首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ionotropic glutamate receptor subunit GluR6 undergoes developmentally and regionally regulated Q/R site RNA editing that reduces the calcium permeability of GluR6-containing kainate receptors. To investigate the functional significance of this editing in vivo, we engineered mice deficient in GluR6 Q/R site editing. In these mutant mice but not in wild types, NMDA receptor-independent long-term potentiation (LTP) could be induced at the medial perforant path-dentate gyrus synapse. This indicates that kainate receptors with unedited GluR6 subunits can mediate LTP. Behavioral analyses revealed no differences from wild types, but mutant mice were more vulnerable to kainate-induced seizures. Together, these results suggest that GluR6 Q/R site RNA editing may modulate synaptic plasticity and seizure vulnerability.  相似文献   

2.
AMPA receptor tetramerization is mediated by Q/R editing   总被引:10,自引:0,他引:10  
Greger IH  Khatri L  Kong X  Ziff EB 《Neuron》2003,40(4):763-774
AMPA-type glutamate receptors (AMPARs) play a major role in excitatory synaptic transmission and plasticity. Channel properties are largely dictated by their composition of the four subunits, GluR1-4 (or A-D). Here we show that AMPAR assembly and subunit stoichiometry are determined by RNA editing in the pore loop. We demonstrate that editing at the GluR2 Q/R site regulates AMPAR assembly at the step of tetramerization. Specifically, edited R subunits are largely unassembled and ER retained, whereas unedited Q subunits readily tetramerize and traffic to synapses. This assembly mechanism restricts the number of the functionally critical R subunits in AMPAR tetramers. Therefore, a single amino acid residue affects channel composition and, in turn, controls ion conduction through the majority of AMPARs in the brain.  相似文献   

3.
Peng PL  Zhong X  Tu W  Soundarapandian MM  Molner P  Zhu D  Lau L  Liu S  Liu F  Lu Y 《Neuron》2006,49(5):719-733
ADAR2 is a nuclear enzyme essential for GluR2 pre-mRNA editing at Q/R site-607, which gates Ca2+ entry through AMPA receptor channels. Here, we show that forebrain ischemia in adult rats selectively reduces expression of ADAR2 enzyme and, hence, disrupts RNA Q/R site editing of GluR2 subunit in vulnerable neurons. Recovery of GluR2 Q/R site editing by expression of exogenous ADAR2b gene or a constitutively active CREB, VP16-CREB, which induces expression of endogenous ADAR2, protects vulnerable neurons in the rat hippocampus from forebrain ischemic insult. Generation of a stable ADAR2 gene silencing by delivering small interfering RNA (siRNA) inhibits GluR2 Q/R site editing, leading to degeneration of ischemia-insensitive neurons. Direct introduction of the Q/R site edited GluR2 gene, GluR2(R607), rescues ADAR2 degeneration. Thus, ADAR2-dependent GluR2 Q/R site editing determines vulnerability of neurons in the rat hippocampus to forebrain ischemia.  相似文献   

4.
Abstract: RNA editing plays an important role in determining physiological characteristics of certain glutamate-gated receptor (GluR) channels such as Ca2+ permeability and desensitization kinetics. In one case, the editing changes a gene-encoded glutamine (Q) to an arginine (R) codon located in the channel-forming domain of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor subunit GluR-B and also the kainate receptor subunits GluR5 and GluR6. Another case of RNA editing alters an arginine (R) to a glycine (G) codon at a position termed the "R/G" site of AMPA subunits GluR-B, C, and D. Double-stranded RNA-specific adenosine deaminases (DRADA) have been implicated as agents involved in the editing. By using a human teratocarcinoma cell line, NT2, we investigated the change of the RNA editing of GluR subunits in conjunction with the expression of two DRADA members, DRADA1 and DRADA2 genes, during neuronal differentiation. Whereas Q/R and R/G site RNA editing both become progressively activated in differentiating NT2 cells, the expression of the two DRADA genes can already be detected even in the undifferentiated NT2 cells. Development of the editing machinery appears to require, in addition to DRADA enzymes, a currently unidentified mechanism(s) that may become activated during neuronal differentiation.  相似文献   

5.
ADAR2 catalyses the deamination of adenosine to inosine at the GluR2 Q/R site in the pre-mRNA encoding the critical subunit of AMPA receptors. Among ADAR2 substrates this is the vital one as editing at this position is indispensable for normal brain function. However, the regulation of ADAR2 post-translationally remains to be elucidated. We demonstrate that the phosphorylation-dependent prolyl-isomerase Pin1 interacts with ADAR2 and is a positive regulator required for the nuclear localization and stability of ADAR2. Pin1(-/-) mouse embryonic fibroblasts show mislocalization of ADAR2 in the cytoplasm and reduced editing at the GluR2 Q/R and R/G sites. The E3 ubiquitin ligase WWP2 plays a negative role by binding to ADAR2 and catalysing its ubiquitination and subsequent degradation. Therefore, ADAR2 protein levels and catalytic activity are coordinately regulated in a positive manner by Pin1 and negatively by WWP2 and this may have downstream effects on the function of GluR2. Pin1 and WWP2 also regulate the large subunit of RNA Pol II, so these proteins may also coordinately regulate other key cellular proteins.  相似文献   

