首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction of the local anesthetic dibucaine with small unilamellar vesicles of dimyristoylphosphatidylcholine (DMPC) and dioleoylphosphatidylcholine (DOPC) containing different mole percents of monosialoganglioside (GM1) has been studied by fluorescence spectroscopy. Fluorescence measurements on dibucaine in the presence of phospholipid vesicles containing various amounts of GM1 yielded a pattern of variation of wavelength at emission maximum and steady-state anisotropy which indicated that the microenvironment of dibucaine is more hydrophobic and rigid in membranes that contain GM1 than in membranes without it. Experiments on quenching of fluorescence from membrane-associated dibucaine by potassium iodide showed reduced quenching efficiency with the increase in GM1 content of the vesicles, demonstrating lesser accessibility of the iodide quenchers to dibucaine in the presence of GM1, when compared to that in its absence. Total emission intensity decay profiles of dibucaine yielded two lifetime components of 1 and 2.8–3.1 ns with mean relative contributions of 25 and 75%, respectively. The mean lifetime in vesicles was 20–30% lower than in the aqueous medium and showed a definite increase in presence of GM1 from that in the absence of it. All the spectral properties point that dibucaine encountered regions of membrane containing significant amount of GM1 and penetrated deeper in hydrophobic core of the bilayer.  相似文献   

2.
The fluorescence of the ionophore A23187 has been monitored in suspensions of egg yolk phosphatidylcholine (EYPC) and dipalmitoyl phosphatidylcholine (DPPC) vesicles. Both the protonated form of A23187 and the Ca2+ complex exhibit fluorescence enhancement when extracted into a hydrophobic environment. Measurements of fluorescence intensity versus lipid concentration were thus used to establish lower limits to the lipid/ water partition coefficients. Values obtained in this way were ? 50 ml water/mg phosphatidylcholine. Quenching of A23187 fluorescence by the spin labels 5NMS (methyl ester of 5-nitroxyl stearate), 12NMS, 16NMS, and TEMPO stearamide in EYPC and DPPC vesicles was also investigated. In EYPC all the labels yielded fairly linear Stern-Volmer plots, with TEMPO stearamide quenching about half as strong as the other probes. Quenching in DPPC was generally much stronger than in EYPC, but 12 NMS and 16NMS gave hyperbolic Stern-Volmer plots, apparently due to clustering of the labels. In all the cases the protonated form of A23187 was quenched approximately twice as efficiently as the Ca2+ complex, possibly due to a longer fluorescence lifetime for the former. Calculations based on measured spectral properties were performed which indicate that the Förster transfer mechanism extends the nitroxides' quenching range to ~- 10 Å.  相似文献   

3.
S X Wang  G p Cai  S Sui 《Biochemistry》1999,38(29):9477-9484
Apolipoprotein H (ApoH) is a plasma glycoprotein with its in vivo physiological and pathogenic roles being closely related to its interaction with negatively charged membranes. In this paper, the interaction of ApoH with phospholipid vesicles was characterized by (i) detecting the wavelength shift of the fluorescence spectrum of ApoH and (ii) measuring the fluorescence quenching extent of ApoH by the membrane resident quencher 1-palmitoyl-2-stearoyl-(5-doxyl)-sn-glycero-3-phosphocholine (DPC). The observed blue shift upon addition of DMPG vesicles indicated that the tryptophan residues of ApoH moved from a polar to a nonpolar environment. The insertion ability of ApoH into PG-containing vesicles did not depend on the PG content in a stoichiometric way as did the blue shift, indicating that the negatively charged DMPG does not serve as a specific binding site but rather provides a suitable microenvironment for ApoH interaction. The finding that the detachment effect of cations on the blue shift is remarkably different from that on the quenching extent suggests that ApoH is capable of existing in two different conformations when membrane-bound.  相似文献   

