首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cytochrome o complex is one of two ubiquinol oxidases in the aerobic respiratory system of Escherichia coli. This enzyme catalyzes the two-electron oxidation of ubiquinol-8 which is located in the cytoplasmic membrane, and the four-electron reduction of molecular oxygen to water. The purified oxidase contains at least four subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and has been shown to couple electron flux to the generation of a proton motive force across the membrane. In this paper, the DNA sequence of the cyo operon, containing the structural genes for the oxidase, is reported. This operon is shown to encode five open reading frames, cyoABCDE. The gene products of three of these, cyoA, cyoB, and cyoC, are clearly related to subunits II, I, and III, respectively, of the eukaryotic and prokaryotic aa3-type cytochrome c oxidases. This family of cytochrome c oxidases contain heme a and copper as prosthetic groups, whereas the E. coli enzyme contains heme b (protoheme IX) and copper. The most striking sequence similarities relate the large subunits (I) of both the E. coli quinol oxidase and the cytochrome c oxidases. It is likely that the sequence similarities reflect a common molecular architecture of the two heme binding sites and of a copper binding site in these enzymes. In addition, the cyoE open reading frame is closely related to a gene denoted ORF1 from Paracoccus dentrificans which is located in between the genes encoding subunits II and III of the cytochrome c oxidase of this organism. The function of the ORF1 gene product is not known. These sequence relationships define a superfamily of membrane-bound respiratory oxidases which share structural features but which have different functions. The E. coli cytochrome o complex oxidizes ubiquinol but has no ability to catalyze the oxidation of reduced cytochrome c. Nevertheless, it is clear that the E. coli oxidase and the aa3-type cytochrome c oxidases must have very similar structures, at least in the vicinity of the catalytic centers, and they are very likely to have similar mechanisms for bioenergetic coupling (proton pumping).  相似文献   

2.
The cytochrome o complex is a bo-type ubiquinol oxidase in the aerobic respiratory chain of Escherichia coli. This complex has a close structural and functional relationship with the eukaryotic and prokaryotic aa3-type cytochrome c oxidases. The specific activity, subunit composition, and metal content of the purified cytochrome o complex are not consistent for different preparative protocols reported in the literature. This paper presents a relatively simple preparation of the enzyme starting with a strain of Escherichia coli which overproduces the oxidase. The pure enzyme contains four subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Partial amino acid sequence data confirm the identities of subunit I, II, and III from the SDS-PAGE analysis as the cyoB, cyoA, and cyoC gene products, respectively. A slight modification of the purification protocol yields an oxidase preparation that contains a possible fifth subunit which may be the cyoE gene product. The pure four-subunit enzyme contains 2 equivs of iron but only 1 equiv of copper. There is no electron paramagnetic resonance detectable copper in the purified enzyme. Hence, the equivalent of CuA of the aa3-type cytochrome c oxidases is absent in this quinol oxidase. There is also no zinc in the purified quinol oxidase. Finally, monoclonal antibodies are reported that interact with subunit II. One of these monoclonals inhibits the quinol oxidase activity of the detergent-solubilized, purified oxidase. Hence, although subunit II does not contain CuA and does not interact with cytochrome c, it still must have an important function in the bo-type ubiquinol oxidase.  相似文献   

