans (L.)L. Experiments were performed with adult plants growing naturally in the field under a salinity of 35‰. Gas exchange parameters showed that A. germinans had significantly higher photosynthetic rates, and lower stomatal conductance and transpiration rates, compared to the other two mangroves. In concert with this, instantaneous water use efficiency was significantly high in A. germinans, intermediate in L. racemosa and lowest in R. mangle. The hydraulic parameters of the three mangrove species were in the lowest end of the range reported for tropical trees. However, the three mangrove species exhibited measurable differences in hydraulic parameters related to the control of water requirements for maintenance of carbon gain. L. racemosa and A. germinans showed less efficient water transport at shoot level but were the more efficient species in water use at the leaf level in comparison to R. mangle. Received: 7 April 1999 / Accepted: 25 July 1999  相似文献   

4.
在2005年春季、夏季和秋季,对10a生拟单性木兰(Parakmeriaomeiensis)进行断根和剪枝处理,模拟移栽,用LICOR-6400测定了植株叶片的蒸腾速率、光合速率等生理指标,探讨这些生理指标对不同季节移栽成活率的影响。结果表明,春季处理后叶片能迅速关闭部分气孔,蒸腾速率和光合速率都减小,两者最低时约为对照的60%,生理机能的减弱有利于维持地上、地下部分的平衡,因而最有利于植株成活。夏季处理后叶片气孔导度显著增加,光合速率和蒸腾速率也随之增大,最高时约为对照的2倍左右,此时,若主要依靠剪枝来降低水分消耗,很难保证水分代谢平衡,移栽成活率低。秋季处理后植株叶片气孔导度高于对照,光合速率和蒸腾速率也增加,但增加幅度相对夏季较小,前期最高约增加40%,此时移栽可以通过适当的剪枝和增加土壤水分含量等措施提高成活率。可见,与水分相关的生理机能的调节机制,决定了移栽后的成活水平,即处理后能迅速调节自身生理机能、减少水分消耗的植株,成活率就高,反之就低。  相似文献   

5.
Photosynthetic acclimation was studied in seedlings of three subtropical rainforest species representing early (Omalanthus populifolius), middle (Duboisia myoporoides) and late (Acmena ingens) successional stages in forest development. Changes in the photosynthetic characteristics of pre-existing leaves were observed following the transfer of plants between deep shade (1–5% of photosynthetically active radiation (PAR), selectively filtered to produce a red/far-red (R/FR) ratio of 0.1) and open glasshouse (60% PAR and a R/FR ratio of 1.1–1.2), and vice versa. The extent and rate of response of the photosynthetic characteristics of each species to changes in light environment were recorded in this simulation of gap formation and canopy closure/overtopping. The light regimes to which plants were exposed produced significant levels of acclimation in all the photosynthetic parameters examined. Following transfer from high to low light, the light-saturated rate of photosynthesis was maintained near pre-transfer levels for 7 days, after which it decreased to levels which closely approximated those in leaves which had developed in low light. The decrease in photosynthetic capacity was associated with lower apparent quantum yields and stomatal conductances. Dark respiration was the parameter most sensitive to changes in light environment, and responded significantly during the first 4–7 days after transfer. Acclimation of photosynthetic capacity to increases in irradiance was significant in two of the three species studied, but was clearly limited in comparison with that of new leaves produced in the high light conditions. This limitation was most pronounced in the early-successional-stage species, O. populifolius. It is likely that structural characteristics of the leaves, imposed at the time of leaf expansion, are largely responsible for the limitations in photosynthetic acclimation to increases in irradiance.  相似文献   

6.
模拟酸雨对柚木幼苗生长、光合与水分利用的影响   总被引:18,自引:0,他引:18  
模拟pH6.5(对照)、4.5和2.5三个酸雨梯度,研究其对1a生组培柚木(TectonagrandisL.f.)幼苗生长、光合与水分利用的影响。结果表明,尽管不同处理间的各项生理指标差异不明显,但模拟酸雨对柚木形态构件参数造成较严重的影响。pH4.5和pH2.5处理组柚木基径(D)和树高(H)增长明显下降,使得D2H下降更加显著;不同处理下柚木叶片净光合速率(Pn)和蒸腾速率(E)日变化趋于一致,气孔导度(gs)日变化与对应的叶片净光合速率日变化十分相似,同时,对照与两个处理的Pn与gs之间都表现正相关(p<0.01),且在pH4.5处理表现更为显著,但是对照和两个处理的E与gs的线性关系不显著;pH4.5和2.5处理的水分利用效率(WUE)日变化趋于一致;对照胞间CO2浓度与大气CO2浓度比(Ci/Ca)均值最低,表明对照柚木对CO2利用最有效。  相似文献   