6.
The subunit GluR2 of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) subfamily of ionotropic glutamate receptors (GluRs) features a single amino acid at the narrow constriction of the pore loop that is altered from glutamine to arginine by RNA editing. This so-called Q/R site has been shown to play an important role in the determination of the electrophysiological properties of AMPA receptor complexes as well as of trafficking to the plasma membrane. The protein stargazin has also been shown to modulate electrophysiological properties and trafficking to the plasma membrane of AMPA receptors. In this study we examined via a series of mutants of the Q/R site of the AMPA receptor GluR1 whether the amino acid at this position has any influence on the modulatory effects mediated by stargazin. To this end, we analyzed current responses of Q/R site mutants upon application of glutamate and kainate and determined the amount of mutant receptor protein in the plasma membrane in Xenopus oocytes. Desensitization kinetics of several mutants were analyzed in HEK293 cells. We found that the stargazin-mediated decrease in receptor desensitization, the slowing of desensitization kinetics, and the kainate efficacy were all dependent on the amino acid at the Q/R site, whereas the stargazin-mediated increase in trafficking toward the plasma membrane remained independent of this amino acid. We propose that the Q/R site modulates the interaction of stargazin with the transmembrane domains of AMPA receptors via an allosteric mechanism and that this modulation leads to the observed differences in the electrophysiological properties of the receptor.  相似文献   

7.
Functionally diverse GluR channels of the AMPA subtype are generated by the assembly of GluR-A, -B, -C, and -D subunits into homo- and heteromeric channels. The GluR-B subunit is dominant in determining functional properties of heteromeric AMPA receptors. This subunit exists in developmentally distinct edited and unedited forms, GluR-B(R) and GluR-B(Q), which differ in a single amino acid in transmembrane segment TM2 (Q/R site). Homomeric GluR-B(R) channels expressed in 293 cells display a low divalent permeability, whereas homomeric GluR-B(Q) and GluR-D channels exhibit a high divalent permeability. Mutational analysis revealed that both the positive charge and the size of the amino acid side chain located at the Q/R site control the divalent permeability of homomeric channels. Coexpression of Q/R site arginine- and glutamine-containing subunits generates cells with varying divalent permeabilities depending on the amounts of expression vectors used for cell transfection. Intermediate divalent permeabilities were traced to the presence of both divalent permeant homomeric and impermeant heteromeric channels. It is suggested that the positive charge contributed by the arginine of the edited GluR-B(R) subunit determines low divalent permeability in heteromeric GluR channels and that changes in GluR-B(R) expression regulate the AMPA receptor-dependent divalent permeability of a cell.  相似文献   

8.
RNA editing at the Q/R site in the GluR5 and GluR6 subunits of neuronal kainate receptors regulates channel inhibition by lipid-derived modulators including the cis-unsaturated fatty acids arachidonic acid and docosahexaenoic acid. Kainate receptor channels in which all of the subunits are in the edited (R) form exhibit strong inhibition by these compounds, whereas wild-type receptors that include a glutamine (Q) at the Q/R site in one or more subunits are resistant to inhibition. In the present study, we have performed an arginine scan of residues in the pore loop of the GluR6(Q) subunit. Amino acids within the range from -19 to +7 of the Q/R site of GluR6(Q) were individually mutated to arginine and the mutant cDNAs were expressed as homomeric channels in HEK 293 cells. All but one of the single arginine substitution mutants yielded functional channels. Only weak inhibition, typical of wild-type GluR6(Q) channels, was observed for substitutions +1 to +6 downstream of the Q/R site. However, arginine substitution at several locations upstream of the Q/R site resulted in homomeric channels exhibiting strong inhibition by fatty acids, which is characteristic of homomeric GluR6(R) channels. Based on homology with the pore loop of potassium channels, locations at which R substitution induces susceptibility to fatty acid inhibition face away from the cytoplasm toward the M1 and M3 helices and surrounding lipids.  相似文献   

