首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A thermophilic facultative bacterial isolate was recovered from 3.2km depth in a gold mine in South Africa. This isolate, designated GE-7, was cultivated from pH 8.0, 50 degrees C water from a dripping fracture near the top of an exploration tunnel. GE-7 grows optimally at 65 degrees C and pH 6.5 on a wide range of carbon substrates including cellobiose, hydrocarbons and lactate. In addition to O(2), GE-7 also utilizes nitrate as an electron acceptor. GE-7 is a long rod-shaped bacterium (4-6microm longx0.5microm wide) with terminal endospores and flagella. Phylogenetic analysis of GE-7 16S rDNA sequence revealed high sequence similarity with G. thermoleovorans DSM 5366(T) (99.6%), however, certain phenotypic characteristics of GE-7 were distinct from this and other previously described strains of G. thermoleovorans.  相似文献   

2.
The structures of two teichoic acid fractions (TA1 and TA2) isolated from the thermophilic gram-positive bacterium Geobacillus thermoleovorans strain Fango were investigated by means of chemical and NMR spectroscopic methods. The most abundant species (TA1) exhibited a rather regular structure comprising two different repeating units of 1,3-glycerol phosphate nonstoichiometrically substituted by terminal-alpha-D-Gal p (t-alpha-D-Gal p). The second molecular species (TA2) presented a higher structural variability and t-alpha-D-Glc p and the disaccharides t-alpha-D-Glc pNAc-(1-->2)-alpha-D-Glc p and t-alpha-D-Glc pNAc-(1-->3)-alpha-D-Glc p were also present as minor substituents at O-2 of the glycerol phosphate residues. Minor substitution by alanine could also be detected.  相似文献   

3.
4.
A leucine aminopeptidase (EC 3,4,11.1) was purified from cotyledons of resting kidney beans ( Phaseolus vulgaris L. cv. Processor) by acidic extraction, ammonium sulfate fractionation and chromatography on DEAE-Sephacel, Sephacryl S-300, Mono Q HPLC and Superose HPLC columns. The yield of the 317-fold purified enzyme was 9%. On gel filtrations on Sephacryl S-300 and Superose HPLC the elution volumes of the enzyme corresponded to an M, of 360 000. The enzyme gave one band on native gel electrophoresis and an electrophoretic titration in an immobilized pH gradient gave a single curve with a pI of 4.8. Two bands were observed in an SDS-gel electrophoresis with Mr values of 58 000 and 60 000 both with and without reduction by 2-mercaptoethanol, indicating that subunits of the enzyme are not linked by disulphide bridges. The purified enzyme most rapidly liberated Leu and Ala of the N-termini of di-and oligopeptides, optimally at pH 9.0 ± 0.5. The enzyme was stable in the presence of glycerol, dithiothreitol and Mg2+, while the latter also had an activating effect. Bestatin inhibited the enzyme competitively with Leu-Gly-Gly with a Ki-value of 1.5 nM . These observations indicate that the purified aminopeptidase from the cotyledons of resting kidney beans corresponds to the cytosolic leucine aminopeptidase of mammalian tissues (EC 3.4, 11.1). The high enzyme activity observed suggests that this aminopeptidase has an important role in the production of free amino acids during germination.  相似文献   

5.
An intracellular leucine aminopeptidase (LAP) fromPenicillium citrinum (IFO 6352) was purified to homogeneity using three successive purification steps. The enzyme has a native molecular mass of 63 kDa using HPLC gel filtration analysis and a molecular mass of 65 kDa when using SDS-polyacrylamide gel electrophoresis. This monomeric aminopeptidase showed maximum enzyme activity at pH 8.5. An optimum temperature was 45–50°C whenl-Leu-p-nitroanilide (pNA) was the substrate, and enzyme activity drastically decreased above 60°C. The Michaelis-Menten constants forl-Leu-pNA andl-Met-pNA were 2.7 mM and 1.8 mM, respectively. When the enzyme reacted with biosynthetic methionyl human growth hormone, it showed high specificity for N-terminal methionine residue and recognized a stop sequence (Xaa-Pro). The aminopeptidase was inactivated by EDTA or 1,10-phenanthroline, indicating that it is a metallo-exoprotease. Enzyme activity was restored to 90% of maximal activity by addition of Co2+ ions. The activity of EDTA-treated enzyme was restored by addition of Zn2+, but reconstitution with Ca2+, Mg2+ or Mn2+ restored some enzyme activity. It is likely that Co2+ ions play an important role in the catalysis or stability of thePenicillium citrinum aminopeptidase, as zinc plays a similar function in other leucine aminopeptidases.  相似文献   