7.
3种2-3年生相思盆栽于代表不同污染程度的交通繁忙区、工业生产区和相对清洁区,4个月后进行植物叶片气体交换和叶绿素荧光特征参数的测定。结果表明,生长在污染区的相思植物的净光合速率(Pn)、气孔导度(gs)和光系统Ⅱ原初光化学效率(Fv/Fm)均出现不同程度的下降,下降幅度因植物种类和污染类型的不同而有差异,不同实验点上大腺相思叶片蒸腾速率(E)和水分利用效率(WUE)则维持相对稳定,多花和流苏相思的WUE均以污染环境下较低,根据Pn、gs和Fv/Fm的变化以及实验点上其它植物对应测定值比,推测3种相思植物对大气污染都表现出中等强度的抗性,且多花相思和流苏相思相对好于大腺相思。  相似文献   

8.
With a CI-301PS portable photosynthesis system as a measuring device, a field study on the characteristics of transpiration and the responses of transpiration (E), stomatal resistance (R) and water use efficiency (WUE) to shade in Ginkgo biloba L. grown in Mt. Lushan was conducted. The results showed that with sufficient water in soil, the highest transpiration rate in a sunny summer day appeared in the afternoon. The WUE was maximum at about 8 a.m. and then decreased at noon remarkably. Different responses of E, R and WUE to shade were noticed which indicated that G. biloba was very suitable to the present climate. Moreover, the temperature of air, photosynthetic active radiation and R were the dominant factors affecting transpiration.  相似文献   

9.
In order to determine how environmental and physiological factors affect leaf gas exchange in a 9-year-old clonal eucalypt plantation (Eucalyptus grandis Hill ex. Maiden hybrids) in the State of Espirito Santo, Brazil, the diurnal patterns of predawn leaf water potential (Ψpd), and leaf gas exchange were monitored from November 1995 to August 1996. Soil water content (Θ) and microclimatic variables were also recorded. Most of the rainfall during the experimental period occurred from October to December 1995 and from March to April 1996, causing a significant variation in Θ and Ψpd. A high positive correlation (r 2=0.92) was observed between Ψpd and Θ measured at 0.3 m depth from the soil surface. During conditions of high soil water availability, the maximum values of stomatal conductance for water vapor (g s) and net photosynthetic rate (A) were over 0.4 mol m–2 s–2 and l5 μmol m–2 s–1, respectively. The results showed that Ψpd and leaf gas exchange of the examined trees were susceptible to changes in the water content of the upper soil layers, where the major concentration of active roots occur. Multiple linear regression analysis indicated that photosynthetic active radiation (Q), vapor pressure deficit (VPD), atmospheric CO2 molar fraction (C a), and Ψpd were the most important factors controlling g s whereas Q and VPD were the main microclimatic variables controlling A. Received: 5 November 1998 / Accepted: 10 November 1999  相似文献   

10.
Responses of photosynthetic rate and stomatal conductance to water stress as weI1 as the relationship between photosynthetic rate and stomatal conductance were investigated with soybean cultivars “Ludou No. 4” and “7605”. The former was a high yield cultivars widely used in Shandong province, and the latter was a small grain soybean line bred by Shandong Academy of Agricultural science. Soil water stress decreased leaf apparent photosynthetic rate and stomatal conductance of two soybean cultivars, and “Ludou No. 4” decreased more than “7605”. At the same value of water potential, photosynthetic rate and stomatal conductance of “7605” were higher than those of “Ludou No,4”,but the rate of stomatal closure for “7605” was higher than “Ludou No. 4”. Decreasing of stomatal conductance caused rising of leaf temperature of two soybean cultivars, and the rising of “7605” was more rapid than “Ludou No. 4”, but at the same treatment of water stress, leaf temperature of “Ludou No. 4” was higher than “7605”. Leaf water use efficiecy (WUE) of two soybean cultivars were decreased under water stress, and the rate of decreasing in “Ludou No.4” was more rapid than in “7605”. These results showed that “7605” was more resistant to water:stress than “Ludou No. 4”.  相似文献   