9.
Greger IH  Khatri L  Ziff EB 《Neuron》2002,34(5):759-772
AMPA-receptor (AMPAR) transport to synapses plays a critical role in the modulation of synaptic strength. We show that the functionally critical GluR2 subunit stably resides in an intracellular pool in the endoplasmic reticulum (ER). GluR2 in this pool is extensively complexed with GluR3 but not with GluR1, which is mainly confined to the cell surface. Mutagenesis revealed that elements in the C terminus including the PDZ motif are required for GluR2 forward-transport from the ER. Surprisingly, ER retention of GluR2 is controlled by Arg607 at the Q/R-editing site. Reversion to Gln (R607Q) resulted in rapid release from the pool and elevated surface expression of GluR2 in neurons. Therefore, Arg607 is a central regulator. In addition to channel gating, it also controls ER exit and may thereby ensure the availability of GluR2 for assembly into AMPARs.  相似文献   

10.
听原性惊厥易感大鼠下丘GluR2的表达及QR位点编辑水平   总被引:1,自引:0,他引:1  
听原性惊厥易感大鼠是强直 -阵挛惊厥大发作的一种模型 .一般认为 ,下丘是听原性惊厥发作神经元网络的启动部位 .采用RT PCR、Western印迹、免疫组织化学等方法观察了听原性惊厥易感大鼠 (P77PMC)一次惊厥发作与惊厥点燃状态下AMPA受体亚基GluR2在下丘内表达的改变 ,并采用限制性酶切方法分析了GluR2Q R位点mRNA编辑水平的改变 .研究结果显示 ,一次惊厥发作后下丘内GluR2表达无明显改变 ,惊厥点燃后下丘内GluR2表达降低 ,一次惊厥发作及惊厥点燃状态下GluR2Q R位点处于编辑成熟状态 .提示 ,GluR2表达降低参与了点燃状态下的惊厥发作 ,在听原性惊厥易感大鼠惊厥发作机制中不涉及下丘内GluR2Q R位点编辑水平改变 .  相似文献   

11.
(1) Pre-mRNA editing of serotonin 2C (5-HT2C) and glutamate (Glu) receptors (R) influences higher brain functions and pathological states such as epilepsy, amyotrophic lateral sclerosis, and depression. Adenosine deaminases acting on RNA (ADAR1–3) convert adenosine to inosine on synthetic RNAs, analogous to 5-HT2cR and GluR. The order of editing as well as mechanisms controlling editing in native neurons is unknown. (2) With single-cell RT-PCR we investigated the co-expression of ADAR genes with GluR and 5-HT2CR and determined the editing status at known sites in the hypothalamic tuberomamillary nucleus, a major center for wakefulness and arousal. (3) The most frequently expressed enzymes were ADAR1, followed by ADAR2. The Q/R site of GluR2 was always fully edited. Editing at the R/G site in the GluR2 (but not GluR4) subunit was co-ordinated with ADAR expression: maximal editing was found in neurons expressing both ADAR2 splice variants of the deaminase domain and lacking ADAR3. (4) Editing of the 5-HT2CR did not correlate with ADAR expression. The 5-HT2CR mRNA was always edited at A, in the majority of cells at B sites and variably edited at E, C and D sites. A negative correlation was found between editing of C and D sites. The GluR4 R/G site editing was homogeneous within individuals: it was fully edited in all neurons obtained from 12 rats and under-edited in six neurons obtained from three rats. (5) We conclude that GluR2 R/G editing is controlled at the level of ADAR2 and therefore this enzyme may be a target for pharmacotherapy. On the other hand, further factors/enzymes besides ADAR must control or influence 5-HT2CR and GluR pre-mRNA editing in native neurons; our data indicate that these factors vary between individuals and could be predictors of psychiatric disease.  相似文献   

12.
13.
Members of the family of adenosine deaminases acting on RNA (ADARs) can catalyze the hydrolytic deamination of adenosine to inosine and thereby change the sequence of specific mRNAs with highly double-stranded structures. The ADARs all contain one or more repeats of the double-stranded RNA binding motif (DRBM). By both in vitro and in vivo assays, we show that the DRBMs of rat ADAR2 are necessary and sufficient for dimerization of the enzyme. Bioluminescence resonance energy transfer (BRET) demonstrates that ADAR2 also exists as dimers in living mammalian cells and that mutation of DRBM1 lowers the dimerization affinity while mutation of DRBM2 does not. Nonetheless, the editing efficiency of the GluR2 Q/R site depends on a functional DRBM2. The ADAR2 DRBMs thus serve differential roles in RNA dimerization and GluR2 Q/R editing, and we propose a model for RNA editing that incorporates the new findings.  相似文献   

