首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Depletion and multiple deletions of mitochondrial DNA (mtDNA) have been associated with a growing number of autosomal diseases that have been classified as defects of intergenomic communication. MNGIE, an autosomal recessive disorder associated with mtDNA alterations is due to mutations in thymidine phosphorylase that may cause imbalance of the mitochondrial nucleotide pool. Subsequently, mutations in the mitochondrial proteins adenine nucleotide translocator 1, Twinkle, and polymerase gamma have been found to cause autosomal dominant progressive external ophthalmoplegia with multiple deletions of mtDNA. Uncovering the molecular bases of intergenomic communication defects will enhance our understanding of the mechanisms responsible for maintaining mtDNA integrity.  相似文献   

2.
Qualitative and quantitative changes in mitochondrial DNA (mtDNA) have been shown to be common causes of inherited neurodegenerative and muscular diseases, and have also been implicated in ageing. These diseases can be caused by primary mtDNA mutations, or by defects in nuclear‐encoded mtDNA maintenance proteins that cause secondary mtDNA mutagenesis or instability. Furthermore, it has been proposed that mtDNA copy number affects cellular tolerance to environmental stress. However, the mechanisms that regulate mtDNA copy number and the tissue‐specific consequences of mtDNA mutations are largely unknown. As post‐mitotic tissues differ greatly from proliferating cultured cells in their need for mtDNA maintenance, and as most mitochondrial diseases affect post‐mitotic cell types, the mouse is an important model in which to study mtDNA defects. Here, we review recently developed mouse models, and their contribution to our knowledge of mtDNA maintenance and its role in disease.  相似文献   

3.
The mitochondrial genome is considered generally to be an innocent bystander in adaptive evolution; however, there is increasing evidence that mitochondrial DNA (mtDNA) is an important contributor to viability and fecundity. Some of this evidence is now well documented, with mtDNA mutations having been shown to play a causal role in degenerative diseases, ageing, and cancer. However, most research on mtDNA has ignored the possibility that other instances exist where mtDNA mutations could have profound fitness consequences. Recent work in humans and other species now indicates that mtDNA mutations play an important role in sperm function, male fertility, and male fitness. Ironically, deleterious mtDNA mutations that affect only males, such as those that impair sperm function, will not be subject to natural selection because mitochondria are generally maternally inherited and could reach high frequencies in populations if the mutations are not disadvantageous in females. Here, we review how such mtDNA mutations might affect the viability of natural populations. We consider factors that increase or decrease the strength of the effect of mtDNA mutations on population viability and discuss what mechanisms exist to mitigate deleterious mtDNA effects.  相似文献   

4.
Nonneutral Mitochondrial DNA Variation in Humans and Chimpanzees   总被引:25,自引:4,他引:21       下载免费PDF全文
We sequenced the NADH dehydrogenase subunit 3 (ND3) gene from a sample of 61 humans, five common chimpanzees, and one gorilla to test whether patterns of mitochondrial DNA (mtDNA) variation are consistent with a neutral model of molecular evolution. Within humans and within chimpanzees, the ratio of replacement to silent nucleotide substitutions was higher than observed in comparisons between species, contrary to neutral expectations. To test the generality of this result, we reanalyzed published human RFLP data from the entire mitochondrial genome. Gains of restriction sites relative to a known human mtDNA sequence were used to infer unambiguous nucleotide substitutions. We also compared the complete mtDNA sequences of three humans. Both the RFLP data and the sequence data reveal a higher ratio of replacement to silent nucleotide substitutions within humans than is seen between species. This pattern is observed at most or all human mitochondrial genes and is inconsistent with a strictly neutral model. These data suggest that many mitochondrial protein polymorphisms are slightly deleterious, consistent with studies of human mitochondrial diseases.  相似文献   

5.
Wong LJ 《Mitochondrion》2007,7(1-2):45-52
Although mitochondrial disorders are increasingly being recognized, confirming a specific diagnosis remains a great challenge due to the genetic and clinical heterogeneity of the disease. The heteroplasmic nature of most pathogenic mitochondrial DNA mutations and the uncertainties of the clinical significance of novel mutations pose additional complications in making a diagnosis. Suspicion of mitochondrial disease among patients with multiple, seemingly unrelated neuromuscular and multi-system disorders should ideally be confirmed by the finding of deleterious mutations in genes involving mitochondrial biogenesis and functions. The genetics are complex, as the primary mutation can be either in the nuclear or the mitochondrial DNA (mtDNA). MtDNA mutations are often maternally inherited, but can also be sporadic or secondary to mutations in nuclear-encoded mitochondrial-targeted genes. Several well-defined clinical syndromes associated with specific mutations have been described, yet the genotype-phenotype correlation is often unclear and most patients do not fit within any defined syndrome and even within a family the expressivity of the disease can be extremely variable. This article describes examples representing diagnostic challenges of mitochondrial diseases that include the limitations of the mutation detection method, the occurrence of mitochondrial disease in families with another known neuromuscular disorder, atypical clinical presentation, the lack of correlation between the degree of mutant heteroplasmy and the severity of the disease, variable penetrance, and nuclear gene defects causing mtDNA depletion.  相似文献   

