首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sogabe S  Miki K 《FEBS letters》2001,491(3):174-179
The crystal structure of the oxidized cytochrome c(2) from Blastochloris (formerly Rhodopseudomonas) viridis was determined at 1.9 A resolution. Structural comparison with the reduced form revealed significant structural changes according to the oxidation state of the heme iron. Slight perturbation of the polypeptide chain backbone was observed, and the secondary structure and the hydrogen patterns between main-chain atoms were retained. The oxidation state-dependent conformational shifts were localized in the vicinity of the methionine ligand side and the propionate group of the heme. The conserved segment of the polypeptide chain in cytochrome c and cytochrome c(2) exhibited some degree of mobility, interacting with the heme iron atom by the hydrogen bond network. These results indicate that the movement of the internal water molecule conserved in various c-type cytochromes drives the adjustments of side-chain atoms of nearby residue, and the segmental temperature factor changes along the polypeptide chain.  相似文献   

2.
The molecular structures of ferri- and ferrocytochrome c551 from Pseudomonas aeruginosa have been refined at a resolution of 1.6 Å, to an R factor of 19.5% for the oxidized molecule and 18.7% for the reduced. Reduction of oxidized crystals with ascorbate produced little change in cell dimensions, a 10% mean change in Fobs, and no damage to the crystals. The heme iron is not significantly displaced from the porphyrin plane. Bond lengths from axial ligands to the heme iron are as expected in a low-spin iron compound. A total of 67 solvent molecules were incorporated in the oxidized structure, and 73 in the reduced, of which four are found inside the protein molecule. The oxidized and reduced forms have virtually identical tertiary structures with 2 ° root-mean-square differences in main-chain torsion angles φ and ψ, but with larger differences along the two edges of the heme crevice. The difference map and pyrrole ring tilt suggest that a partially buried water molecule (no. 23) in the heme crevice moves upon change of oxidation state.Pseudomonas cytochrome c551 differs from tuna cytochrome c in having: (1) a water molecule (no. 23) at the upper left of the heme crevice; that is, between Pro62 and the heme pyrrol 3 ring on the sixth ligand Met61 side, where tuna cytochrome c has an evolutionary invariant Phe82 ring; (2) a string of hydrophobic side-chains along the left side of the heme crevice, and fewer positively charged lysines in the vicinity; and (3) a more exposed and presumably more easily ionizable heme propionate group at the bottom of the molecule. A network of hydrogen bonds in the heme crevice is reminiscent of that inside the heme crevice of tuna cytochrome c. As in tuna, a slight motion of the water molecule toward the heme is observed in the oxidized state, helping to give the heme a more polar microenvironment. The continuity of solvent environment between the heme crevice and the outer medium could explain the greater dependence of redox potential on pH in cytochrome c551 than in cytochrome c.  相似文献   

3.
The 1.4-A crystal structure of the oxidized state of a Y25S variant of cytochrome cd(1) nitrite reductase from Paracoccus pantotrophus is described. It shows that loss of Tyr(25), a ligand via its hydroxy group to the iron of the d(1) heme in the oxidized (as prepared) wild-type enzyme, does not result in a switch at the c heme of the unusual bishistidinyl coordination to the histidine/methionine coordination seen in other conformations of the enzyme. The Ser(25) side chain is seen in two positions in the d(1) heme pocket with relative occupancies of approximately 7:3, but in neither case is the hydroxy group bound to the iron atom; instead, a sulfate ion from the crystallization solution is bound between the Ser(25) side chain and the heme iron. Unlike the wild-type enzyme, the Y25S mutant is active as a reductase toward nitrite, oxygen, and hydroxylamine without a reductive activation step. It is concluded that Tyr(25) is not essential for catalysis of reduction of any substrate, but that the requirement for activation by reduction of the wild-type enzyme is related to a requirement to drive the dissociation of this residue from the active site. The Y25S protein retains the d(1) heme less well than the wild-type protein, suggesting that the tyrosine residue has a role in stabilizing the binding of this cofactor.  相似文献   