3.
The cytochrome d terminal oxidase complex is one of two terminal oxidases in the aerobic respiratory chain of Escherichia coli. Previous work has shown by dodecyl sulfate-polyacrylamide gel electrophoresis that this enzyme contains two subunits (I and II) and three cytochrome components, b558 , a1, and d. Reconstitution studies have demonstrated that the enzyme functions as a ubiquinol-8 oxidase and catalyzes an electrogenic reaction, i.e. turnover is accompanied by a charge separation across the membrane bilayer. In this paper, monoclonal and polyclonal antibodies were used to obtain structural information about the cytochrome d complex. It is shown that antibodies directed against subunit I effectively inhibit ubiquinol-1 oxidation by the purified enzyme in detergent, whereas antibodies which bind to subunit II have no effect on quinol oxidation. The oxidation rate of N,N,N',N'-tetramethyl-p-phenylenediamine, in contrast, is unaffected by antisubunit I antibodies, but is inhibited by antibodies against subunit II. It is concluded that the quinol oxidation site is on subunit I, previously shown to be the cytochrome b558 component of the complex, and that N,N,N',N'-tetramethyl-p-phenylenediamine oxidation occurs at a secondary site on subunit II. The antibodies were also used to analyze the results of a protein cross-linking experiment. Dimethyl suberimidate was used to cross-link the subunits of purified, solubilized oxidase. Immunoblot analysis of the products of this cross-linking clearly indicate that subunit II probably exists as a dimer within the complex. Finally, it is shown that the purified enzyme contains tightly bound lipopolysaccharide. This was revealed after discovering that one of the monoclonal antibodies raised against the purified complex is actually directed against lipopolysaccharide. The significance of this finding is not known.  相似文献   

4.
The cytochrome d terminal oxidase complex is a component of the aerobic respiratory chain of Escherichia coli. This enzyme catalyzes the oxidation of ubiquinol-8 within the cytoplasmic membrane and the reduction of molecular oxygen to water along with the concomitant generation of a proton-motive force across the membrane. Previous studies have established that the oxidase is composed of one copy of each of two subunits (I and II), and contains four heme prosthetic groups. The hydropathy profiles of the amino acid sequences suggest that each subunit has multiple transmembrane-spanning helical segments. The goal of the current work is to obtain experimental information about which portions of the two polypeptide chains are facing the cytoplasm. This is part of an effort to determine the topological folding of the two subunits across the membrane. A number of random gene fusions were generated in vitro which encode hybrid proteins in which the amino-terminal portion is provided by one of the two subunits of the oxidase, and the carboxyl-terminal portion is beta-galactosidase. Studies from other systems have indicated that the only hybrid proteins which will manifest high beta-galactosidase specific activity and be membrane-bound will be those where the fusion junction is in a region of the cytochrome polypeptides facing the cytoplasm. Fusions were obtained in eight positions within subunit I and 11 positions within subunit II. These identified four cytoplasmic-facing regions within subunit II, consistent with its hydropathy profile showing eight transmembrane helices. The data with subunit I are less conclusive.  相似文献   

5.
The cytochrome o complex is the predominant terminal oxidase in the aerobic respiratory chain of Escherichia coli when the bacteria are grown under conditions of high aeration. The oxidase is a ubiquinol oxidase and reduces molecular oxygen to water. Electron transport through the enzyme is coupled to the generation of a protonmotive force. The purified cytochrome o complex contains four or five subunits, two protoheme IX (heme b) prosthetic groups, plus at least one Cu. The subunits are all encoded by the cyo operon. Sequence comparisons show that the cytochrome o complex is closely related to the aa3-type cytochrome c oxidase family. Gene fusions have been used to define the topology of each of the gene products. Subunits I, II, III and IV are proposed to have 15, 2, 5 and 3 transmembrane spans, respectively. The fifth gene product (cyoE) encodes a protein with 7 membrane spanning segments, and this may also be a subunit of this enzyme. Fourier transform infrared spectroscopy has been used to monitor CO bound in the active site where oxygen is reduced. These data provide definitive proof that the cytochrome o complex has a heme-copper binuclear center, similar to that present in the aa3-type cytochrome c oxidases. Site-directed mutagenesis is being utilized to define which amino acids are ligands to the heme iron and copper prosthetic groups.  相似文献   