6.
Herrnstadt C  Howell N 《Mitochondrion》2004,4(5-6):791-798
More than 75 human diseases have been associated with mitochondrial dysfunction, and many of these are directly caused by overtly pathogenic mutations in the mitochondrial genome (mtDNA). In addition, there have been a number of reports that posit a different, subtler role for mtDNA substitutions in the disease process. As we review here, mtDNA evolution has resulted in the distribution of sequences into continent-specific haplogroups, which are defined by a relatively small number of polymorphisms. Thus, mtDNA sequences can be assigned to European, African, or Asian/Native American haplogroups. There are numerous reports that various diseases are haplogroup-associated, and it has been suggested that some of these haplogroup-associated polymorphisms act as risk factors in these disorders. It has also been suggested that there are haplogroup-associations for aging. As we note here, however, such associations have usually been observed only in single studies and it is difficult to draw broad conclusions on the basis of the available evidence. At a minimum, we suggest that, a haplogroup-group association must be detected in multiple subpopulations or in a large, carefully controlled population survey.  相似文献   

7.
线粒体DNA和疾病   总被引:5,自引:0,他引:5  
人线粒体DNA是含有16569 bp的闭环双链分子.它为13种氧化磷酸作用酶的亚单位、结构rRNAs和tRNAs编码.近年来很多引起人类疾病的线粒体DNA突变已被确定,如眼盲、耳聋、心力衰竭和人类退行性疾病等.线粒体DNA疾病可能比先前想象的多.  相似文献   

8.
Mitochondrial diseases associated with mutations within mitochondrial genome are a subgroup of metabolic disorders since their common consequence is reduced metabolic efficiency caused by impaired oxidative phophorylation and shortage of ATP. Although the vast majority of mitochondrial proteins (approximately 1500) is encoded by nuclear genome, mtDNA encodes 11 subunits of respiratory chain complexes, 2 subunits of ATP synthase, 22 tRNAs and 2 rRNAs. Up to now, more than 250 pathogenic mutations have been described within mtDNA. The most common are point mutations in genes encoding mitochondrial tRNAs such as 3243A-->G and 8344T-->G that cause, respectively, MELAS (mitochondrial encephalopathy, lactic acidosis and stroke-like episodes) or MIDD (maternally-inherited diabetes and deafness) and MERRF (myoclonic epilepsy with ragged red fibres) syndromes. There have been also found mutations in genes encoding subunits of ATP synthase such as 8993T-->G substitution associated with NARP (neuropathy, ataxia and retinitis pigmentosa) syndrome. It is worth to note that mitochondrial dysfunction can also be caused by mutations within nuclear genes coding for mitochondrial proteins.  相似文献   

9.
Multiple Origins of a Mitochondrial Mutation Conferring Deafness   总被引:2,自引:0,他引:2       下载免费PDF全文
A point mutation (1555G) in the smaller ribosomal subunit of the mitochondrial DNA (mtDNA) has been associated with maternally inherited traits of hypersensitivity to streptomycin and sensorineural deafness in a number of families from China, Japan, Israel, and Africa. To determine whether this distribution was the result of a single or multiple mutational events, we carried out genetic distance analysis and phylogenetic analysis of 10 independent mtDNA D-loop sequences from Africa and Asia. The mtDNA sequence diversity was high (2.21%). Phylogenetic analysis assigned 1555G-bearing haplotypes at very divergent points in the human mtDNA evolutionary tree, and the 1555G mutations occur in many cases on race-specific mtDNA haplotypes, both facts are inconsistent with a recent introgression of the mutation into these races. The simplest interpretation of the available data is that there have been multiple origins of the 1555G mutation. The genetic distance among mtDNAs bearing the pathogenic 1555G mutation is much larger than among mtDNAs bearing either evolutionarily neutral or weakly deleterious nucleotide substitutions (such as the 4336G mutation). These results are consistent with the view that pathogenic mtDNA haplotypes such as 1555G arise on disparate mtDNA lineages which because of negative natural selection leave relatively few related descendants. The co-existence of the same mutation with deafness in individuals with very different nuclear and mitochondrial genetic backgrounds confirms the pathogenicity of the 1555G mutation.  相似文献   