11.
M. Li  D. Yang  W. Li 《Photosynthetica》2007,45(2):222-228
The effects of soil flooding on gas exchange and photosystem 2 (PS2) activity were analyzed in leaves of Phragmites australis, Carex cinerascens, and Hemarthria altissima. Pronounced decrease in net photosynthetic rate and stomatal conductance with flooding was found only in C. cinerascens. No significant changes in PS2 activity were observed in all three species which suggests that the photosynthetic apparatus was not damaged. Among the three species, H. altissima is better adapted to flooding than P. australis and C. cinerascens.  相似文献   

12.
The effect of ultraviolet-B (UV-B) enhanced fluorescent radiation on protein profile and protein synthesis has been investigated in Vigna sinensis L. cv. Walp seedlings growing at various temperatures. In seedlings growing at 30°C, UV-B radiation decreased the level of several proteins as seen in Coomassie brilliant blue stained gel. However, fluorography of the same gel indicates induction of three sets of proteins in the range of 70. 53 and 16 k Da. Such induction under UV-B enhanced radiation resembled that found after heat shock treatments. In seedlings at 10 and 20°C, induction of such proteins varied both qualitatively and quantitatively. At 40°C. UV-B enhanced radiation caused a cumulative effect with temperature. Strong induction of specific proteins by UV-B radiation in seedlings growing under normal temperature indicates a possible protective role.  相似文献   

13.
Populations of the desert annual Dimorphotheca sinuata , derived from a common seed stock, were exposed concurrently over four successive generations to either ambient (representing no stratospheric ozone depletion) or elevated (representing 20% stratospheric ozone depletion) UV-B levels during their complete life cycle. Leaf fluctuating asymmetry (FA) was measured in populations of plants grown from seeds of selected generations which had experienced different UV-B exposure histories, and from seeds collected from a wild population of this species which grows in a naturally enhanced UV-B environment. These measured plants had been grown in a greenhouse under essentially UV-B-free conditions. Leaf FA was significantly increased by greater numbers of enhanced UV-B exposures in the parentage of the seed. There was a linear to exponential dose–response relationship between number of UV-B exposure iterations in seed parentage and leaf FA, suggesting that damage to DNA caused by UV-B exposure during plant development may not be fully repaired, and thus be inherited by offspring and accumulated over successive generations in this species. Leaf FA of plants grown from seed from the wild population was not significantly greater than that of control plants whose parentage experienced only ambient UV-B exposures, although this negative result may have been due to low sampling intensity and measurement resolution, and the relatively low UV-B enhancement experienced by the wild population. We conclude that leaf FA may constitute a relatively sensitive yet inexpensive means of quantifying UV-B damage to plants.  相似文献   

14.
We conducted three experiments to examine the influence of ultraviolet-B radiation (UV-B; 280–320 nm) exposure on reproduction in Brassica rapa (Brassicaceae). Plants were grown in a greenhouse under three biologically effective UV-B levels that simulated either an ambient stratospheric ozone level (control), 16% (“low enhanced”), or 32% (“high enhanced”) ozone depletion levels at Morgantown, WV, USA in mid-March. In the first experiment, we examined whether UV-B level during plant growth influenced in vivo pollen production and viability, and flower production. Pollen production and viability per flower were reduced by ≈50% under both enhanced UV-B levels relative to ambient controls. While plants under high-enhanced UV-B produced over 40% more flowers than plants under the two lower UV-B treatments, whole-plant production of viable pollen was reduced under high-enhanced UV-B to 17% of that of ambient controls. Whole-plant production of viable pollen was reduced under low-enhanced UV-B to 34% of ambient controls. In the second experiment, we collected pollen from plants under the three UV-B levels and examined whether source-plant UV-B exposure influenced in vitro pollen germination and viability. Pollen from plants under both enhanced-UV-B treatments had initially lower germination and viability than pollen from the ambient level. After in vitro exposure to the high-enhanced UV-B levels for 6 h, viability of the pollen from plants grown under ambient UV-B was reduced from 65 to 18%. In contrast, viability of the pollen from plants grown under both enhanced UV-B treatments was reduced to a much lesser extent: only from ≈43 to 22%. Thus, ambient source-plant pollen was more sensitive to enhanced UV-B exposure. In the third experiment, we used pollen collected from source plants under the three UV-B levels to fertilize plants growing under ambient-UV-B levels, and assessed subsequent seed production and germination. Seed abortion rates were higher in plants pollinated with pollen from the enhanced UV-B treatments, than from ambient UV-B. Despite this, seed yield (number and mass) per plant was similar, regardless of the UV-B exposure of their pollen source. Our findings demonstrate that enhanced UV-B levels associated with springtime ozone depletion events have the capacity to substantially reduce viable pollen production, and could ultimately reduce reproductive success of B. rapa.  相似文献   