6.
The cytochrome d terminal oxidase complex is one of two terminal oxidases which are components of the aerobic respiratory chain of Escherichia coli. This membrane-bound enzyme catalyzes the two-electron oxidation of ubiquinol and the four-electron reduction of oxygen to water. Enzyme turnover generates proton and voltage gradients across the bilayer. The oxidase is a heterodimer containing 2 mol of protoheme IX and 1 or 2 mol of heme d per mol of complex. To explain the functional properties of the enzyme, a simple model has been proposed in which it is speculated that the heme prosthetic groups define two separate active sites on opposite sides of the membrane at which the oxidation of quinol and the reduction of water, respectively, are catalyzed. This paper represents an initial effort to define the axial ligands of each of the three or four hemes within the amino acid sequence of the oxidase subunits. Each of the 10 histidine residues has been altered by site-directed mutagenesis with the expectation that histidine residues are likely candidates for heme ligands. Eight of the 10 histidine residues are not essential for enzyme activity, and 2 appear to function as heme axial ligands. Histidine 186 in subunit I is required for the cytochrome b558 component of the enzyme. This residue is likely to be located near the periplasmic surface of the membrane. Histidine 19, near the amino terminus of subunit I also appears to be a heme ligand. It is concluded that two of the four or five expected heme axial ligands have been tentatively identified, although further work is required to confirm these conclusions. A minimum of two additional axial ligands must be residues other than histidine.  相似文献   

7.
The aa(3)-type cytochrome c oxidase of Rhodobacter sphaeroides, a proteobacterium of the alpha subgroup, is structurally similar to the core subunits of the terminal oxidase in the mitochondrial electron transport chain. Subunit I, the product of the coxI gene, normally binds two heme A molecules. A deletion of cox10, the gene for the farnesyltransferase required for heme A synthesis, did not prevent high level accumulation of subunit I in the cytoplasmic membrane. Thus, subunit I can be expressed and stably inserted into the cytoplasmic membrane in the absence of heme A. Aposubunit I was purified via affinity chromatography to a polyhistidine tag. Copurification of subunits II and III with aposubunit I indicated that assembly of the core oxidase complex occurred without the binding of heme A. In addition to formation of the apooxidase containing all three large structural proteins, CoxI-II and CoxI-III heterodimers were isolated from cox10 deletion strains harboring expression plasmids with coxI and coxII or with coxI and coxIII, respectively. This demonstrated that subunit assembly of the apoenzyme was not an inherently ordered or sequential process. Thus, multiple paths must be considered for understanding the assembly of this integral membrane metalloprotein complex.  相似文献   

8.
A systemic study has been made of copper and heme a binding to subunits of beef heart cytochrome c oxidase. Copper and heme a were readily mobilized by ionic detergents, high ionic strengths, temperatures above 0 degrees C, thiol compounds, and gel-bound peroxides and free radicals when the subunits of the oxidase were dissociated from one another during polyacrylamide gel electrophoresis. Most subunits showed some affinity for heme a and copper under these conditions. However, in the presence of specific mixtures of ionic and nonionic detergents (e.g. 0.1% sodium dodecyl sulfate, 0.025% Triton X-100) at temperatures below 0 degrees C and in buffers of low ionic strength using 10 to 12% polyacrylamide gels preelectrophoresed for 3 days with thioglycolate, about 90% of the Cu was found on subunit II (Mr = 24,100), and heme a was found in equal amounts of subunits I (Mr = 35,800) and II. The oxidized-reduced and reduced-CO absorption spectra of these subunits resembled those of cytochrome c oxidase. It appears probable that in the native enzyme, subunit I contains heme a and subunit II contains copper and heme a. A relationship of mammalian cytochrome c oxidase to the two-subunit microbial cytochrome oxidase systems appears to exist.  相似文献   

