首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endothelial cells form a critical component of the coronary vasculature, yet the factors regulating their development remain poorly defined. Here we reveal a novel role for the transmembrane protein CRIM1 in mediating cardiac endothelial cell development. In the absence of Crim1 in vivo, the coronary vasculature is malformed, the number of endothelial cells reduced, and the canonical BMP pathway dysregulated. Moreover, we reveal that CRIM1 can bind IGFs, and regulate IGF signalling within endothelial cells. Finally, loss of CRIM1 from human cardiac endothelial cells results in misregulation of endothelial genes, predicted by pathway analysis to be involved in an increased inflammatory response and cytolysis, reminiscent of endothelial cell dysfunction in cardiovascular disease pathogenesis. Collectively, these findings implicate CRIM1 in endothelial cell development and homeostasis in the coronary vasculature.  相似文献   

2.
Lin CI  Chen CN  Huang MT  Lee SJ  Lin CH  Chang CC  Lee H 《Cellular signalling》2008,20(10):1804-1814
Lysophosphatidic acid (LPA) is a lipid bioactive mediator which binds to G-protein-coupled receptors and activates a variety of cellular functions. LPA modulates multiple behaviors in endothelial cells, including cell proliferation and migration, capillary-like tube formation in vitro, activation of proteases, interactions with leukocytes, and expressions of inflammation-related genes, thereby regulating vessel formation. LPA has been reported to modulate the angiogenesis process. However, the role of LPA in the lymphangiogenesis process has not been studied. In this study, we showed that LPA upregulated vascular endothelial growth factor-C (VEGF-C) mRNA expression in human umbilical vein endothelial cells (HUVECs) and subsequent endothelial cell tube formation in vitro and in vivo. These enhancement effects were LPA(1)- and LPA(3)-dependent and required cyclooxygenase-2 (COX-2), endothelial growth factor receptor (EGFR) transactivation and activation of nuclear factor kappaB (NF-kappaB). Moreover, LPA induced the protein expressions of the lymphatic markers, Prox-1, LYVE-1, and podoplanin, in HUVECs, and these enhancement effects were dependent on LPA(1) and LPA(3) activation and EGFR transactivation. Our results demonstrated that LPA might regulate VEGF-C and lymphatic marker expression in endothelial cells, which contributes to endothelial cell tube formation in vitro and in vivo, thus facilitating endothelial cell participation in the lymphangiogenesis process. This study clarifies the signaling mechanism of LPA-regulated VEGF-C expression and lymphatic marker expressions in endothelial cells, which suggest that LPA may be a suitable target for generating therapeutics against lymphangiogenesis and tumor metastasis.  相似文献   

3.
Tubedown-1 (tbdn-1) is a mammalian homologue of the N-terminal acetyltransferase subunit NAT1 of Saccharomyces cerevisiae and copurifies with an acetyltransferase activity. Tbdn-1 expression in endothelial cells becomes downregulated during the formation of capillary-like structures in vitro and is regulated in vivo in a manner which suggests a functional role in dampening blood vessel development. Here we show that tbdn-1 is expressed highly in the vitreal vascular network (tunica vasculosa lentis and vasa hyaloidea propria) during the pruning and remodeling phases of this transient structure. The vitreal blood vessels of mice harboring a targeted inactivation of TGF-beta2 fail to remodel and abnormally accumulate, a phenomenon reminiscent of the ocular pathology resembling persistent fetal vasculature (PFV) in humans. Since suppression of normal tbdn-1 expression has been previously observed in retinal vessel proliferation, we analyzed vitreal vascular changes and tbdn-1 expression in TGF-beta2(-/-) eyes. The nuclei of vitreal vessel endothelial cells in TGF-beta2(-/-) eyes express proliferating cell nuclear antigen (PCNA) and exhibit increased levels of active (P42/44)mitogen-activated protein kinase (phospho-(P42/44)MAPK), characteristics consistent with proliferative endothelial cells. In contrast to normal vitreal vessels, collagen IV expression exhibited a disorganized pattern in the TGF-beta2(-/-) vitreal vessels, suggesting vessel disorganization and possibly a breakdown of vessel basal laminae. Moreover, vitreal vessels of TGF-beta2(-/-) mice lack expression of pericyte markers (CD13, alpha smooth muscle actin) and show ultrastructural changes consistent with pericyte degeneration. The accumulating vitreal blood vessels of TGF-beta2(-/-) mice, while maintaining expression of the endothelial marker von Willebrand Factor, show a significant decrease in the expression of tbdn-1. We addressed the functional role of tbdn-1 in the regulation of vitreal blood vessels using an in vitro model of choroid-retina capillary outgrowth. Clones of the RF/6A fetal choroid-retina endothelial cell line showing suppression of tbdn-1 levels after overexpression of an antisense TBDN-1 cDNA display a significant increase in the formation of capillary-like structures in vitro compared with controls. These findings suggest that tbdn-1 inhibits capillary-like formation in vitro and may serve to dampen vitreal blood vessel formation preceding the regression of the vitreal vasculature during development. Our results also suggest that tbdn-1 may participate with TGF-beta2 in regulating normal development of the vitreal vasculature.  相似文献   