4.
We have studied tryptophan fluorescence from a 20-residue synthetic peptide corresponding to the amino terminal of the HA2 subunit of the influenza virus hemagglutinin protein, a putative fusion peptide. Decay-associated spectra have been obtained at pH 7.4 and at pH 5 (the optimal pH for influenza virus fusion) in the presence and absence of liposomes. We demonstrate that a blue shift in the total steady-state fluorescence spectrum upon binding to liposomes is due to a movement in characteristic emission wavelength and increased lifetime of one of the resolved spectral components. In contrast, a further shift after lowering the pH is the product of a redistribution in the relative amplitudes of spectral components. Also, each decay component is quenched by spin-labels or anthroxyl groups normally located within the hydrocarbon interior of the membranes. Calculations are presented leading to an estimate of the distance of the tryptophan residue from the bilayer center, suggesting that the tryptophan residues are at or near the hydrocarbon-polar interface. No gross positional change was detected between pH values. Rotational depolarization is shown to be retarded by liposome binding, more so at low pH.  相似文献   

5.
A. Alonso  R. Sáez  F.M. Goñi 《FEBS letters》1982,137(1):141-145
Megasphaera elsdenii and Clostridium MP flavodoxins have been investigated by photo-CIDNP techniques. Using time-resolved spectroscopy and external dyes carrying different charges it was possible to assign unambiguously the resonance lines in the NMR-spectra to tyrosine, tryptophan and methionine residues in the two proteins. The results show that Trp-91 in M.elsdenii and Trp-90 in Cl.MP flavodoxin are strongly immobilized and placed directly above the benzene subnucleus of the prosthetic group. The data further indicate that the active sites of the two flavodoxins are extremely similar.  相似文献   

6.
The binding of lasalocid A to dipalmitoylphosphatidylcholine (DPPC) vesicles was studied following changes in the intrinsic fluorescence of this ionophore. The binding calculations indicated a dissociation constant of 6.98 +/- 1.5 muM at 48 degrees C, i.e., above the transition temperature (Tc) of the pure phospholipid, with a number of binding sites of 1 per 22 +/- 2.5 molecules of phospholipid, while at 23 degrees C, i.e., below the Tc of the pure phospholipid, the dissociation constant was 9.15 +/- 0.24 muM and the number of binding sites was 1 per each 29 +/- 1.6 molecules of DPPC. Changes in the temperature induced changes in fluorescence intensity of lasalocid A mainly upon phase changes, indicating a progressive decrease in the transition temperature accompanied by a broadening of the transition as lasalocid A concentration was increased. Fluorescence quenching experiments with N-methylnicotinamide showed a certain accessibility of the fluorophoric group of the ionophore to the aqueous quencher. Differential scanning calorimetry showed that increasing concentrations of lasalocid A drastically modified the thermotropic profile. At concentrations higher than 5 mol%, a second peak appeared, possibly due to a lateral phase segregation of lasalocid A trapping some phospholipid molecules. The results are interpreted in terms of limited solubility of lasalocid A in the phospholipid vesicles, this solubility being higher in fluid than in rigid phospholipid. Lateral segregation seems to occur with formation of more than one phase. At least the salicylic acid residue of the ionophore appears to be located near the polar head group of the phospholipid.  相似文献   

7.
8.
Nystatin is a membrane-active polyene antibiotic that is thought to kill fungal cells by forming ion-permeable channels. In this report we have investigated nystatin interaction with phosphatidylcholine liposomes of different sizes (large and small unilamellar vesicles) by time-resolved fluorescence measurements. Our data show that the fluorescence emission decay kinetics of the antibiotic interacting with gel-phase 1,2-dipalmitoyl-sn-glycero-3-phosphocholine vesicles is controlled by the mean number of membrane-bound antibiotic molecules per liposome, . The transition from a monomeric to an oligomeric state of the antibiotic, which is associated with a sharp increase in nystatin mean fluorescence lifetime from approximately 7-10 to 35 ns, begins to occur at a critical concentration of 10 nystatin molecules per lipid vesicle. To gain further information about the transverse location (degree of penetration) of the membrane-bound antibiotic molecules, the spin-labeled fatty acids (5- and 16-doxyl stearic acids) were used in depth-dependent fluorescence quenching experiments. The results obtained show that monomeric nystatin is anchored at the phospholipid/water interface and suggest that nystatin oligomerization is accompanied by its insertion into the membrane. Globally, the experimental data was quantitatively described by a cooperative partition model which assumes that monomeric nystatin molecules partition into the lipid bilayer surface and reversibly assemble into aggregates of 6 +/- 2 antibiotic molecules.  相似文献   