9.
Succinate:menaquinone-7 oxidoreductase (complex II) of the Gram-positive bacterium Bacillus subtilis consists of equimolar amounts of three polypeptides; a 65-kDa FAD-containing polypeptide, a 28-kDa iron-sulfur cluster containing polypeptide, and a 23-kDa membrane-spanning cytochrome b558 polypeptide. The enzyme complex was overproduced 2-3-fold in membranes of B. subtilis cells containing the sdhCAB operon on a low copy number plasmid and was purified in the presence of detergent. The cytochrome b558 subunit alone was similarly overexpressed in a complex II deficient mutant and partially purified. Isolated complex II catalyzed the reduction of various quinones and also quinol oxidation. Both activities were efficiently albeit not completely blocked by 2-n-heptyl-4-hydroxyquinoline N-oxide. Chemical analysis demonstrated two protoheme IX per complex II. One heme component was found to have an Em,7.4 of +65 mV and an EPR gmax signal at 3.68, to be fully reducible by succinate, and showed a symmetrical alpha-band absorption peak at 555 nm at 77 K. The other heme component was found to have an Em,7.4 of -95 mV and an EPR gmax signal at 3.42, was not reducible by succinate under steady-state conditions, and showed in the reduced state an apparent split alpha-band absorption peak with maxima at 553 and 558 nm at 77 K. Potentiometric titrations of partially purified cytochrome b558 subunit demonstrated that the isolated cytochrome b558 also contains two hemes. Some of the properties, i.e., the alpha-band light absorption peak at 77 K, the line shapes of the EPR gmax signals, and reactivity with carbon monoxide were observed to be different in B. subtilis cytochrome b558 isolated and in complex II. This suggests that the bound flavoprotein and iron-sulfur protein subunits protect or affect the heme environment in the assembled complex.  相似文献   

10.
The assembly of cytochrome c oxidase subunits I-III was studied in vitro in isolated rat liver mitochondria pre-labeled with [35S]methionine. Individual subunits were immunoabsorbed with monospecific antibodies. Isolated heme a from rat liver mitochondria, when added to radiolabeled mitochondria, induced assembly of subunit I with subunits II and III. Assembly of these subunits was not observed in mitochondria incubated in the presence of heme b(hemin) or in the absence of heme. Quantitative analysis of immunoabsorbed, radiolabeled subunits suggests that the predominant effect of heme a is on the assembly of subunit I with subunit III.  相似文献   

11.
Beef heart cytochrome c oxidase was labeled at a single sulfhydryl group by treatment with 5 mM N-iodoacetylamidoethyl-1-aminonaphthalene-5-sulfonate (1,5-I-AEDANS) at pH 8.0 for 4 h. Sodium dodecyl sulfate gel electrophoresis revealed that the enzyme was exclusively labeled at subunit III, presumably at Cys-115. The high affinity phase of the electron transfer reaction with horse cytochrome c was not affected by acetylamidoethyl-1-aminonaphthalene-5-sulfonate (AEDANS) labeling. Addition of horse cytochrome c to dimeric AEDANS-cytochrome c oxidase resulted in a 55% decrease in the AEDANS fluorescence due to the formation of a 1:1 complex between the two proteins. Forster energy transfer calculations indicated that the distance from the AEDANS label on subunit III to the heme group of cytochrome c was in the range 26-40 A. In contrast to the results with the dimeric enzyme, the fluorescence of monomeric AEDANS-cytochrome c oxidase was not quenched at all by binding horse heart cytochrome c, indicating that the AEDANS label on subunit III was at least 54 A from the heme group of cytochrome c. These results support a model in which the lysines surrounding the heme crevice of cytochrome c interact with carboxylates on subunit II of one monomer of the cytochrome c oxidase dimer and the back of the molecule is close to subunit III on the other monomer. In order to identify the cysteine residues that ligand copper A, a new procedure was developed to specifically remove copper A from cytochrome c oxidase by incubation with 2-mercaptoethanol followed by gel chromatography. Treatment of the copper A-depleted cytochrome c oxidase preparation with 1,5-I-AEDANS resulted in labeling sulfhydryl groups on subunit II as well as on subunit III. No additional subunits were labeled. This result indicates that the copper A binding site is located at cysteines 196 and/or 200 of subunit II and that removal of copper A exposes these residues for labeling by 1,5-I-AEDANS. Alternative copper A depletion methods involving incubation with bathocuproine sulfonate (Weintraub, S.T., and Wharton, D.C. (1981) J. Biol. Chem. 256, 1669-1676) or p-(hydroxymercuri)benzoate (Li, P.M., Gelles, J., Chan, S.I., Sullivan, R.J., and Scott, R.A. (1987) Biochemistry 26, 2091-2095) were also investigated. Treatment of these preparations with 1,5-I-AEDANS resulted in labeling cysteine residues on subunits II and III. However, additional sulfhydryl residues on other subunits were also labeled, preventing a definitive assignment of the location of copper A using these depletion procedures.  相似文献   