4.
Membranes from Spirillum itersonii reduce ferric iron to ferrous iron with reduced nicotinamide adenine dinucleotide or succinate as a source of reductant. Iron reduction was measured spectrophotometrically at 562 nm using ferrozine, which chelates ferrous iron specifically. Reduced nicotinamide adenine dinucleotide or succinate was also effective as a source of iron. The effects of respiratory inhibitors suggested that reduction of iron occurs at one or more sites on the respiratory chain before cytochrome c. Reduction of iron and synthesis of protoheme with the physiological reductants were also observed with crude extracts of other bacteria, including Rhodopseudomonas spheroides, Rhodopseudomonas capsulata, Paracoccus denitrificans, and Escherichia coli. The effect of oxygen upon reduction of iron and formation of protoheme was examined with membranes from S. itersonii, using succinate as a source of reductant. Both systems were inhibited by oxygen, but this effect was completely reversed by addition of antimycin A. We conclude that reduced components of the respiratory chain serve as reductants for ferric iron, but with oxygen present they are oxidized preferentially by the successive members of the chain. This could be a mechanism for regulating synthesis of heme and cytochrome by oxygen.  相似文献   

5.
The steroid binding specificity of cytochrome P-450scc has been investigated for different oxidation/reduction and ligand-binding states of the enzyme (oxidized, reduced, oxygen-bound, and carbon monoxide-bound forms). The oxygen of the 3 beta-hydroxyl of cholesterol is important for the initial enzyme-substrate interaction. Significant binding requires the correct stereochemistry and appears to be controlled by the electron density on the 3 beta-oxygen. Interactions at this position (located at least 13 A from the heme iron) can modulate the heme midpoint potential. The binding site in this region contains a cleft which can accommodate up to two carbons joined in an ether linkage to the 3 beta-oxygen. The steroid intermediates of side chain cleavage (22R-hydroxycholesterol and 20 alpha,22R-dihydroxycholesterol) bind more tightly to the ferric enzyme than does cholesterol and utilize specific interactions of these side chain hydroxyls with a grouping(s) on the polypeptide chain (i.e. not with the heme iron). The interaction requires the correct stereochemistry; a 22S-hydroxyl cannot be readily accommodated in the binding site. The specificity of the interaction for hydroxyls at the 22R- versus the 20 alpha-position is altered upon reduction of the enzyme, indicating a reduction-induced conformational change in the active site. The specific interference of binding of 22R-hydroxy steroids by heme-bound carbon monoxide (but not oxygen), together with the known bond angles and distances for Fe-C-O and Fe-O-O, allows localization of the 22R-hydroxyl group on a line perpendicular to the heme plane, between 2 and 3 A from the iron.  相似文献   

6.
The pentaheme cytochrome c nitrite reductase (NrfA) of Escherichia coli is responsible for nitrite reduction during anaerobic respiration when nitrate is scarce. The NrfA active site consists of a hexacoordinate high-spin heme with a lysine ligand on the proximal side and water/hydroxide or substrate on the distal side. There are four further highly conserved active site residues including a glutamine (Q263) positioned 8 A from the heme iron for which the side chain, unusually, coordinates a conserved, essential calcium ion. Mutation of this glutamine to the more usual calcium ligand, glutamate, results in an increase in the K m for nitrite by around 10-fold, while V max is unaltered. Protein film voltammetry showed that lower potentials were required to detect activity from NrfA Q263E when compared with native enzyme, consistent with the introduction of a negative charge into the vicinity of the active site heme. EPR and MCD spectroscopic studies revealed the high spin state of the active site to be preserved, indicating that a water/hydroxide molecule is still coordinated to the heme in the resting state of the enzyme. Comparison of the X-ray crystal structures of the as-prepared, oxidized native and mutant enzymes showed an increased bond distance between the active site heme Fe(III) iron and the distal ligand in the latter as well as changes to the structure and mobility of the active site water molecule network. These results suggest that an important function of the unusual Q263-calcium ion pair is to increase substrate affinity through its role in supporting a network of hydrogen bonded water molecules stabilizing the active site heme distal ligand.  相似文献   