9.
The interaction of an antimicrobial decapeptide with phospholipid vesicles   总被引:1,自引:0,他引:1  
Choi MJ  Kang SH  Kim S  Chang JS  Kim SS  Cho H  Lee KH 《Peptides》2004,25(4):675-683
Previously, by using combinatorial peptide libraries, we have identified activity-optimized decapeptide (KSL, KKVVFKVKFK-NH(2)), which exhibited a broad spectrum of the activity against bacteria and fungi without hemolytic activity. In order to examine lipid requirements and to understand the mode of KSL action, we investigated interactions of the peptide with vesicles consisting of various lipid compositions. KSL increased the permeability of negatively charged but not zwitterionic phospholipid membranes, and the leakage was independent on the size of encapsulated molecules (calcein, 1-aminonaphthalene-3,6,8-trisulfonic acid (ANTS)/N,N'-p-xylene bis(pyridinium) bromide (DPX), and fluorescein isothiocyanate (FITC)-dextran with different molecular weight), indicating that the peptide did not form pores or channels in this leakage process. KSL ability to permeabilize vesicles with negatively charged surface was dramatically reduced upon the addition of zwitterionic phospholipid rather than cholesterol, which revealed that the surface charge of lipid membranes played a major role in the activity and selectivity of KSL. Moreover, KSL diastereomer did not increase the permeability of negatively charged vesicles, indicating that the secondary structure of KSL was also required for membrane perturbation activity. Interestingly, KSL had an ability to cause aggregation and subsequent fusion of the acidic vesicles, which seemed to be related to the biological action. Structural studies performed by circular dichroism (CD) spectroscopy indicated that in the presence of acidic vesicles, the beta sheet structure of KSL must be required for the ability to (1) induce a leakage of dye from the acidic vesicles (2) to fuse the acidic vesicles.  相似文献   

10.
11.
Human erythrocytes have been treated with lipid vesicles in order to alter the cholesterol content of the cell membrane. Erythrocytes have been produced with cholesterol concentrations between 33 and 66 mol% of total lipid. The rate of valinomycin-mediated uptake of rubidium into the red cells at 37°C was lowered by increasing the cholesterol concentration of the cell membrane. Cholesterol increased the permeability to valinomycin at 20°C of small (less than 50 nm), unilamellar egg phosphatidylcholine vesicles formed by sonication. Cholesterol decreased the permeability to valinomycin at 20°C of large (up to 200 nm) unilamellar egg phosphatidylcholine vesicles formed by freezethaw plus brief sonication. It is concluded that cholesterol increases the permeability of small membrane vesicles to hydrophobic penetrating substances while above the transition temperature but has the opposite effect on large membrane vesicles and on the membranes of even larger cells.  相似文献   

12.
Preincubation of rat liver microsomal vesicles at 37 degrees C in the presence of [3H]cholesterol/phospholipid liposomes results in a net transfer of cholesterol from liposomes to microsomal vesicles. This transfer follows first-order kinetics. For similar concentrations of the donor vesicles, rates of transfer are about 6-8 times lower with cholesterol/sphingomyelin liposomes compared with cholesterol/phosphatidylcholine liposomes. Also, transfer of cholesterol from cholesterol/sphingomyelin liposomes to microsomal vesicles reveals a larger activation energy than for the process from cholesterol/phosphatidylcholine liposomes. There is a significant correlation between the amount of liposomal cholesterol transferred to microsomal vesicles during preincubation and the increase found with acyl-CoA:cholesterol acyltransferase activity in these microsomes over their corresponding controls. If, however, liposomes made solely of phospholipids are substituted for the cholesterol/phospholipid liposomes in the preincubation system containing microsomal vesicles, then the acyl-CoA:cholesterol acyltransferase activity is decreased compared with the corresponding control system. Both sphingomyelin and phosphatidylcholine liposomes are equally effective in decreasing the enzyme activity. These results offer direct kinetic evidence for the positive correlation between cholesterol and sphingomyelin found in vivo in biological membranes.  相似文献   

