首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
A quantitative structure activity relationship study was performed on different groups of anti-tuberculosis drug compound for establishing quantitative relationship between biological activity and their physicochemical /structural properties. In recent years, a large number of herbal drugs are promoted in treatment of tuberculosis especially due to the emergence of MDR (multi drug resistance) and XDR (extensive drug resistance) tuberculosis. Multidrug-resistant TB (MDR-TB) is resistant to front-line drugs (isoniazid and rifampicin, the most powerful anti-TB drugs) and extensively drug-resistant TB (XDR-TB) is resistant to front-line and second-line drugs. The possibility of drug resistance TB increases when patient does not take prescribed drugs for defined time period. Natural products (secondary metabolites) isolated from the variety of sources including terrestrial and marine plants and animals, and microorganisms, have been recognized as having antituberculosis action and have recently been tested preclinically for their growth inhibitory activity towards Mycobacterium tuberculosis or related organisms. A quantitative structure activity relationship (QSAR) studies were performed to explore the antituberculosis compound from the derivatives of natural products . Theoretical results are in accord with the in vitro experimental data with reported growth inhibitory activity towards Mycobacterium tuberculosis or related organisms. Antitubercular activity was predicted through QSAR model, developed by forward feed multiple linear regression method with leave-one-out approach. Relationship correlating measure of QSAR model was 74% (R(2) = 0.74) and predictive accuracy was 72% (RCV(2) = 0.72). QSAR studies indicate that dipole energy and heat of formation correlate well with anti-tubercular activity. These results could offer useful references for understanding mechanisms and directing the molecular design of new lead compounds with improved anti-tubercular activity. The generated QSAR model revealed the importance of structural, thermodynamic and electro topological parameters. The quantitative structure activity relationship provides important structural insight in designing of potent antitubercular agent.  相似文献   

2.
As a continuation of our research and with the aim of obtaining new antituberculosis agents which can improve the current chemotherapeutic antituberculosis treatments, new series of quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives were synthesized and evaluated for in vitro antituberculosis activity against Mycobacterium tuberculosis strain H(37)Rv, using the radiometric BACTEC 460-TB methodology. Active compounds were also screened by serial dilution to assess toxicity to a VERO cell line. The results indicate that some compounds exhibited a good antituberculosis activity and the arylcarboxamide analogues 3, 8, and 9 were the most active compounds (EC(90)/MIC1). Also, the cytotoxic effects indicate that these compounds have a good Selectivity Index (SI).  相似文献   

3.
猫爪草已经临床治疗耐药结核病,但其作用机理和有效成分尚不清楚。为研究其可能的作用靶标,采用双向电泳技术比较分析猫爪草提取物作用前后结核分枝杆菌临床分离株的全细胞蛋白表达差异。发现22个蛋白质斑点具有明显差异,对其中3个表达明显下调的蛋白质斑点进行基质辅助激光解吸电离飞行时间质谱分析,获得了肽质量指纹图谱。数据库检索分析确定这3个点代表的蛋白质分别为硫代硫酸硫转移酶,延长因子Ts和热休克蛋白X,分别参与厌氧硫代谢、蛋白质翻译和蛋白质折叠分泌、转录调控等过程。这有助于深入研究猫爪草对结核分枝杆菌的作用机理,也为发现新的抗结核病治疗药物靶标提供了线索。  相似文献   