7.
A gene coding for lipase-solubilized bovine liver microsomal cytochrome b5 has been synthesized, expressed in Escherichia coli, and mutated at functionally critical residues. Characterization of the recombinant protein revealed that it has a reduction potential that is approximately 17 mV lower than that of authentic wild-type protein at pH 7 (25 degrees C). Structural studies determined that the recombinant protein differed in sequence from authentic wild-type cytochrome b5 owing to three errors in amidation status in the published sequence for the protein on which the gene synthesis was based. The structural origin of the lower reduction potential exhibited by the triple mutant has been investigated through X-ray crystallographic determination of the three-dimensional structure of this protein and is attributed to the presence of Asp-57 within 3.3 A of heme vinyl-4 in the mutant. In addition, the model developed by Argos and Mathews [Argos, P., & Mathews, F.S. (1975) J. Biol. Chem. 250, 747] for the change in cytochrome b5 oxidation state has been studied through mutation of Ser-64 to Ala. In this model, Ser-64 is postulated to stabilize the oxidized protein through H-bonding interactions with heme propionate-7 that orients this propionate group 6.2 A from the heme iron. Spectroelectrochemical studies of a mutant in which Ser-64 has been changed to an alanyl residue demonstrate that this protein has a reduction potential that is 7 mV lower than that of the wild-type protein; moreover, conversion of the heme propionate groups to the corresponding methyl esters increases the potential by 67 mV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
G V Louie  G J Pielak  M Smith  G D Brayer 《Biochemistry》1988,27(20):7870-7876
A three-dimensional structural analysis of the reduced form of the Ser-82 mutant protein of yeast iso-1-cytochrome c has been completed to 2.8-A resolution. Replacement of Phe-82 with a serine residue results in conformational changes both near and remote from the mutation site. Those groups undergoing positional shifts near Ser-82 include Arg-13, Gly-83 and -84, and the CBB methyl of the heme group. Remote shifts are centered about the propionate of pyrrole ring A and principally involve Asn-52, Trp-59, and an internally buried water molecule, WAT-166. Placement of a serine side chain at position 82 also leads to the formation of a large solvent channel which substantially increases the solvent accessibility of the heme group. This would appear to account for the much lower reduction potential observed for this protein. The detrimental effect of Ser-82 on both the steady-state activity and the rate of electron transfer in complexation with cytochrome c peroxidase can also be interpreted in terms of the modified character of the region about the mutation site. The remote conformational changes observed appear to represent the equivalent of the initial conformational changes occurring as yeast iso-1-cytochrome c is converted to the fully oxidized state during an electron-transfer event. These results agree well with the proposal [Moore, G. R. (1983) FEBS Lett. 161, 171-175] that the trigger for conformational changes between oxidation states resides in the nature of the interactions between the heme iron atom and the pyrrole ring A propionate group.  相似文献   

9.
Crystal structure of yeast cytochrome c peroxidase refined at 1.7-A resolution   总被引:16,自引:0,他引:16  
The crystal structure of cytochrome c peroxidase (EC 1.11.1.5) has been refined to an R factor of 0.20 computed for all reflections to 1.7 A. The refined molecular model includes 263 bound water molecules and allows for x-ray scattering by amorphous solvent. The mean positional error in atomic coordinates is estimated to lie between 0.12 and 0.21 A. Two factors are identified which may account for the ability of the enzyme to stabilize high-oxidation states of the heme iron during catalysis: 1) the proximal histidine forms a hydrogen bond with a buried aspartic acid side chain, Asp-235; and 2) the heme environment is more polar than in the cytochromes c or globins, owing to the presence of the partially buried side-chain of Arg-48 and five water molecules bound in close proximity to the heme. Two of these occupy the presumed peroxide-binding site. Two candidates are likely for the side chain that is oxidized to a free radical during formation of Compound I: 1) Trp-51, which rests 3.3 A above the heme plane in close proximity (2.7 A) to the sixth coordination position; and 2) Met-172, which is 3.7 A from the heme. Nucleophilic stabilization of the methionyl cation radical may be possible via Asp-235. His-181 is found to lie coplanar with the heme in a niche between the two propionates near the suspected cytochrome c-binding site. A network of hydrogen bonds involving this histidine may provide a preferred pathway for electron transfer between hemes.  相似文献   