12.
We constructed expression plasmids containing cbaAB, the structural genes for the two-subunit cytochrome bo(3)-type cytochrome c oxidase (SoxB type) recently isolated from a Gram-positive thermophile Bacillus stearothermophilus. B. stearothermophilus cells transformed with the plasmids over-expressed an enzymatically active bo(3)-type cytochrome c oxidase protein composed of the two subunits, while the transformed Escherichia coli cells produced an inactive protein composed of subunit I without subunit II. The oxidase over-expressed in B. stearothermophilus was solubilized and purified. The oxidase contained protoheme IX and heme O, as the main low-spin heme and the high-spin heme, respectively. Analysis of the substrate specificity indicated that the high-affinity site is very specific for cytochrome c-551, a cytochrome c that is a membrane-bound lipoprotein of thermophilic Bacillus. The purified enzyme reconstituted into liposomal vesicles with cytochrome c-551 showed H(+) pumping activity, although the efficiency was lower than those of cytochrome aa(3)-type oxidases belonging to the SoxM-type.  相似文献   

13.
Immunological methods were used to obtain information about Escherichia coli heme proteins. There is a membrane-bound catalase which consists of a single subunit (as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis) which is also present in the soluble fraction. Antibodies raised against purified, soluble cytochrome b562 showed that this cytochrome is not related to any of the membrane-bound cytochromes, including the b562 component of the cytochrome o complex. Cytochrome b556 is immunologically unrelated to the cytochrome b556 NR associated with the nitrate reductase system. Cytochrome b556 and cytochrome o are not present in a constant ratio in the membrane.  相似文献   

14.
The arrangement of the six cytochrome c oxidase subunits in the inner membrane of bovine heart mitochondria was investigated. The experiments were carried out in three steps. In the first step, exposed subunits were coupled to the membrane-impermeant reagent p-diazonium benzene [32S]sulfonate. In the second step, the membranes were lysed with cholate anc cytochrome c oxidase was isolated by immunoprecipitation. In the third step, the six cytochrome c oxidase subunits were separated from each other by dodecyl sulfate-acrylamide gel electrophoresis and scanned for radioactivity. Exposed subunits on the outer side of the mitochondrial inner membrane were identified by labeling intact mitochondria. Exposed subunits on the matrix side of the inner membrane were identified by labeling sonically prepared submitochondrial particles in which the matrix side of the inner membrane is exposed to the suspending medium. Since sonic irradiation leads to a rearrangement of cytochrome c oxidase in a large fraction of the resulting submitochondrial particles, an immunochemical procedure was developed for isolating particles with a low content of displaced cytochrome c oxidase. With mitochondria, subunits II, V, and VI were labeled, whereas in purified submitochondrial particles most of the label was in subunit III. The arrangement of cytochrome c oxidase in the mitochondrial inner membrane is thus transmembraneous and asymmetric; subunits II, V, and VI are situated on the outer side, subunit III is situated on the matrix side, and subunits I and IV are buried in the interior of the membrane. In a study of purified cytochrome c oxidase labeled with p-diazonium benzene [32S]sulfonate, the results were similar to those obtained with the membrane-bound enzyme. Subunits I and IV were inaccessible to the reagent, whereas the other four subunits were accessible. In contrast, all six subunits became labeled if the enzyme was dissociated with dodecyl sulfate before being exposed to the labeling reagent.  相似文献   