10.
Dramatic founder effects in Amerindian mitochondrial DNAs   总被引:33,自引:0,他引:33  
Southwestern American Indian (Amerindian) mitochondrial DNAs (mtDNAs) were analyzed with restriction endonucleases and found to contain Asian restriction fragment length polymorphisms (RFLPs) but at frequencies very different from those found in Asia. One rare Asian HincII RFLP was found in 40% of the Amerindians. Several mtDNAs were discovered which have not yet been observed on other continents and different tribes were found to have distinctive mtDNAs. Since the mtDNA is inherited exclusively through the maternal lineage, these results suggest that Amerindian tribes were founded by small numbers of female lineages and that new mutations have been fixed in these lineages since their separation from Asia.  相似文献   

11.
Recent studies suggest that mutations/polymorphisms of mitochondrial DNA (mtDNA) are associated with neuropsychiatric diseases. We identified a patient with major depression and epilepsy. Some family members in the pedigree of the proband had bipolar disorder, depression, suicide, or psychotic disorder not otherwise specified. The mode of inheritance was compatible with maternal inheritance with low penetration. We assumed that the mental disorder in this family might be associated with maternally inherited mitochondrial DNA (mtDNA) mutation. We sequenced the entire mtDNA of the proband. Among the 34 base substitutions detected in the proband, two homoplasmic, nonsynonymous single substitutions of mtDNA, T3394C in MT-ND1 and A9115G in MT-ATP6, were suspected to cause functional impairment, because the former was reported to be disease-related and the latter is vary rare. To study the functional outcome of these substitutions, we examined mitochondrial membrane potential and the activity of mitochondrial ATP synthesis in the transmitochondrial cybrids, but no significant impairment was detected. The data did not support our hypothesis that these disorders in this family are caused by mtDNA mutation(s).  相似文献   

12.
An analysis of patterns of cleavage of mtDNA by restriction endonucleases was performed for nine individuals from the Philippine population of native cattle. MtDNA polymorphisms were detected in the restriction patterns generated by the following six enzymes,BamHI,BglII,EcoRV,HindIII,PstI, andScaI. The restriction patterns showing polymorphisms were distributed nonrandomly among the nine individuals examined from the Philippine population of native cattle, indicating the existence of two separate types of mtDNA. These two types of mtDNA are very different from each other, at the level of subspecies. Since the native Philippine cattle are considered to represent an admixture of European and Indian cattle, the two types of mtDNA must be derived from the mtDNAs of both varieties. The polymorphic sites in mtDNA have been located on a restriction map, and the nucleotide substitutions at some of the sites have also been estimated.  相似文献   

13.
Mutations in mitochondrial DNA (mtDNA) cause maternally inherited diseases, while somatic mutations are linked to common diseases of aging. Although mtDNA mutations impact health, the processes that give rise to them are under considerable debate. To investigate the mechanism by which de novo mutations arise, we analyzed the distribution of naturally occurring somatic mutations across the mouse and human mtDNA obtained by Duplex Sequencing. We observe distinct mutational gradients in G→A and T→C transitions delimited by the light-strand origin and the mitochondrial Control Region (mCR). The gradient increases unequally across the mtDNA with age and is lost in the absence of DNA polymerase γ proofreading activity. In addition, high-resolution analysis of the mCR shows that important regulatory elements exhibit considerable variability in mutation frequency, consistent with them being mutational ‘hot-spots’ or ‘cold-spots’. Collectively, these patterns support genome replication via a deamination prone asymmetric strand-displacement mechanism as the fundamental driver of mutagenesis in mammalian DNA. Moreover, the distribution of mtDNA single nucleotide polymorphisms in humans and the distribution of bases in the mtDNA across vertebrate species mirror this gradient, indicating that replication-linked mutations are likely the primary source of inherited polymorphisms that, over evolutionary timescales, influences genome composition during speciation.  相似文献   

14.
We sequenced the nearly complete mtDNA of 3 species of parasitic wasps, Nasonia vitripennis (2 strains), Nasonia giraulti, and Nasonia longicornis, including all 13 protein-coding genes and the 2 rRNAs, and found unusual patterns of mitochondrial evolution. The Nasonia mtDNA has a unique gene order compared with other insect mtDNAs due to multiple rearrangements. The mtDNAs of these wasps also show nucleotide substitution rates over 30 times faster than nuclear protein-coding genes, indicating among the highest substitution rates found in animal mitochondria (normally <10 times faster). A McDonald and Kreitman test shows that the between-species frequency of fixed replacement sites relative to silent sites is significantly higher compared with within-species polymorphisms in 2 mitochondrial genes of Nasonia, atp6 and atp8, indicating directional selection. Consistent with this interpretation, the Ka/Ks (nonsynonymous/synonymous substitution rates) ratios are higher between species than within species. In contrast, cox1 shows a signature of purifying selection for amino acid sequence conservation, although rates of amino acid substitutions are still higher than for comparable insects. The mitochondrial-encoded polypeptides atp6 and atp8 both occur in F0F1ATP synthase of the electron transport chain. Because malfunction in this fundamental protein severely affects fitness, we suggest that the accelerated accumulation of replacements is due to beneficial mutations necessary to compensate mild-deleterious mutations fixed by random genetic drift or Wolbachia sweeps in the fast evolving mitochondria of Nasonia. We further propose that relatively high rates of amino acid substitution in some mitochondrial genes can be driven by a "Compensation-Draft Feedback"; increased fixation of mildly deleterious mutations results in selection for compensatory mutations, which lead to fixation of additional deleterious mutations in nonrecombining mitochondrial genomes, thus accelerating the process of amino acid substitutions.  相似文献   