10.
J T Hazzard  T L Poulos  G Tollin 《Biochemistry》1987,26(10):2836-2848
The kinetics of reduction by free flavin semiquinones of the individual components of 1:1 complexes of yeast ferric and ferryl cytochrome c peroxidase and the cytochromes c of horse, tuna, and yeast (iso-2) have been studied. Complex formation decreases the rate constant for reduction of ferric peroxidase by 44%. On the basis of a computer model of the complex structure [Poulos, T.L., & Finzel, B.C. (1984) Pept. Protein Rev. 4, 115-171], this decrease cannot be accounted for by steric effects and suggests a decrease in the dynamic motions of the peroxidase at the peroxide access channel caused by complexation. The orientations of the three cytochromes within the complex are not equivalent. This is shown by differential decreases in the rate constants for reduction by neutral flavin semiquinones upon complexation, which are in the order tuna much greater than horse greater than yeast iso-2. Further support for differences in orientation is provided by the observation that, with the negatively charged reductant FMNH., the electrostatic environments near the horse and tuna cytochrome c electron-transfer sites within their respective complexes with peroxidase are of opposite sign. For the horse and tuna cytochrome c complexes, we have also observed nonlinear concentration dependencies of the reduction rate constants with FMNH.. This is interpreted in terms of dynamic motion at the protein-protein interface. We have directly measured the physiologically significant intra-complex one electron transfer rate constants from the three ferrous cytochromes c to the peroxide-oxidized species of the peroxidase. At low ionic strength these rate constants are 920, 730, and 150 s-1 for tuna, horse, and yeast cytochromes c, respectively. These results are also consistent with the contention that the orientations of the three cytochromes within the complex with CcP are not the same. The effect on the intracomplex electron-transfer rate constant of the peroxidase amino acid side chain(s) that is (are) oxidized by the reduction of peroxide was determined to be relatively small. Thus, the rate constant for reduction by horse cytochrome c of the peroxidase species in which only the heme iron atom is oxidized was decreased by only 38%, indicating that this oxidized side-chain group is not tightly coupled to the ferryl peroxidase heme iron. Finally, it was found that, in the absence of cytochrome c, neither of the ferryl peroxidase species could be rapidly reduced by flavin semiquinones.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The photosynthetic bacterium Rhodobacter sphaeroides produces a heme protein (SHP), which is an unusual c-type cytochrome capable of transiently binding oxygen during autooxidation. Similar proteins have not only been observed in other photosynthetic bacteria but also in the obligate methylotroph Methylophilus methylotrophus and the metal reducing bacterium Shewanella putrefaciens. A three-dimensional structure of SHP was derived using the multiple isomorphous replacement phasing method. Besides a model for the oxidized state (to 1.82 A resolution), models for the reduced state (2.1 A resolution), the oxidized molecule liganded with cyanide (1. 90 A resolution), and the reduced molecule liganded with nitric oxide (2.20 A resolution) could be derived. The SHP structure represents a new variation of the class I cytochrome c fold. The oxidized state reveals a novel sixth heme ligand, Asn(88), which moves away from the iron upon reduction or when small molecules bind. The distal side of the heme has a striking resemblance to other heme proteins that bind gaseous compounds. In SHP the liberated amide group of Asn(88) stabilizes solvent-shielded ligands through a hydrogen bond.  相似文献   