15.
The aim of the present investigation was to define the role of soluble flavonoids as UV-B protectants in the primary leaf of barley (Hordeum vulgare L.). For this purpose we used a mutant line (Ant 287) from the Carlsberg collection of proanthocyanidin-free barley containing only 7% of total extractable flavonoids in the primary leaf as compared to the mother variety (Hiege 550/75). Seven-day-old leaves from plants grown under high visible light with or without supplementary UV-B radiation were used for the determination of UV-B sensitivity. UV-B-induced changes were assessed from parameters of chlorophyll fluorescence of photosystem II, including initial and maximum fluorescence, apparent quantum yield, and photochemical and non-photochemical quenching. A quartz fibre-optic microprobe was used to evaluate the amount of potentially harmful UV-B (310 nm radiation) penetrating into the leaf as a direct consequence of flavonoid deficiency. Our data indicate an essential role of flavonoids in UV-B protection of barley primary leaves. In leaves of the mutant line grown under supplementary UV-B, an increase in 310nm radiation in the mesophyll and a strong decrease in the quantum yield of photosynthesis were observed as compared to the corresponding mother variety. Primary leaves of liege responded to supplementary UV-B radiation with a 30% increase in the major flavonoid saponarin and a 500% increase in the minor compound lutonarin. This is assumed to be an efficient protective response since no changes in variable chlorophyll fluorescence were apparent. In addition, a further reduction in UV-B penetration into the mesophyll was recorded in these leaves.  相似文献   

16.
Summary To assess the role of photosynthetic acclimation in the response of tropical understory herbs to treefall light gaps, photosynthetic response curves were determined for three species of herbaceous bamboo growing in treatments of sun and shade at Barro Calorado Island, Panama. Increased maximum photosynthetic capacity did not always accompany higher ramet production in the sun treatment. Pharus latifolius reproduced abundantly in both treatments, and produced more ramets and developed higher maximum photosynthetic capacity under higher irradiance. Streptochaeta spicata also produced a high percentage of reproductive ramets in both treatments and produced more ramets in the sun, did not show any significant differences in photosynthetic parameters between treatments. Streptochaeta sodiroana did not change maximum photosynthetic capacity in the sun, and had higher photosynthetic efficiency and lower mortality in the shade. Stable carbon isotope composition of leaves indicated that all three species developed higher water-use efficiency under higher irradiance. Photosynthetic flexibility may contribute to the ability of P. latifolius to reproduce in treefall gaps, whereas S. spicata and S. sodiroana may maintain the ability to fix carbon efficiently in low irradiance even when growing or persisting in gaps.  相似文献   

17.
To test the hypothesis that leaf surface wax influences plant responses to UV-B, 6 lines of cultivated pea (Pisum sativum L.), selected as having more or less wax, were grown at 0 or 6.5 kJ m-2 day-1 plant-weighted UV-B against a background of 850–950 μmol m-2 s-1 photosynthetically active radiation. In the 4 lines with least leaf surface wax the amount of wax on adaxial and abaxial leaf surfaces was increased following exposure to 6.5 kJ m-2 day-1 UV-B, but UV-B decreased surface wax in Scout, which had the greatest wax deposits. On the adaxial leaf surface, UV-B radiation caused a shift in wax composition from alcohols to esters and hydrocarbons and the ratio of short to long chain length alkyl ester homologues was increased. There was no evidence of a shortening in carbon chain length of hydrocarbons, primary alcohols or fatty acids due to UV-B and no significant correlation between wax amount and UV reflectance from leaves. UV-B induced significant increases in UV-absorbing compounds in the expanded leaves and buds of most lines. UV-B reduced the growth of all lines. Foliage area (leaves plus stipules) declined by 5–30%, plant dry weight by 12–30%, and plant height by 24–38%. Reductions in growth occurred in the absence of any changes in chlorophyll fluorescence or photosynthetic rate. UV-B also had no major effect on carbon allocation patterns. The effects of UV-B on growth appeared to be due to changes in tissue extension and expansion. Indeed, many of the responses to UV-B observed in this study of pea appear more consistent with indirect effects being expressed in developing tissues rather than through the direct action of UV-B on mature tissues. There was no evidence that wax amount or biochemistry was associated with the sensitivity of the lines to UV-B radiation. Furthermore, induction of pigments was not correlated with changes in growth. However, lines with the greatest constitutive amounts of pigments in unexpanded bud tissues were most tolerant of elevated UV-B.  相似文献   