15.
The mechanism of an increase in cytochrome c oxidase [EC 1.9.3.1] activity during aging of sliced sweet potato root tissue was investigated with antibiotics and antibody to the purified enzyme. 1. The increase in cytochrome c oxidase activity was inhibited by chloramphenicol but not by cycloheximide. 2. Cytochrome c oxidase purified from wounded tissue was identical with that from intact tissue as judged by the subunit composition, sedimentation velocity, absorption spectrum, antigenicity, and activity per heme a. 3. An increase in the amount of cytochrome c oxidase protein took place during aging of slices. 4. Sweet potato cytochrome c oxidase consists of five subunits. When slices were aged in the presence of [3H]leucine, the three larger subunits (I, II, and III) of cytochrome c oxidase were labeled, while no radioactivity was incorporated into the other two subunits, IV and V. The results indicate that the increase in cytochrome c oxidase activity is due to an increase in the amount of the enzyme protein. We propose that excess amounts of subunits derived from the cytoplasm of the enzyme are present in intact tissue and are assembled with subunits of mitochondrial origin to form the holoenzyme after wounding of tissue.  相似文献   

16.
Cytochrome caa3, a cytochrome c oxidase from Thermus thermophilus, is a two-subunit enzyme containing the four canonical metal centers of cytochrome c oxidases (cytochromes a and a3; copper centers CuA and CuB) and an additional cytochrome c. The smaller subunit contains heme C and was termed the C-protein. We have cloned the genes encoding the subunits of the oxidase and determined the nucleotide sequence of the C-protein gene. The gene and deduced primary amino acid sequences establish that both the gene and the protein are fusions with a typical subunit II sequence and a characteristic cytochrome c sequence; we now call this subunit IIc. The protein thus appears to represent a covalent joining of substrate (cytochrome c) to its enzyme (cytochrome c oxidase). In common with other subunits II, subunit IIc contains two hydrophobic segments of amino acids near the amino terminus that probably form transmembrane helices. Variability analysis of the Thermus and other subunit II sequences suggests that the two putative transmembrane helices in subunit II may be located on the surface of the hydrophobic portion of the intact cytochrome oxidase protein complex. Also in common with other subunits II is a relatively hydrophilic intermembrane domain containing a set of conserved amino acids (2 cysteines and 2 histidines) which have previously been proposed by others to serve as ligands to the CuA center. We compared the subunit IIc sequence with that of related proteins. N2O reductase of Pseudomonas stutzeri, a multi-copper protein that appears to contain a CuA site (Scott, R.A., Zumft, W.G., Coyle, C.L., and Dooley, D.M. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 4082-4086), contains a 59-residue sequence element that is homologous to the "CuA sequence motif" found in cytochrome oxidase subunits II, including all four putative copper ligands. By contrast, subunit II of the Escherichia coli quinol oxidase, cytochrome bo, also contains a region homologous to the CuA motif, but it lacks the proposed metal binding histidine and cysteine residues; this is consistent with the apparent absence of CuA from cytochrome bo.  相似文献   