12.
Oxidation state-dependent conformational changes in cytochrome c.   总被引:2,自引:0,他引:2  
High-resolution three-dimensional structural analyses of yeast iso-1-cytochrome c have now been completed in both oxidation states using isomorphous crystalline material and similar structure determination methodologies. This approach has allowed a comprehensive comparison to be made between these structures and the elucidation of the subtle conformational changes occurring between oxidation states. The structure solution of reduced yeast iso-1-cytochrome c has been published and the determination of the oxidized protein and a comparison of these structures are reported herein. Our data show that oxidation state-dependent changes are expressed for the most part in terms of adjustments to heme structure, movement of internally bound water molecules and segmental thermal parameter changes along the polypeptide chain, rather than as explicit polypeptide chain positional shifts, which are found to be minimal. This result is emphasized by the retention of all main-chain to main-chain hydrogen bond interactions in both oxidation states. Observed thermal factor changes primarily affect four segments of polypeptide chain. Residues 37-39 show less mobility in the oxidized state, with Arg38 and its side-chain being most affected. In contrast, residues 47-59, 65-72 and 81-85 have significantly higher thermal factors, with maximal increases being observed for Asn52, Tyr67 and Phe82. The side-chains of two of these residues are hydrogen bonded to the internally bound water molecule, Wat166, which shows a large 1.7 A displacement towards the positively charged heme iron atom in the oxidized protein. Further analyses suggest that Wat166 is a major factor in stabilizing both oxidation states of the heme through differential orientation of dipole moment, shift in distance to the heme iron atom and alterations in the surrounding hydrogen bonding network. It also seems likely that Wat166 movement leads to the disruption of the hydrogen bond from the side-chain of Tyr67 to the Met80 heme ligand, thereby further stabilizing the positively charged heme iron atom in oxidized cytochrome c. In total, there appear to be three regions about which oxidation state-dependent structural changes are focussed. These include the pyrrole ring A propionate group, Wat166 and the Met80 heme ligand. All three of these foci are linked together by a network of intermediary interactions and are localized to the Met80 ligand side of the heme group. Associated with each is a corresponding nearby segment of polypeptide chain having a substantially higher mobility in the oxidized protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Mileni M  Haas AH  Mäntele W  Simon J  Lancaster CR 《Biochemistry》2005,44(50):16718-16728
Quinol:fumarate reductase (QFR) is the terminal enzyme of anaerobic fumarate respiration. This membrane protein complex couples the oxidation of menaquinol to menaquinone to the reduction of fumarate to succinate. Although the diheme-containing QFR from Wolinella succinogenes is known to catalyze an electroneutral process, its three-dimensional structure at 2.2 A resolution and the structural and functional characterization of variant enzymes revealed locations of the active sites that indicated electrogenic catalysis. A solution to this apparent controversy was proposed with the so-called "E-pathway hypothesis". According to this, transmembrane electron transfer via the heme groups is strictly coupled to a parallel, compensatory transfer of protons via a transiently established pathway, which is inactive in the oxidized state of the enzyme. Proposed constituents of the E-pathway are the side chain of Glu C180 and the ring C propionate of the distal heme. Previous experimental evidence strongly supports such a role of the former constituent. Here, we investigate a possible heme-propionate involvement in redox-coupled proton transfer by a combination of specific (13)C-heme propionate labeling and Fourier transform infrared (FTIR) difference spectroscopy. The labeling was achieved by creating a W. succinogenes mutant that was auxotrophic for the heme-precursor 5-aminolevulinate and by providing [1-(13)C]-5-aminolevulinate to the medium. FTIR difference spectroscopy revealed a variation on characteristic heme propionate vibrations in the mid-infrared range upon redox changes of the distal heme. These results support a functional role of the distal heme ring C propionate in the context of the proposed E-pathway hypothesis of coupled transmembrane electron and proton transfer.  相似文献   

14.
High-resolution three-dimensional structure of horse heart cytochrome c   总被引:19,自引:0,他引:19  
The 1.94 A resolution three-dimensional structure of oxidized horse heart cytochrome c has been elucidated and refined to a final R-factor of 0.17. This has allowed for a detailed assessment of the structural features of this protein, including the presence of secondary structure, hydrogen-bonding patterns and heme geometry. A comprehensive analysis of the structural differences between horse heart cytochrome c and those other eukaryotic cytochromes c for which high-resolution structures are available (yeast iso-1, tuna, rice) has also been completed. Significant conformational differences between these proteins occur in three regions and primarily involve residues 22 to 27, 41 to 43 and 56 to 57. The first of these variable regions is part of a surface beta-loop, whilst the latter two are located together adjacent to the heme group. This study also demonstrates that, in horse cytochrome c, the side-chain of Phe82 is positioned in a co-planar fashion next to the heme in a conformation comparable to that found in other cytochromes c. The positioning of this residue does not therefore appear to be oxidation-state-dependent. In total, five water molecules occupy conserved positions in the structures of horse heart, yeast iso-1, tuna and rice cytochromes c. Three of these are on the surface of the protein, serving to stabilize local polypeptide chain conformations. The remaining two are internally located. One of these mediates a charged interaction between the invariant residue Arg38 and a nearby heme propionate. The other is more centrally buried near the heme iron atom and is hydrogen bonded to the conserved residues Asn52, Tyr67 and Thr78. It is shown that this latter water molecule shifts in a consistent manner upon change in oxidation state if cytochrome c structures from various sources are compared. The conservation of this structural feature and its close proximity to the heme iron atom strongly implicate this internal water molecule as having a functional role in the mechanism of action of cytochrome c.  相似文献   