4.
Mycothiol, MSH or 1D-myo-inosityl 2-(N-acetyl-L-cysteinyl)amido-2-deoxy-alpha-D-glucopyranoside, is an unusual conjugate of N-acetylcysteine (AcCys) with 1D-myo-inosityl 2-acetamido-2-deoxy-alpha-D-glucopyranoside (GlcN-Ins), and is the major low-molecular-mass thiol in mycobacteria. Mycothiol has antioxidant activity as well as the ability to detoxify a variety of toxic compounds. Because of these activities, MSH is a candidate for protecting Mycobacterium tuberculosis from inactivation by the host during infections as well as for resisting antituberculosis drugs. In order to define the protective role of MSH for M. tuberculosis, we have constructed an M. tuberculosis mutant in Rv1170, one of the candidate MSH biosynthetic genes. During exponential growth, the Rv1170 mutant bacteria produced approximately 20% of wild-type levels of MSH. Levels of the Rv1170 substrate, GlcNAc-Ins, were elevated, whereas those of the product, GlcN-Ins, were reduced. This establishes that the Rv1170 gene encodes for the major GlcNAc-Ins deacetylase activity (termed MshB) in the MSH biosynthetic pathway of M. tuberculosis. The Rv1170 mutant grew poorly on agar media lacking catalase and oleic acid, and had heightened sensitivities to the toxic oxidant cumene hydroperoxide and to the antibiotic rifampin. In addition, the mutant was more resistant to isoniazid, suggesting a role for MSH in activation of this prodrug. These data indicate that MSH contributes to the protection of M. tuberculosis from oxidants and influences resistance to two first-line antituberculosis drugs.  相似文献   

5.
A new series of antituberculosis agents 6-9 was designed, synthesized and evaluated for antituberculosis activity against Mycobacterium tuberculosis H37Rv and clinical isolates in an agar dilution method. Compound 9h showed comparable in vitro activity (MIC) to isoniazid against M. tuberculosis H37Rv and clinical isolates (sensitive strains) and superior activity against resistant strains of M. tuberculosis.  相似文献   

6.
It was demonstrated that glutoxim combination with second line drugs for tuberculosis treatment (cycloserine + rifabutine, cycloserine + protionamide) provided statistically significant decrease of intracellular mycobacteria growth in the murine lung tissue culture. The decrease rate when compared to the control group was 3-5 times. The investigated Mycobacterium tuberculosis strain was isolated from the patient and was multi-drug resistant (MDR). Glutoxim addition to the second line drugs combinations provided also decrease of the MDR bacteria microcolonies growth in the lung tissue culture. Glutoxim combination with second line antituberculosis drugs allowed to keep vitality and functional activity of lung tissue cells.  相似文献   

7.
A series of 26 new quinoline derivatives carrying active pharmacophores has been synthesized and evaluated for their in vitro antituberculosis activity against Mycobacterium tuberculosis H37Rv (MTB), Mycobacterium smegmatis (MC2), and Mycobacterium fortuitum following the broth micro dilution assay method. Compounds 13e, 13i, 13k, 14a, 14c, 14i, and 14k exhibited significant minimum inhibition concentrations, when compared with first line drugs isoniazid (INH) and rifampicin (RIF) and could be ideally suited for further modifications to obtain more efficacious compounds in the fight against multi-drug resistant tuberculosis.  相似文献   

8.
Pyrazinamide (PZA) is an important antituberculosis drug. Unlike most antibacterial agents, PZA, despite its remarkable in vivo activity, has no activity against Mycobacterium tuberculosis in vitro except at an acidic pH. M. tuberculosis is uniquely susceptible to PZA, but other mycobacteria as well as nonmycobacteria are intrinsically resistant. The role of acidic pH in PZA action and the basis for the unique PZA susceptibility of M. tuberculosis are unknown. We found that in M. tuberculosis, acidic pH enhanced the intracellular accumulation of pyrazinoic acid (POA), the active derivative of PZA, after conversion of PZA by pyrazinamidase. In contrast, at neutral or alkaline pH, POA was mainly found outside M. tuberculosis cells. PZA-resistant M. tuberculosis complex organisms did not convert PZA into POA. Unlike M. tuberculosis, intrinsically PZA-resistant M. smegmatis converted PZA into POA, but it did not accumulate POA even at an acidic pH, due to a very active POA efflux mechanism. We propose that a deficient POA efflux mechanism underlies the unique susceptibility of M. tuberculosis to PZA and that the natural PZA resistance of M. smegmatis is due to a highly active efflux pump. These findings may have implications with regard to the design of new antimycobacterial drugs.  相似文献   