6.
Genetics of leucine aminopeptidase in apple   总被引:1,自引:0,他引:1  
Summary Six zones of LAP activity were detected in apples, some of them tissue specific. Genetic studies in four of them revealed the presence of four genes LAP-1, LAP-2, LAP-3 and LAP-4 with 4, 5, 4 and 4 alleles respectively including two null alleles. There were no big differences in allelic frequency within cultivars, selections, rootstocks and Malus species. Close linkage was found between LAP-2 and resistance to mildew derived from White Angel.  相似文献   

7.
Thermostable lipase production by Geobacillus thermoleovorans was optimized in shake-flask cultures using Box-Behnken experimental design. An empirical model was developed through response surface methodology to describe the relationship between tested variables (Tween 80, olive oil, temperature and pH) and enzyme activity. Maximum enzyme activity (495 U l–1) was attained with Tween 80 at 5 g l–1; olive oil at 60 g l–1; 70 °C and pH 9. Experimental verification of the model showed a validation of 95%, which is more than 4-fold increase compared to the basal medium.  相似文献   

8.
The leucine aminopeptidase from Aeromonas proteolytica (also known as Vibrio proteolyticus) (AAP) is a metalloenzyme with broad substrate specificity. The open reading frame (ORF) for AAP encodes a 54 kDa enzyme, however, the extracellular enzyme has a molecular weight of 43 kDa. This form of AAP is further processed to a mature, thermostable 32 kDa form but the exact nature of this process is unknown. Over-expression of different forms of AAP in Escherichia coli (with AAP's native leader sequence, with and without the N- and/or C-terminal propeptides, and as fusion protein) has allowed a model for the processing of wild-type AAP to be proposed. The role of the A. proteolytica signal peptide in protein secretion as well as comparison to other known signal peptides reveals a close resemblance of the A. proteolytica signal peptide to the outer membrane protein (OmpA) signal peptide. Over-expression of the full 54 kDa AAP enzyme provides an enzyme that is significantly less active, due to a cooperative inhibitory interaction between both propeptides. Over-expression of AAP lacking its C-terminal propeptide provided an enzyme with an identical kcat value to wild-type AAP but exhibited a larger Km value, suggesting competitive inhibition of AAP by the N-terminal propeptide (Ki approximately 0.13 nM). The recombinant 32 kDa form of AAP was characterized by kinetic and spectroscopic methods and was shown to be identical to mature, wild-type AAP. Therefore, the ease of purification and processing of rAAP along with the fact that large quantities can be obtained now allow new detailed mechanistic studies to be performed on AAP through site-directed mutagenesis.  相似文献   

9.
Summary An X-prolyl-dipeptidylaminopep tidase (Pep-XP) was purified from the crude intracellular extract of Lactococcus lactis subsp. cremoris NRRL 634 by ion exchange and gel filtration chromatographies. The enzyme was purified 80-fold with a recovery of 6%, and appeared as a single band with a molecular weight of about 80 kDa on polyacrylamide gel electrophoresis with sodium dodecyl sulphate (SDS-PAGE). The peptidase showed its maximal activity on arginyl-proline-p-nitroanilide at pH 7.0 and at a temperature of 45 °C, although there was a good activity of Pep-XP in the pH range of 5.5–7.0 and temperatures between 40 and 50 °C. The Michaelis constant (K m) and the maximum reaction velocity (V max) values were 0.92 mM and 7.9 U/mg protein min, respectively. The activity of Pep-XP was completely inhibited by phenylmethanesulphonyl fluoride, an inhibitor of serine peptidases, and metal chelators had little effect on enzyme activity. The purified enzyme hydrolyzed synthetic substrates whose structure is X-Pro-Y like Lys-Pro-pNA, but did not hydrolyse Pro-pNA or azocasein, showing that the enzyme did not have aminopeptidase or endopeptidase activities.  相似文献   