15.
线粒体DNA突变与相关人类疾病   总被引:1,自引:0,他引:1  
陈刚  杜卫东  曹慧敏 《遗传》2007,29(11):1299-1308
在过去的20年里, 人们发现线粒体DNA(mitochondrial DNA, mtDNA)突变与多种人类疾病相关, 其致病范围从单器官组织损害到多系统受累。文章目的在于探讨mtDNA突变与人类疾病的关系。文章重点论述: (1)线粒体遗传学特征; (2) mtDNA突变与人类遗传性疾病; (3)体细胞mtDNA突变在衰老和肿瘤中的作用; (4)mtDNA疾病的诊断和治疗。  相似文献   

16.
Mitochondrial DNA (mtDNA) is replicated by the DNA polymerase g in concert with accessory proteins such as the mtDNA helicase, single stranded DNA binding protein, topoisomerase, and initiating factors. Nucleotide precursors for mtDNA replication arise from the mitochondrial salvage pathway originating from transport of nucleosides, or alternatively from cytoplasmic reduction of ribonucleotides. Defects in mtDNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mtDNA deletions, point mutations, or depletion which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mtDNA depletion syndromes such as Alpers or early infantile hepatocerebral syndromes, and mtDNA deletion disorders, such as progressive external ophthalmoplegia (PEO), ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). This review focuses on our current knowledge of genetic defects of mtDNA replication (POLG, POLG2, C10orf2) and nucleotide metabolism (TYMP, TK2, DGOUK, and RRM2B) that cause instability of mtDNA and mitochondrial disease.  相似文献   

17.
The small, maternally inherited mitochondrial DNA (mtDNA) has turned out to be a hotbed of pathogenic mutations: 15 years into the era of ‘mitochondrial medicine’, over 150 pathogenic point mutations and countless rearrangements have been associated with a variety of multisystemic or tissue-specific human diseases. MtDNA-related disorders can be divided into two major groups: those due to mutations in genes affecting mitochondrial protein synthesis in toto and those due to mutations in specific protein-coding genes. Here we review the mitochondrial genetics and the clinical features of the mtDNA-related diseases.  相似文献   

18.
Analysis of DNA from human archaeological remains is a powerful tool for reconstructing ancient events in human history. To help understand the origin of the inhabitants of Kublai Khan's Upper Capital in Inner Mongolia, we analyzed mitochondrial DNA (mtDNA) polymorphisms in 21 ancient individuals buried in the Zhenzishan cemetery of the Upper Capital. MtDNA coding and noncoding region polymorphisms identified in the ancient individuals were characteristic of the Asian mtDNA haplogroups A, B, N9a, C, D, Z, M7b, and M. Phylogenetic analysis of the ancient mtDNA sequences, and comparison with extant reference populations, revealed that the maternal lineages of the population buried in the Zhenzishan cemetery are of Asian origin and typical of present-day Han Chinese, despite the presence of typical European morphological features in several of the skeletons.  相似文献   

19.
20.
Sperm competition theory predicts that sperm traits influencing male fertilizing ability will evolve adaptively. However, it has been suggested that some sperm traits may be at least partly encoded by mitochondrial genes. If true, this may constrain the adaptive evolution of such traits because mitochondrial DNA (mtDNA) is maternally inherited and there is thus no selection on mtDNA in males. Phenotypic variation in such traits may nevertheless be high because mutations in mtDNA that have deleterious effects on male traits, but neutral or beneficial effects in females, may be maintained by random processes or selection in females. We used backcrossing to create introgression lines of seed beetles (Callosobruchus maculatus), carrying orthogonal combinations of distinct lineages of cytoplasmic and nuclear genes, and then assayed sperm viability and sperm length in all lines. We found sizeable cytoplasmic effects on both sperm traits and our analyses also suggested that the cytoplasmic effects varied across nuclear genetic backgrounds. We discuss some potential implications of these findings for sperm competition theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号