13.
Quercetin (QCT) is an important bioactive natural compound found in numerous edible plants. Since the lipid bilayer represents an essential compound of the cell membrane, QCT's direct interaction with this structure is of great interest. Therefore, we proposed to study the effects of QCT on DMPC liposomes containing cholesterol (Chol), and for this purpose Laurdan fluorescence was used. As a fluorescent probe, Laurdan is able to detect changes in membrane phase properties. When incorporated in lipid bilayers, Laurdan emits from two different excited states, a non-relaxed one when the bilayer packing is tight and a relaxed state when the bilayer packing is loose. The main tool for quantifying QCT's effects on phospholipid membranes containing Chol has been the analysis, the decomposition of Laurdan emission spectra in sums of two Gaussian functions on energy. This kind of approach has allowed good analysis of the balance between the two emitting states of Laurdan. Our results show that both Laurdan emission states are present to different extents in a wide temperature range for DMPC liposomes with Chol. QCT is decreasing the phase transition temperature in pure DMPC liposomes as proved by generalized polarization (GP) values. QCT also quenches Laurdan fluorescence, depending on the temperature and the presence of Chol in the membrane. Stern-Volmer constants were calculated for different lipid membrane compositions, and the conclusion was that the relaxed state favors the nonradiative transitions of the fluorophore.  相似文献   

14.
de Alba E  Weiler S  Tjandra N 《Biochemistry》2003,42(50):14729-14740
Saposin C binds to membranes to activate lipid degradation in lysosomes. To get insights into saposin C's function, we have determined its three-dimensional structure by NMR and investigated its interaction with phospholipid vesicles. Saposin C adopts the saposin-fold common to other members of the family. In contrast, the electrostatic surface revealed by the NMR structure is remarkably different. We suggest that charge distribution in the protein surface can modulate membrane interaction leading to the functional diversity of this family. We find that the binding of saposin C to phospholipid vesicles is a pH-controlled reversible process. The pH dependence of this interaction is sigmoidal, with an apparent pK(a) for binding close to 5.3. The pK(a) values of many solvent-exposed Glu residues are anomalously high and close to the binding pK(a). Our NMR data are consistent with the absence of a conformational change prior to membrane binding. All this information suggests that the negatively charged electrostatic surface of saposin C needs to be partially neutralized to trigger membrane binding. We have studied the membrane-binding behavior of a mutant of saposin C designed to decrease the negative charge of the electrostatic surface. The results support our conclusion on the importance of protein surface neutralization in binding. Since saposin C is a lysosomal protein and pH gradients occur in lysosomes, we propose that lipid degradation in the lysosome could be switched on and off by saposin C's reversible binding to membranes.  相似文献   

15.
Human erythrocytes have been treated with lipid vesicles in order to alter the cholesterol content of the cell membrane. Erythrocytes have been produced with cholesterol concentrations between 33 and 66 mol% of total lipid. The rate of valinomycin-mediated uptake of rubidium into the red cells at 37 degrees C was lowered by increasing the cholesterol concentration of the cell membrane. Cholesterol increased the permeability to valinomycin at 20 degrees C of small (less than 50 nm), unilamellar egg phosphatidylcholine vesicles formed by sonication. Cholesterol decreased the permeability to valinomycin at 20 degrees C of large (up to 200 nm) unilamellar egg phosphatidylcholine vesicles formed by freeze-thaw plus brief sonication. It is concluded that cholesterol increases the permeability of small membrane vesicles to hydrophobic penetrating substances while above the transition temperature but has the opposite effect on large membrane vesicles and on the membranes of even larger cells.  相似文献   