14.
15.
16.
AMPA receptors (AMPA-Rs) are formed as heterotetrameric combinations of subunits known as GluR1-GluR4. The calcium permeability of AMPA-Rs is controlled by the identity of the amino-acid side chain contributed by each subunit at a key position in the conductance pathway, which can be either a glutamine (Q) or an arginine (R). Tetramers assembled only from Q-containing subunits are calcium permeable. In contrast, tetramers that incorporate R-containing subunits are calcium impermeable. Both forms play key roles in physiological and pathophysiological processes in the central nervous system. Here, using electron microscopy, we present the first quaternary structure of a calcium-permeable Q-homomeric AMPA-R. The receptor is elongated, with overall 2-fold symmetry and a large central vestibule. It is thus similar to the structure previously reported for an AMPA-R assembled exclusively from R-subunits. Both structures differ from those reported for brain-derived but urea-washed “native” AMPA-Rs, which exhibited multiple asymmetrical conformations. However, even transient exposure of our Q-homomeric AMPA-Rs to urea significantly attenuates the binding of a conformationally specific antibody. As a result, we propose a model in which all AMPA-Rs share a 2-fold symmetrical structure and in which subunit-dependent differences in assembly, trafficking, and electrophysiology are mediated within the framework of fundamentally similar quaternary conformations.  相似文献   

17.
Synaptic AMPA receptor exchange maintains bidirectional plasticity   总被引:4,自引:0,他引:4  
Activity-dependent synaptic delivery of GluR1-, GluR2L-, and GluR4-containing AMPA receptors (-Rs) and removal of GluR2-containing AMPA-Rs mediate synaptic potentiation and depression, respectively. The obvious puzzle is how synapses maintain the capacity for bidirectional plasticity if different AMPA-Rs are utilized for potentiation and depression. Here, we show that synaptic AMPA-R exchange is essential for maintaining the capacity for bidirectional plasticity. The exchange process consists of activity-independent synaptic removal of GluR1-, GluR2L-, or GluR4-containing AMPA-Rs and refilling with GluR2-containing AMPA-Rs at hippocampal and cortical synapses in vitro and in intact brains. In GluR1 and GluR2 knockout mice, initiation or completion of synaptic AMPA-R exchange is compromised, respectively. The complementary AMPA-R removal and refilling events in the exchange process ultimately maintain synaptic strength unchanged, but their long rate time constants ( approximately 15-18 hr) render transmission temporarily depressed in the middle of the exchange. These results suggest that the previously hypothesized "slot" proteins, rather than AMPA-Rs, code and maintain transmission efficacy at central synapses.  相似文献   

18.
Intracellular trafficking of ionotropic glutamate receptors is controlled by multiple discrete determinants in receptor subunits. Most such determinants have been localized to the cytoplasmic carboxyl-terminal domain, but other domains in the subunit proteins can play roles in modulating receptor surface expression. Here we demonstrate that formation of an intact glutamate binding site also acts as an additional quality-control check for surface expression of homomeric and heteromeric kainate receptors. A key ligand-binding residue in the KA2 subunit, threonine 675, was mutated to either alanine or glutamate, which eliminated affinity for the receptor ligands kainate and glutamate. We found that plasma membrane expression of heteromeric GluR6/KA2(T675A) or GluR6/KA2(T675E) kainate receptors was markedly reduced compared with wild-type GluR6/KA2 receptors in transfected HEK 293 and COS-7 cells and in cultured neurons. Surface expression of homomeric KA2 receptors lacking a retention/retrieval determinant (KA2-R/A) was also reduced upon mutation of Thr-675 and elimination of the ligand binding site. KA2 Thr-675 mutant subunits were able to co-assemble with GluR5 and GluR6 subunits and were degraded at the same rate as wild-type KA2 subunit protein. These results suggest that glutamate binding and associated conformational changes are prerequisites for forward trafficking of intracellular kainate receptors following multimeric assembly.  相似文献   

19.
20.
Regulation of glutamate receptor B pre-mRNA splicing by RNA editing   总被引:1,自引:0,他引:1  
RNA-editing enzymes of the ADAR family convert adenosines to inosines in double-stranded RNA substrates. Frequently, editing sites are defined by base-pairing of the editing site with a complementary intronic region. The glutamate receptor subunit B (GluR-B) pre-mRNA harbors two such exonic editing sites termed Q/R and R/G. Data from ADAR knockout mice and in vitro editing assays suggest an intimate connection between editing and splicing of GluR-B pre-mRNA.

By comparing the events at the Q/R and R/G sites, we can show that editing can both stimulate and repress splicing efficiency. The edited nucleotide, but not ADAR binding itself, is sufficient to exert this effect. The presence of an edited nucleotide at the R/G site reduces splicing efficiency of the adjacent intron facilitating alternative splicing events occurring downstream of the R/G site.

Lack of editing inhibits splicing at the Q/R site. Editing of both the Q/R nucleotide and an intronic editing hotspot are required to allow efficient splicing. Inefficient intron removal may ensure that only properly edited mRNAs become spliced and exported to the cytoplasm.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号