10.
Bacillus stearothermophilus leucine aminopeptidase II tagged C-terminally with either tri- or nona-lysine (BsLAPII-Lys3/9) was constructed and over-expressed in Escherichia coli M15 (pRep4). The recombinant enzymes were purified to homogeneity by nickel-chelate chromatography and their molecular masses were determined to be approximately 45 kDa by SDS/PAGE. Surface modification of colloidal gold with 16-mercaptohexadecanoic acid was employed to generate the carboxylated nanoparticles. BsLAPII-Lys9 was efficiently immobilized onto the carboxylated gold nanoparticles (AuNP-COOH) and the obtained bioconjugate showed excellent biocatalytic activity in the immobilized form. Additionally, the bioconjugate material exhibited a significant enhancement in temperature stability and could be reused over 5 successive cycles.  相似文献   

11.
Two degenerate primers established from the consensus sequences of bacterial leucine aminopeptidases (LAP) were used to amplify a 360-bp gene fragment from the chromosomal DNA of thermophilic Bacillus kaustophilus CCRC 11223 and the amplified fragment was successfully used as a probe to clone a leucine aminopeptidase (lap) gene from a genomic library of the strain. The gene consists of an open reading frame (ORF) of 1,494 bp and encodes a protein of 497 amino acid residues with a calculated molecular mass of 53.7 kDa. The complete amino acid sequence of the cloned enzyme showed greater than 30% identity with prokaryotic and eukaryotic LAPs. Phylogenetic analysis showed that B. kaustophilus LAP is closely related to the enzyme from Bacillus subtilis and is grouped with the M17 family. His6-tagged LAP was generated in Escherichia coli by cloning the coding region into pQE-30 and the recombinant enzyme was purified by nickel-chelate chromatography. The pH and temperature optima for the purified enzyme were 8 and 65°C, respectively, and 50% of its activity remained after incubation at 60°C for 32 min. The enzyme preferentially hydrolyzed l-leucine-p-nitroanilide (l-Leu-p-NA) followed by Cys derivative.Communicated by G. Antranikian  相似文献   

12.
A novel, cellulolytic, bacterial thermophilic strain, T4, was isolated from sugar refinery wastewater in southern Taiwan. This isolate, a Gram-negative, motile, aerobically growing sporulating rod, can secrete thermostable endocellulase (endo-1,4--D-glucanase, EC 3.2.1.4) and hydrolyze carboxymethylcellulose (CMC), phosphoric acid-swollen cellulose, Avicel, filter paper, and salicin. When strain T4 was grown in CMC medium, the cellulolytic enzyme activity in culture supernatants was stable up to 70°C. More than 10% of the original activity was still detectable after heating to 100°C with a pH 7.0 for 1 h. Based on 16S rDNA sequence analysis, DNA base composition, phenotypic and physiological characteristics, as well as DNA–DNA hybridization, strain T4 was classified as Geobacillus thermoleovorans T4 (DSM 14791 = CCRC 17200). We also demonstrated that the type species G. stearothermophilus (DSM 22 = ATCC 12980) could hydrolyze amorphous and crystalline (filter paper) celluloses at a rate of 13 and 14%, respectively, in comparison with strain T4.  相似文献   