18.
R. Huc  A. Ferhi  J. M. Guehl 《Oecologia》1994,99(3-4):297-305
Leaf gas exchange rates, predawn wp and daily minimum wm leaf water potentials were measured during a wet-to-dry season transition in pioneer (Jacaranda copaia, Goupia glabra andCarapa guianensis) and late stage rainforest tree species (Dicorynia guianensis andEperua falcata) growing in common conditions in artificial stands in French Guiana. Carbon isotope discrimination () was assessed by measuring the stable carbon isotope composition of the cellulose fraction of wood cores. The values were 2.7 higher in the pioneer species than in the late stage species. The calculated time integratedC i values derived from the values averaged 281 mol mol–1 in the pioneers and 240 mol mol–1 in the late stage species. The corresponding time-integrated values of intrinsinc water-use efficiency [ratio CO2 assimilation rate (A)/leaf conductance (g)] ranged from 37 to 47 mmol mol–1 in the pioneers and the values were 64 and 74 mmol mol–1 for the two late stage species. The high values were associated—at least inJ. copaia—with high maximumg values and with high plant intrinsinc specific hydraulic conductance [Cg/(wmwp], which could reflect a high competitive ability for water and nutrient uptake in the absence of soil drought in the pioneers. A further clear discriminating trait of the pioneer species was the very sensitive stomatal response to drought in the soil, which might be associated with a high vulnerability to cavitation in these species. From a methodological point of view, the results show the relevance of for distinguishing ecophysiological functional types among rainforest trees.  相似文献   

19.
Field studies were conducted to determine the potential for alterations in ion leakage and the intraspecific variation in ion leakage sensitivity of 20 wild sugarcane clones (Saccharum spontaneum L.) to enhanced ultraviolet-B (UV-B, 280–315nm) radiation in two consecutive years. The clones were collected from original sites with different altitude (from 0 to 1650 m) and latitude (from 18–37 °N). The supplemental UV-B radiation was 5.00 kJ m−2, simulating a depletion of 20 % stratospheric ozone. Across all clones tested in the present study, a significant change (P<0.01 or 0.05) in ion leakage for 11 in tillering, 14 in elongation and 15 in flowering in 2003, and for 9 in tillering, 5 in elongation and 5 in floweing in 2004 were observed. In general, intraspecific responses of ion leakage of wild sugarcane clones to enhanced UV-B radiation existed under field conditions for two consecutive years, although intraspecific difference in 2003 was more obvious than that in 2004. Wild sugarcane clones originating from lower latitude or high elevation were not necessarily the more tolerant to enhanced UV-B radiation.  相似文献   

20.
The response of Ceratophyllum demersum and Myriophyllum spicatum to three levels of UV-B radiation – reduced (ca. 50% reduction), ambient and enhanced UV-B radiation, simulating 17% ozone depletion – is discussed. The research revealed that UV-B stimulated the production of UV-B absorbing compounds in C. demersum, but not in M. spicatum. The relative amount of UV-B absorbing compounds was about four times lower in C. demersum. Enhanced UV-B also affected respiratory potential in C. demersum (on average 3.7 mg O2/gDM/h), but no effect on M. spicatum (on average 5.5 mg O2/gDM/h) was detected. Increased need for energy revealed that UV-B radiation exerted stress in C. demersum. No changes in chlorophyll a and no disturbance to photochemical efficiency due to UV-B were observed in either species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号