4.
Summary Endothelial specialization is a prominent feature within distinct capillary beds of organs such as mammalian kidney, yet immunological markers for functionally distinct subpopulations of cultured endothelial cells from tissue sources such as kidney have not been available. We developed a simple and reproducible isolation and culture procedure to recover human renal microvascular endothelial cells (HRMEC) from the cortex of unused donor kidneys. This procedure yields highly purified preparations of cells that display endothelial markers that include Factor VIII antigen, acetyl-LDL receptors, and determinants that bind Ulex europaeus lectin. HRMEC assemble into capillary-like cord and tube structures when plated on the surface of basement membrane-like matrix (BMM) in media containing phorbol myristate acetate. To further define subpopulations of HRMEC, we generated a panel of monoclonal antibodies and screened for those recognizing cell surface determinants. One monoclonal antibody recovered from this screen recognized a cell surface protein expressed on a subpopulation of HRMEC that we have designated PEC-1 (pioneer endothelial cell antigen-1). Cells expressing PEC-1 extended long, interconnecting filopodial processes in response to phorbol myristate acetate and assembled into capillary-like structures when plated on BMM. Anti-PEC-1 immunoprecipitated proteins of 25 and 27 kDa. Magnetic bead separation of PEC-1 (+) cells selected cells that assemble into capillary-like cord and tube structures. The remaining PEC-1 (−) HRMEC population formed matrix adherent patches. In the kidney, the PEC-1 determinant is expressed on a small subpopulation of microvascular glomerular cells and is prominently expressed on the apical membrane of proximal tubule cells. The PEC-1 determinant discriminates among subpopulations of HRMEC, identifying a subpopulation that contributes to assembly of capillary-like structures.  相似文献   

5.
Expression of the polyoma virus middle T (mT) oncogene in vivo is associated with a profound subversion of normal vascular development, which results in the formation of endothelial tumors (hemangiomas). In an attempt to understand the molecular mechanisms responsible for this phenomenon, we have investigated, in an in vitro system, the morphogenetic properties of endothelial cells expressing this oncogene. mT-expressing endothelioma (End) cells grown within fibrin gels formed large hemangioma-like cystic structures. All End cell lines examined expressed high levels of fibrinolytic activity resulting from increased production of urokinase-type plasminogen activator and decreased production of plasminogen activator inhibitors. Neutralization of excess proteolytic activity by exogenously added serine protease inhibitors corrected the aberrant in vitro behavior of End cells and allowed the formation of capillary-like tubules. These results suggest that tightly controlled proteolytic activity is essential for vascular morphogenesis and that physiological protease inhibitors play an important regulatory role in angiogenesis.  相似文献   