13.
A partially purified lipase produced by the thermophile Geobacillus thermoleovorans CCR11 was immobilized by adsorption on porous polypropylene (Accurel EP-100) in the presence and absence of 0.1% Triton X-100. Lipase production was induced in a 2.5% high oleic safflower oil medium and the enzyme was partially purified by diafiltration (co. 500,000 Da). Immobilization conditions were established at 25 °C, pH 6, and a protein concentration of 0.9 mg/mL in the presence and absence of 0.1% Triton X-100. Immobilization increased enzyme thermostability but there was no change in neither the optimum pH nor in pH resistance irrelevant to the presence of the detergent during immobilization. Immobilization with or without Triton X-100 allowed the reuse of the lipase preparation for 11 and 8 cycles, respectively. There was a significant difference between residual activity of immobilized and soluble enzyme after 36 days of storage at 4 °C (P < 0.05). With respect to chain length specificity, the immobilized lipase showed less activity over short chain esters than the soluble lipase. The immobilized lipase showed good resistance to desorption with phosphate buffer and NaCl; minor loses with detergents were observed (less than 50% with Triton X-100 and Tween-80), but activity was completely lost with SDS. Immobilization of G. thermoleovorans CCR11 lipase in porous polypropylene is a simple and easy method to obtain a biocatalyst with increased stability, improved performance, with the possibility for re-use, and therefore an interesting potential use in commercial conditions.  相似文献   

14.
Leucine dehydrogenase (l-leucine: NAD+ oxidoreductase, deaminating, EC 1.4.1.9) has been purified to homogeneity from a moderate thermophilic bacterium, Bacillus stearothermophilus. Am improved method of preparative slab gel electrophoresis was used effectively to purify it. The enzyme has a molecular mass of about 300,000 and consists of six subunits with identical molecular mass (Mr, 49,000). The enzyme does not lose its activity by heat treatment at 70° C for 20 min, and incubation in the pH range of 5.5–10.0 at 55° C for 5 min. It is stable in 10 mM phosphate buffer (pH 7.2) containing 0.01% 2-mercaptoethanol at over 1 month, and is resistant to detergent and ethanol treatment. The enzyme catalyzes the oxidative deamination of branched-chain l-amino acids and the reductive amination of their keto analogs in the presence of NAD+ and NADH, respectively, as the coenzymes. The pH optima are 11 for the deamination of l-leucine, and 9.7 and 8.8 for the amination of -ketoisocaproate and -ketoisovalerate, respectively. The Michaelis constants were determined: 4.4 mM for l-leucine, 3.3 mM for l-valine, 1.4 mM for l-isoleucine and 0.49 mM for NAD+ in the oxidative deamination. The B. stearothermophilus enzyme shows similar catalytic properties, but higher activities than that from Bacillus sphaericus.Dedicated to Prof. Dr. G. Drews on the occasion of his 60th birthday  相似文献   

15.
Bacillus kaustophilus leucine aminopeptidase (bkLAP) was sensitive to oxidative damage by hydrogen peroxide. To improve its oxidative stability, the oxidation-sensitive methionine residues in the enzyme were replaced with leucine by site-directed mutagenesis. The variants, each with an apparent molecular mass of approximately 54 kDa, were overexpressed in recombinant Escherichia coli M15 cells and purified to homogeneity by nickel-chelate chromatography. The specific activity for M282L, M285L, M289L and M321L decreased by more than 43%, while M400L, M426L, M445L, and M485L showed 191, 79, 313, and 103%, respectively, higher activity than the wild-type enzyme. Although the mutations did not cause significant changes in the K m value, more than 67.8% increase in the value of k cat/K m was observed in the M400L, M426L, M445L and M485L. In the presence of 50 mM H2O2, most variants were more stable with respect to the wild-type enzyme, indicating that the oxidative stability of the enzyme can be improved by engineering the methionine residues. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
The conserved histidine residues, His-191, His-227, His-345, and His-378, in Bacillus stearothermophilus leucine aminopeptidase II (LAPII) were replaced with leucine by site-directed mutagenesis. The overexpressed wild-type and mutant enzymes have been purified by nickel-chelate chromatography and their molecular masses were approximately 44.5 kDa. Under assay conditions, no LAP activity was detected in H345L and H378L. Although the Km value for H191L increased more than 30% with respect to the wild-type LAPII, alteration in this residue did not lead to a significant change on the catalytic efficiency. The 39% decrease in Kcat/Km for H227L was partly caused by a 3.9-fold increase in Km value. Based on these results, it is suggested that His-345 and His-378 play a crucial role in the catalytic reaction of B. stearothermophilus LAPII.  相似文献   