17.
The radiolabeled, photoreactive azido-ubiquinone derivative (azido-Q), 3-azido-2-methyl-5-methoxy-6-(3,7-dimethyl-[3H]octyl)- 1,4-benzoquinone, was used to investigate the active site of ubiquinol oxidase activity of the cytochrome d complex, a two-subunit terminal oxidase of Escherichia coli. The azido-Q, when reduced by dithioerythritol, was shown to support enzymatic oxygen consumption by the cytochrome d complex that was 8% of the rate observed with ubiquinol-1. This observation provided the rationale behind further studies of the possible photoinactivation and labeling of the active site by this azido-Q. Ten min of photolysis of the purified cytochrome d complex in the presence of the azido-Q resulted in a 60% loss of the ubiquinol-1 oxidase activity. Uptake of the radiolabeled azido-Q by the cytochrome d complex was correlated to the photoinactivation of the ubiquinol-1 oxidase activity. Both increased linearly during the first 4 min of photolysis and reached 90% of the maximum within 10 min. Photolysis times longer than 10 min resulted in no increase in the maximum of 2 mol of azido-Q incorporated per mol of enzyme. The rate of azido-Q uptake by subunit I, but not subunit II, correlated well with the rate of loss of ubiquinol oxidase activity. Use of ubiquinol-0, which is not oxidized by the enzyme, to competitively inhibit radiolabeling of nonspecific binding sites, resulted in a significant decrease (42%) of azido-Q labeling of subunit II while it did not affect the labeling of subunit I. After photolysis for 4 min, the ratio of radiolabeled azido-Q in subunits I to II of the complex was 4.3 to 1.0. These observations support the conclusion that the ubiquinol substrate binding site is located on subunit I of the cytochrome d complex.  相似文献   

18.
Numerous sequences of the cytochrome bd quinol oxidase (cytochrome bd) have recently become available for analysis. The analysis has revealed a small number of conserved residues, a new topology for subunit I and a phylogenetic tree involving extensive horizontal gene transfer. There are 20 conserved residues in subunit I and two in subunit II. Algorithms utilizing multiple sequence alignments predicted a revised topology for cytochrome bd, adding two transmembrane helices to subunit I to the seven that were previously indicated by the analysis of the sequence of the oxidase from E. coli. This revised topology has the effect of relocating the N-terminus and C-terminus to the periplasmic and cytoplasmic sides of the membrane, respectively. The new topology repositions I-H19, the putative ligand for heme b595, close to the periplasmic edge of the membrane, which suggests that the heme b595/heme d active site of the oxidase is located near the outer (periplasmic) surface of the membrane. The most highly conserved region of the sequence of subunit I contains the sequence GRQPW and is located in a predicted periplasmic loop connecting the eighth and ninth transmembrane helices. The potential importance of this region of the protein was previously unsuspected, and it may participate in the binding of either quinol or heme d. There are two very highly conserved glutamates in subunit I, E99 and E107, within the third transmembrane helix (E. coli cytochrome bd-I numbering). It is speculated that these glutamates may be part of a proton channel leading from the cytoplasmic side of the membrane to the heme d oxygen-reactive site, now placed near the periplasmic surface. The revised topology and newly revealed conserved residues provide a clear basis for further experimental tests of these hypotheses. Phylogenetic analysis of the new sequences of cytochrome bd reveals considerable deviation from the 16sRNA tree, suggesting that a large amount of horizontal gene transfer has occurred in the evolution of cytochrome bd.  相似文献   

19.
The cytochrome d terminal oxidase complex was recently purified from Escherichia coli membranes (Miller, M. J., and Gennis , R. B. (1983) J. Biol. Chem. 258, 9159-1965). The complex contains two polypeptides, subunits I and II, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and three spectroscopically defined cytochromes, b558 , a1, and d. A mutant that failed to oxidize N,N,N',N'-tetramethyl-p-phenylenediamine was obtained which was lacking this terminal oxidase complex and was shown to map at a locus called cyd on the E. coli genome. In this paper, localized mutagenesis was used to generate a series of mutants in the cytochrome d terminal oxidase. These mutants were isolated by a newly developed selection procedure based on their sensitivity to azide. Two classes of mutants which map to the cyd locus were obtained, cydA and cydB . The cydA phenotype included the lack of all three spectroscopically detectable cytochromes as well as the absence of both polypeptides, determined by immunological criteria. Strains manifesting the cydB phenotype lacked cytochromes a1 and d, but had a normal amount of cytochrome b558 . Immunological analysis showed that subunit I (57,000 daltons) was present in the membranes, but that subunit II (43,000 daltons) was missing. These data justify the conclusion that subunit I of this two-subunit complex can be identified as the cytochrome b558 component of the cytochrome d terminal oxidase complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号