6.
Caveolin-1 expression enhances endothelial capillary tubule formation.   总被引:21,自引:0,他引:21  
The level of caveolin-1 expression closely correlates with the oncogenic transformation of NIH 3T3 cells, the proliferation of human cancer cells, and the differentiation of adipocytes and muscle cells. However, the role of caveolin-1 in endothelial cell proliferation and differentiation remains unknown. Here, we have shown that angiogenic growth factors that stimulate endothelial cell proliferation lead to dramatic reductions in caveolin-1 expression. In addition, using an in vitro Matrigel assay system, we studied the potential role of caveolin-1 in capillary-like tubule formation (i.e. endothelial cell differentiation) using human microvascular endothelial cells (HMEC-1). We showed that the level of endogenous caveolin-1 expression increased in a time-dependent manner when endothelial cells underwent differentiation and that the maximum level of caveolin-1 expression occurred just prior to the formation of capillary-like tubules. Interestingly, overexpression of caveolin-1, via an adenoviral gene delivery system, clearly accelerated endothelial cell differentiation/tubule formation and led to a dramatic approximately 3-fold increase in the number of capillary-like tubular structures. Conversely, down-regulation of caveolin-1 expression, via an antisense adenoviral approach, reduced the number of capillary-like tubules formed by >10-fold. Consistent with the unique function of caveolin-1 in interacting with key signaling molecules, delivery of the caveolin-1 scaffolding domain into the cytoplasm of living endothelial cells was also sufficient to enhance capillary-like tubule formation. Taken together, these results clearly demonstrate that caveolin-1 and the caveolin-1 scaffolding domain play an important positive role in the regulation of endothelial cell differentiation, a prerequisite step in the process of angiogenesis.  相似文献   

7.
Human endothelial cells can be induced to form capillary-like tubular networks in collagen gels. We have used this in vitro model and representational difference analysis to identify genes involved in the formation of new blood vessels. HESR1 (HEY-1/HRT-1/CHF-2/gridlock), a basic helix-loop-helix protein related to the hairy/enhancer of split/HES family, is absent in migrating and proliferating cultures of endothelial cells but is rapidly induced during capillary-like network formation. HESR1 is detectable in all adult tissues and at high levels in well vascularized organs such as heart and brain. Its expression is also enriched in aorta and purified capillaries. Overexpression of HESR1 in endothelial cells down-regulates vascular endothelial cell growth factor receptor-2 (VEGFR2) mRNA levels and blocks proliferation, migration, and network formation. Interestingly, reduction of expression of HESR1 by antisense oligonucleotides also blocks endothelial cell network formation in vitro. Finally, HESR1 expression is altered in several breast, lung, and kidney tumors. These data are consistent with a temporal model for HESR1 action where down-regulation at the initiation of new vessel budding is required to allow VEGFR2-mediated migration and proliferation, but re-expression of HESR1 is necessary for induction of tubular network formation and continued maintenance of the mature, quiescent vessel.  相似文献   

8.
It has previously been shown that mammary stromal cells possess the ability to maintain a fibroblast-like phenotype or differentiate in vitro into mature adipocytes in a hormone-dependent manner. This paper reports that rat mammary stromal cells can also differentiate into capillary-like structures in vitro when cultured on a reconstituted basement membrane (RBM). The differentiation potential of mammary stromal cells was compared with that of human umbilical vein endothelial cells (HUVEC) and 3T3-L1 preadipocytes. When cultured on plastic, mammary stromal cells, 3T3-L1 and HUVEC maintained a fibroblast-like phenotype. Mammary stromal cells and 3T3-L1, but not HUVEC, differentiated into mature adipocytes when cultured in adipogenic medium. When plated on reconstituted basement membrane, all three cell types began to migrate and organize themselves into an interconnected capillary network. By 18-20 h, mammary stromal cells organized into complex, highly branched capillary-like tubules whereas 3T3-L1 cells and HUVEC formed more simple structures. Cross-sectional analysis demonstrated the presence of an internal lumen. Mammary stromal cells were unique in their ability to progressively develop into a three-dimensional, highly branched network invading the RBM surface. The network formation was enhanced by the presence of vascular endothelial growth factor (VEGF) and was inhibited by the anti-angiogenic drug suramin. Western blotting analysis demonstrated the presence of the endothelial-specific marker flk-1, as well as the presence of the tight-junction-associated protein ZO-1. Mammary stromal cell differentiation into capillary structures was not a terminal state, since these cells were still able to differentiate into adipocytes when exposed to adipogenic medium. These findings suggest that mammary stromal cells differentiate into fibroblasts, adipocytes or vascular structures in a hormone- and substatum-dependent manner, and may explain the dramatic changes in stromal composition during both normal mammary gland development and tumorigenesis.  相似文献   