15.
Computer graphics-generated models for the electron transfer complexes formed between cytochrome b5 and the subunits of methemoglobin are proposed. For both complexes, the orientation allowing optimal hydrogen bonding involves interaction between negatively charged residues on cytochrome b5 and positively charged residues on methemoglobin. In each complex, the heme groups of the interacting species are coplanar with the edges of the heme groups separated by 7-8 A and with the iron atoms 16 A apart. For the alpha-chain X cytochrome b5 complex, alpha-chain residues 56 (Lys), 60 (Lys), and 90 (Lys) interact with cytochrome b5 residues 44 (Glu), 43 (Glu), and 60 (Asp) respectively. A fourth hydrogen bond involves alpha-61 (Lys) bridging between a heme propionate from cytochrome b5 and a heme propionate from the alpha-chain. The contacts present in the beta-chain X cytochrome b5 complex involve hydrogen-bonding between beta-chain lysyl residues 59, 61, 65, and 95, and cytochrome b5 residues 48 (Glu), 44 (Glu), 43 (Glu), and 60 (Asp) respectively. An additional hydrogen bond can be formed by bridging of the epsilon-amino group of beta-66 (Lys) between a heme propionate from cytochrome b5 and a beta-chain heme propionate. In each complex, two nonionic interactions, one on each side of the heme groups, are also suggested. These interactions appear to effectively exclude external water molecules from the center of the protein-protein interaction domain. Comparison of the proposed binding loci for cytochrome b5 on the methemoglobin subunits with those proposed on cytochrome c reveals considerable structural homology between the cytochrome b5 binding sites.  相似文献   

16.
1H nuclear magnetic resonance spectroscopy was used to assign the hyperfine-shifted resonances and determine the position of a side chain in the heme cavity of wild-type rat apocytochrome b5 reconstituted with a series of synthetic hemins possessing systematically perturbed carboxylate side chains. The hemins included protohemin derivatives with individually removed or pairwise shortened and lengthened carboxylate side chains, as well as (propionate)n(methyl)8-nporphine-iron(III) isomers with n = 1-3 designed to force occupation of nonnative propionate sites. The resonance assignments were effected on the basis of available empirical heme contact shift correlations and steady-state nuclear Overhauser effect measurements in the low-spin oxidized proteins. The failure to detect holoproteins with certain hemins dictates that the stable holoproteins, unlike the case of myoglobin, demand the axial iron-His bonds and cannot accommodate carboxylate side chains at interior positions in the binding pocket. Hence, the heme pocket interior in cytochrome b5 is judged much less polar and less sterically accommodating than that of myoglobin. The propionate occupational preference was greatest as the native 7-propionate site, but also possible at the nonnative crystallographic 5-methyl or 8-methyl positions. Only for a propionate at the crystallographic 8-methyl position was a significant perturbation of the native molecular/electronic structure observed, and this was attributed to an alternative propionate-protein hydrogen bond at the crystallographic 8-methyl position. The structures of the transient protein complexes detected only shortly after reconstitution reveal that the initial encounter complexes during assembly of holoprotein from apoprotein and hemin involve one of the two alternate propionate-protein links at either the 7-propionate or native 8-methyl position. In a monopropionate hemin, this leads to the characterization of a new type of heme orientational disorder involving rotation about a N-Fe-N axis.  相似文献   