17.
Tripeptide aminopeptidase (EC 3.4.11.4) was purified from bovine dental follicles by a series of chromatographies. Purified enzyme had a specific activity of 59.5 units per mg protein with L-prolyl-glycylglycine as substrate. The pH optimum was 8.0. The purified native enzyme had a Mr of 230,000 and was shown to be a tetramer of subunit Mr of 58,000. The isoelectric point was pH 7.0. The enzyme was inhibited 5-5-dithio-bis (2-nitrobenzoic acid),o-phenanthroline, and bestatin. Substrate specificity studies indicated that the enzyme specifically hydrolyzes the N-terminal amino acid residue from tripeptides only.  相似文献   

18.
The thermophilic strains HTA426 and HTA462 isolated from the Mariana Trench were identified as Geobacillus kaustophilus and G. stearothermophilus, respectively, based on physiologic and phylogenetic analyses using 16S rDNA sequences and DNA–DNA relatedness. The genome size of HTA426 and HTA462 was estimated at 3.23–3.49 Mb and 3.7–4.49 Mb, respectively. The nucleotide sequences of three independent -phage inserts of G. stearothermophilus HTA462 have been determined. The organization of protein coding sequences (CDSs) in the two -phage inserts was found to differ from that in the contigs corresponding to each insert assembled by the shotgun clones of the G. kaustophilus HTA426 genome, although the CDS organization in another insert is identical to that in the HTA426 genome.  相似文献   

19.
Each of four conserved glutamate residues of Bacillus stearothermophilus leucine aminopeptidase II (BsLAPII) was replaced with aspartate, lysine, and leucine respectively by site-directed mutagenesis. The over-expressed wild-type and mutant enzymes were purified to homogeneity by nickel-chelate chromatography and the molecular mass of the subunit was determined to be 44.5 kDa by SDS-PAGE. The specific activity for the Glu-316 and Glu-340 mutants was completely abolished, while Glu-249 mutants showed comparable activity to that of the wild-type BsLAPII. Compared with the wild-type enzyme, the E250D and E250L mutant enzymes retained less than 18% of the enzyme activity and exhibited a dramatic decrease in the value of k cat/K m. These observations indicate that Glu-250, Glu-316, and Glu-340 residues are critical for the catalytic activity of BsLAPII.  相似文献   

20.
The constitutive and wound-inducible leucine aminopeptidases (LAP-N and LAP-A, respectively) of tomato encode 60-kDa proteins with 5-kDa presequences that resemble chloroplast-targeting peptides. Cell fractionation studies and immunoblot analyses of chloroplast and total proteins have suggested a dual location of the mature LAP-A proteins in the cytosol and the plastids. In this study, the subcellular localization of tomato LAPs was further investigated using in vitro chloroplast-targeting assays and immunocytochemical techniques at the light and TEM levels. In vitro-translated LAP-A1 and LAP-N preproteins were readily transported into pea chloroplasts and processed into mature proteins of 55 kDa indicating the presence of a functional chloroplast-targeting signal in the LAP-A1 and LAP-N protein precursors. In addition, a LAP polyclonal and a LAP-A-specific antisera were used to immunolocalize LAP proteins in leaves from healthy, wounded and methyl jasmonate (MeJA)-treated plants. Low levels of LAPs and/or LAP-like proteins were detected in leaves from unwounded plants. The LAP polyclonal antiserum, which detected LAP-A, LAP-N and LAP-like proteins, and the LAP-A specific antibodies, which detected only LAP-A, showed that LAP levels increased in leaf sections after wounding and MeJA treatments. LAP-A proteins were primarily detected within the chloroplasts of spongy and palisade mesophyll cells. The localization of LAP-A was distinct from the location of early wound-response proteins that are important in the biosynthesis of jasmonic acid or systemin and more similar to the late wound-response proteins with primary roles in defense. The importance of these findings relative to the potential roles of LAP-A in defense is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号