9.
10.
Tuberculosis remains a serious public health problem, worsened by an increased frequency of multidrug-resistant Mycobacterium tuberculosis. We report here a retrospective study of resistance to antituberculosis drugs of 170 strains of M. tuberculosis isolated from the state of Rio Grande do Sul, Brazil. The frequency of resistance to at least one drug was 34%, while 22% were resistant to more than one drug. Among the strains isolated from patients without a history of previous treatment for tuberculosis, patients with positive serology for HIV and patients with previous treatment for tuberculosis, the resistance to at least one drug was 14, 27 and 73%, respectively. Multidrug-resistant tuberculosis, defined as resistant to at least rifampicin (RMP) and isoniazid (INH), was found in the groups of patients without previous treatment, HIV co-infected and with previous treatment for tuberculosis at 10, 17 and 44%, respectively. With the purpose of evaluating whether the sensitivity test to INH and RMP would be a good marker to indicate resistance to other antituberculosis drugs, sensitivity tests were performed with four more drugs in 32 strains, initially classified as resistant to INH, RMP or both. Of 18 strains resistant to INH and RMP simultaneously, 89% showed resistance to four more drugs.  相似文献   

11.
A retrospective medical chart review was performed on 65 HIV-infected patients with tuberculosis hospitalized between 1986 and 2006 at the University Hospital for Infectious Diseases "Dr. Fran Mihaljevi?", Zagreb. Thirty two patients presented with pulmonary involvement, 13 with extrapulmonary, and 20 patients had disseminated tuberculosis. Forty five patients had an abnormal chest X-ray. Mycobacterium tuberculosis was identified in 35 (53.9%) patients. Ten (15.3%) of 65 patients had already been receiving antiviral therapy, while another 31 (47.7%) initiated antiviral therapy after antituberculosis therapy. Tuberculosis-associated immune reconstitution inflammatory syndrome was observed in 11/27 (40.7%) patients. Forty one patient received the standard six month course of antituberculous therapy, while in 12 patients the therapy was prolonged. Twenty one patient (32%) experienced an adverse event to antituberculosis drugs. Twelve patients died (18.5%). After the introduction of highly active antiviral therapy (HAART) the mortality decreased. The incidence of tuberculosis in HIV-infected patients in Croatia is increasing, and tuberculosis is still an important opportunistic infection in our HIV-infected patients.  相似文献   

12.
13.
ATP synthase is a validated drug target for the treatment of tuberculosis, and ATP synthase inhibitors are promising candidate drugs for the treatment of infections caused by other slow-growing mycobacteria, such as Mycobacterium leprae and Mycobacterium ulcerans. ATP synthase is an essential enzyme in the energy metabolism of Mycobacterium tuberculosis; however, no biochemical data are available to characterize the role of ATP synthase in slow-growing mycobacterial strains. Here, we show that inverted membrane vesicles from the slow-growing model strain Mycobacterium bovis BCG are active in ATP synthesis, but ATP synthase displays no detectable ATP hydrolysis activity and does not set up a proton-motive force (PMF) using ATP as a substrate. Treatment with methanol as well as PMF activation unmasked the ATP hydrolysis activity, indicating that the intrinsic subunit ? and inhibitory ADP are responsible for the suppression of hydrolytic activity. These results suggest that the enzyme is needed for the synthesis of ATP, not for the maintenance of the PMF. For the development of new antimycobacterial drugs acting on ATP synthase, screening for ATP synthesis inhibitors, but not for ATP hydrolysis blockers, can be regarded as a promising strategy.  相似文献   