17.
In the cytochrome c-551 family, the heme 17-propionate caboxylate group is always hydrogen bonded to an invariant Trp-56 and conserved residues (His and Arg mainly, Lys occasionally) at position 47. The mutation of His-47 to Ala-47 for Pseudomas stutzeri ZoBell cytochrome c-551 removes this otherwise invariant hydrogen bond. The solution structure of ferrous H47A has been solved based on NMR-derived constraints. Results indicate that the mutant has very similar main chain folding compared to wild-type. However, less efficient packing of residues in the mutant surrounding the heme propionates leads to more solvent exposure for both propionate groups, which may account for decreased stability of the mutant. The mutant has a reduction potential different from wild-type, and furthermore, the pH dependence of this potential is not the same as for wild-type. The structure of the mutant suggests that these changes are related to the loss of the residue-47 propionate hydrogen bond and the loss of charge on the side chain of residue 47.  相似文献   

18.
To understand general aspects of stability and folding of c-type cytochromes, we have studied the folding characteristics of cytochrome c553 from Desulfovibrio vulgaris (Hildenborough). This cytochrome is structurally similar but lacks sequence homology to other heme proteins; moreover, it has an abnormally low reduction potential. Unfolding of oxidized and reduced cytochrome c553 by guanidine hydrochloride (GuHCl) was monitored by circular dichroism (CD) and Soret absorption; the same unfolding curves were obtained with both methods supporting that cytochrome c553 unfolds by an apparent two-state process. Reduced cytochrome c553 is 7(3) kJ/mol more stable than the oxidized form; accordingly, the reduction potential of unfolded cytochrome c553 is 100(20) mV more negative than that of the folded protein. In contrast to many other unfolded cytochrome c proteins, upon unfolding at pH 7.0 both oxidized and reduced heme in cytochrome c553 become high-spin. The lack of heme misligation in unfolded cytochrome c553 implies that its unfolded structure is less constrained than those of cytochromes c with low-spin, misligated hemes.  相似文献   

19.
The tetraheme cytochrome c3 is a small metalloprotein with ca. 13,000 Da found in sulfate-reducing bacteria, which is believed to act as a partner of hydrogenase. The three-dimensional structure of the oxidized and reduced forms of cytochrome c3 from Desulfovibrio desulfuricans ATCC 27774 at pH 7.6 were determined using high-resolution X-ray crystallography and were compared with the previously determined oxidized form at pH 4.0. Theoretical calculations were performed with both structures, using continuum electrostatic calculations and Monte Carlo sampling of protonation and redox states, in order to understand the molecular basis of the redox-Bohr and cooperativity effects related to the coupled transfer of electrons and protons. We were able to identify groups that showed redox-linked conformational changes. In particular, Glu61, His76, and propionate D of heme II showed important contributions to the redox-cooperativity, whereas His76, propionate A of heme I, and propionate D of heme IV were the key residues for the redox-Bohr effect. Upon reduction, an important movement of the backbone region surrounding hemes I and II was also identified, that, together with a few redox-linked conformational changes in side-chain residues, results in a significant decrease in the solvent accessibility of hemes I and II.  相似文献   

20.
Cytochrome b(561) from bovine adrenal chromaffin vesicles contains two hemes b with different midpoint potentials (+150 and +60 mV) and participates in transmembrane electron transport from extravesicular ascorbate to an intravesicular monooxygenase, dopamine beta-hydroxylase. Treatment of oxidized cytochrome b(561) with diethylpyrocarbonate caused a downshift of midpoint potential for the lower component, and this shift was prevented by the presence of ascorbate during the treatment. Present EPR analyses showed that, upon the treatment, the g(z) = 3.69 heme species was converted to a non-ascorbate-reducible form, although its g(z)-value showed no appreciable change. The treatment had no effect on the other heme (the g(z) = 3.13 species). Raman data indicated that the two heme b centers adopt a six-coordinated low-spin state, in both the reduced and oxidized forms. There was no significant effect of diethylpyrocarbonate-treatment on the Raman spectra of either form, but the reducibility by ascorbate differed significantly between the two hemes upon the treatment. The addition of ferrocyanide enhanced both the reduction rate and final reduction level of the diethylpyrocarbonate-treated cytochrome b(561) when ascorbate was used as a reductant. This observation suggests that ferrocyanide scavenges monodehydroascorbate radicals produced by the univalent oxidation of ascorbate and, thereby, increases both the reduction rate and the final reduction level of the heme center on the intravesicular side of the diethylpyrocarbonate-treated cytochrome. These results further clarify the physiological role of this heme center as the electron donor to the monodehydroascorbate radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号