16.
Bacillus thuringiensis (Bt) crystal delta-endotoxin from three subspecies and the product of a cloned crystal protein gene were activated in vitro and their interaction with phospholipid liposomes studied. Despite their diverse spectrum of activity, all these toxins were found to cause a rapid increase in the light scattering of liposome suspensions, which reflects a morphological change in the lipid bilayer. When liposomes loaded with radioactive markers were incubated with B. thuringiensis aizawai IC1 toxin, a relatively rapid release of more than 70% of the trapped markers occurred after an initial lag. Activated Bta IC1 and B. thuringiensis israelensis toxins were shown to bind to phospholipid vesicles. Two of the five conserved domains (D1-D5) detectable in the sequence of a range of Bt toxins are predicted to be highly hydrophobic. It is suggested that these, together with an additional conserved hydrophobic region showing structural homology and two predicted amphiphilic helices, play a major part in the interaction of these toxins with target membranes.  相似文献   

17.
Ultrasonic and calorimetric studies of small homogenously-sized DMPC unilamellar vesicles showed two thermal transitions at temperatures T c1 and T c2 (T c2 T c1 ); T c2 is close to the phase transition temperature, T c , of large vesicles. The process at T c2 is not a fusion of vesicles and is interpreted as characterizing an order-disorder transition essentially similar to that of large vesicles. The temperatures T c1 and T c2 become increasingly similar as the cholesterol content is increased, while the clusters at T c2 (85 lipid molecules in pure DMPC) increase in size up to approximately 180 lipid molecules at 12 mol% cholesterol. Incorporation of cholesterol thus brings about enhanced fluctuations in this model system of a membrane.Abbreviations DMPC dimyristoylphosphatidylcholine - SUV small unilamellar vesicles - LUV large unilamellar vesicles - MLV multilamellar vesicles  相似文献   

18.
Using proton spin-lattice relaxation times, the interaction of small oligopeptides with sonicated vesicles of synthetic β-γ-dimyristoyl L-α-lecithin has been monitored at 29°C in D2O. The measured relaxation times for the lecithin choline methyl, alkyl chain, and terminal methyl protons were observed to shorten markedly with increasing concentration of peptide, the relaxation remaining exponential. Noticeable resonance broadening was observed at the highest peptide concentration studied. The data reported are for the effect of the pharmacologically active pentapeptide methionine-enkephalin. Similar results have been observed for the effect of tetraglycine. The relaxation of the observable resonances of the added peptide appear to be unaffected. The results are discussed in terms of peptide-vesicle interactions.  相似文献   

19.
T. N. Kropacheva  J. Raap   《FEBS letters》1999,460(3):1219-504
The effect of a transmembrane potential on ion channel formation by zervamicin II (ZER-II) was studied in a vesicular model system. The dissipation of diffusion potential caused by addition of ZER-II to small phosphatidylcholine vesicles was monitored using fluorescent (Safranine T) and optical (Oxonol YI) probes. Cis-positive potentials facilitated channel formation, while at cis-negative potentials, ion fluxes were inhibited. A potential-independent behavior of ZER-II was observed at high peptide concentrations, most likely due to its membrane modifying property.  相似文献   

20.
The distribution of cholesterol between vesicles of different lipid composition at equilibrium has been determined. Small, sonicated unilamellar vesicles and large unilamellar vesicles were incubated at a defined temperature, and aliquots were then obtained at selected times for analysis. Inclusion of a small amount of phosphatidylserine or phosphatidylinositol in the membrane does not appreciably affect the distribution of cholesterol at equilibrium by these measurements. A membrane in the gel state is a poor acceptor of cholesterol. The length of the hydrocarbon chain on the phospholipid may also play a role. Bovine brain sphingomyelin dramatically slows the kinetics of cholesterol transfer, and the equilibrium distribution of cholesterol among vesicles containing sphingomyelin is therefore not observable in these experiments. Data obtained with vesicles containing phosphatidylethanolamine indicate a preference of cholesterol for vesicles composed of phosphatidylcholine compared to vesicles consisting primarily of phosphatidylethanolamine, at equilibrium. Experiments with a chaotropic agent indicate that the nature of the surface of the phosphatidylethanolamine bilayer, and its hydration, are important factors in the distribution of cholesterol among membranes in which phosphatidylethanolamine is present. These data suggest that membrane lipid content may play a role in the distribution of cholesterol among the membranes of a cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号