14.
Two series of 2- and 3-[5-(nitroaryl)-1,3,4-thiadiazol-2-ylthio, sulfinyl and sulfonyl] propionic acid alkyl esters were synthesized and screened for antituberculosis activity against Mycobacterium tuberculosis H37Rv using the BACTEC 460 radiometric system. The MIC values for the compounds showing more than 90% inhibition were determined. The result of comparison between two groups of data exhibited that among the synthesized derivatives, the compound propyl 3-[5-(5-nitrothiophen-2-yl)-1,3,4-thiadiazol-2-ylthio]propionate was the most active one (MIC=1.56 microgml(-1)).  相似文献   

15.
The increasing clinical importance of drug-resistant mycobacterial pathogens has lent additional urgency to microbiological research and new antimycobacterial compound development. For this purpose, new triazoles were synthesized and evaluated for antituberculosis activity. A series of 4-arylidenamino-4H-1,2,4-triazole-3-thiol derivatives (2a-n) were synthesized from the treatment of 4-amino-4H-1,2,4-triazoles-3-thiol (1) with the respective aldehydes and were evaluated for antituberculosis activity against Mycobacterium tuberculosis H37Rv (ATCC 27294), using the BACTEC 460 radiometric system and BACTEC 12B medium. Compound 2k showed an intereting activity at 6.25 microg/mL with a 87 percentage inhibition.  相似文献   

16.
Efficacy of remaxol in complex chemotherapy of generalized drug resistant tuberculosis was studied on mice. Mycobacterium tuberculosis 5419 SPBNIIF isolated from a patient with freshey diagnosticated pulmonary tuberculosis resistant to isoniazid (10 mcg/ml), rifampicin (40 mcg/ml), streptomycin (10 mcg/ml) and ethionamide (30 mcg/ml) was used in the experiments. The main polychemotherapy included 4 antituberculosis drugs in the highest therapeutic doses: isoniazid, amikacin, ethambutol and tavanic, the treatment course was 8 weeks. Remaxol was administered in a dose of 25 ml/kg intraperitoneally 5 times a week (14 injections). Significant activating effect of remaxol on the tension of the lung tissue local immunity was revealed by changes in the granuloma cell composition (from mainly epitheliod to mainly lymphoid) and by more frequent large lymphohistiocytic infiltrates. The use of remaxol also greatly increased the absorptive and digestive activity of the peritoneal macrophages phagocytosis, inhibited in the process of the experimental tuberculosis development.  相似文献   

17.
The nicotinamidase/pyrazinamidase (PncA) of Mycobacterium tuberculosis is involved in the activation of the important front-line antituberculosis drug pyrazinamide by converting it into the active form, pyrazinoic acid. Mutations in the pncA gene cause pyrazinamide resistance in M. tuberculosis. The properties of M. tuberculosis PncA were characterized in this study. The enzyme was found to be a 20.89 kDa monomeric protein. The optimal pH and temperature of enzymatic activity were pH 7.0 and 40 degrees C, respectively. Inductively coupled plasma-optical emission spectrometry revealed that the enzyme was an Mn(2+)/Fe(2+)-containing protein with a molar ratio of [Mn(2+)] to [Fe(2+)] of 1 : 1; furthermore, the external addition of either type of metal ion had no apparent effect on the wild-type enzymatic activity. The activity of the purified enzyme was determined by HPLC, and it was shown that it possessed similar pyrazinamidase and nicotinamidase activity, by contrast with previous reports. Nine PncA mutants were generated by site-directed mutagenesis. Determination of the enzymatic activity and metal ion content suggested that Asp8, Lys96 and Cys138 were key residues for catalysis, and Asp49, His51, His57 and His71 were essential for metal ion binding. Our data show that M. tuberculosis PncA may bind metal ions in a manner different from that observed in the case of Pyrococcus horikoshii PncA.  相似文献   

18.
dTDP-L-rhamnose as a sugar donor provides L-rhamnosyl residue in the synthesis of disaccharide linker (D-N-acetylglucosamine-L-rhamnose), the key structure of the Mycobacterium tuberculosis cell wall. Four enzymes are involved in the formation of dTDP-L-rhamnose and D-glucose-1-phosphate thymidylyltransferase (RmlA) catalyzes the first step of D-glucose-1-phosphate and dTTP to dTDP-D-glucose and PPi. The previous studies on RmlA essentiality proved RmlA as a potential target for antituberculosis drugs. However, there has not been a suitable assay for RmlA to screen inhibitors currently. In this study, the authors reported a microtiter plate-based colorimetric assay for RmlA enzyme activity. Using this assay, the kinetic properties of M. tuberculosis RmlA including initial velocity, optimal temperature, optimal pH, the effect of Mg(2+), and kinetic parameters were determined. The establishment of the accurate and rapid colorimetric assay and kinetic analysis of M. tuberculosis RmlA will facilitate high-throughput screening of RmlA inhibitors.  相似文献   

19.
Mycobacterium tuberculosis (MTB) remains one of the most significant human pathogens since its discovery in 1882. An estimated 1.5 million people died from tubercle bacillus (TB) in 2006, and globally, there were an estimated 9.27 million incident cases of TB in 2007. Glyoxylate bypass pathway occurs in a wide range of pathogens and plays a key role in the pathogenesis of Mycobacterium tuberculosis. Isocitrate lyase (ICL) can catalyses the first step of this pathway, and reversibly cleaves isocitrate into succinate and glyoxylate. So, ICL may represent a good drug target for the treatment of tuberculosis. ICL was cloned, expressed, and purified, and a high-throughput screen (HTS) developed to screen active molecule from a mannich base compounds library for inhibition of ICL. This assay had signal to noise (S/N) of 650.6990 and Z' factor of 0.8141, indicating that the assay was suitable for HTS. Screening of a collection of 124 mannich base compounds resulted in the identification of one mannich base compound, which has a significant inhibitory activity. So, a new family of compound was first reported to inhibit the activity of Mycobacterium tuberculosis ICL. This family of compound might offer new avenue to explore better anti-tuberculosis and fungi drugs.  相似文献   

20.
New series of 5-fluoro-1H-indole-2,3-dione-3-thiosemicarbazones 2a-k and 5-fluoro-1-morpholino/piperidinomethyl-1H-indole-2,3-dione-3-thiosemicarbazones 3a-r were synthesized. The structures of the synthesized compounds were confirmed by spectral data, elemental and single crystal X-ray diffraction analysis. The new 5-fluoro-1H-indole-2,3-dione derivatives, along with previously reported 5-nitro-1H-indole-2,3-dione-3-thiosemicarbazones 2l-v, 1-morpholino/piperidinomethyl-5-nitro-1H-indole-2,3-dione-3-thiosemicarbazones 4a-l, and 5-nitro-1H-indole-2,3-dione-3-[(4-oxo-1,3-thiazolidin-2-ylidene)hydrazones] 5a-s, were evaluated for in vitro antituberculosis activity against Mycobacterium tuberculosis H37Rv. Among the tested compounds, 5-nitro-1H-indole-2,3-dione-3-thiosemicarbazones (2p, 2r, and 2s) and its 1-morpholinomethyl derivatives (4a, 4e, 4g, and 4i) exhibited significant inhibitory activity in the primary screen. The antituberculosis activity of molecules with diverse skeletons was investigated by means of the Electronic-Topological Method (ETM). Ten pharmacophores and ten anti-pharmacophores that have been found by this form the basis of the system capable of predicting the structures of potentially active compounds. The forecasting ability of the system has been tested on structures that differ from those synthesized. The probability of correct identification for active compounds was found as equal to 93% in average. To obtain the algorithmic base for the activity prediction, Artificial Neural Networks were used after the ETM (the so-called combined ETM-ANN method). As the result, only 9 pharmacophores and anti-pharmacophores were chosen as the most important ones for the activity. By this, ANNs classified correctly 94.4%, or 67 compounds from 71.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号