9.
The formation of new blood vessels by sprouting angiogenesis is tightly regulated by contextual cues that affect angiogeneic growth factor signaling. Both constitutive activation and loss of Akt kinase activity in endothelial cells impair angiogenesis, suggesting that Akt dynamics mediates contextual microenvironmental regulation. We explored the temporal regulation of Akt in endothelial cells during formation of capillary-like networks induced by cell–cell contact with vascular smooth muscle cells (vSMCs) and vSMC-associated VEGF. Expression of constitutively active Akt1 strongly inhibited network formation, whereas hemiphosphorylated Akt1 epi-alleles with reduced kinase activity had an intermediate inhibitory effect. Conversely, inhibition of Akt signaling did not affect endothelial cell migration or morphogenesis in vSMC cocultures that generate capillary-like structures. We found that endothelial Akt activity is transiently blocked by proteasomal degradation in the presence of SMCs during the initial phase of capillary-like structure formation. Suppressed Akt activity corresponded to the increased endothelial MAP kinase signaling that was required for angiogenic endothelial morphogenesis. These results reveal a regulatory principle by which cellular context regulates Akt protein dynamics, which determines MAP kinase signaling thresholds necessary drive a morphogenetic program during angiogenesis.  相似文献   

10.
Tumor endothelial marker (TEM) 5 is an adhesion G-protein-coupled receptor upregulated in endothelial cells during tumor and physiologic angiogenesis. So far, the mechanisms leading to upregulation of TEM5 and its function during angiogenesis have not been identified. Here, we report that TEM5 expression in endothelial cells is induced during capillary-like network formation on Matrigel, during capillary morphogenesis in a three-dimensional collagen I matrix, and upon confluence on a two-dimensional matrix. TEM5 expression was not induced by a variety of soluble angiogenic factors, including VEGF and bFGF, in subconfluent endothelial cells. TEM5 upregulation was blocked by toxin B from Clostridium difficile, an inhibitor of the small GTPases Rho, Rac, and Cdc42. The Rho inhibitor C3 transferase from Clostridium botulinum did not affect TEM5 expression, whereas the Rac inhibitor NSC23766 suppressed TEM5 upregulation. An excess of the soluble TEM5 extracellular domain or an inhibitory monoclonal TEM5 antibody blocked contact inhibition of endothelial cell proliferation resulting in multilayered islands within the endothelial monolayer and increased vessel density during capillary formation. Based on our results we conclude that TEM5 expression during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of proliferation in endothelial cells.  相似文献   

11.
In multicellular organisms, morphogenesis is a highly coordinated process that requires dynamically regulated adhesion between cells. An excellent example of cellular morphogenesis is the formation of the neural tube from the flattened epithelium of the neural plate. Cysteine-rich motor neuron protein 1 (CRIM1) is a single-pass (type 1) transmembrane protein that is expressed in neural structures beginning at the neural plate stage. In the frog Xenopus laevis, loss of function studies using CRIM1 antisense morpholino oligonucleotides resulted in a failure of neural development. The CRIM1 knockdown phenotype was, in some cases, mild and resulted in perturbed neural fold morphogenesis. In severely affected embryos there was a dramatic failure of cell adhesion in the neural plate and complete absence of neural structures subsequently. Investigation of the mechanism of CRIM1 function revealed that it can form complexes with ?-catenin and cadherins, albeit indirectly, via the cytosolic domain. Consistent with this, CRIM1 knockdown resulted in diminished levels of cadherins and ?-catenin in junctional complexes in the neural plate. We conclude that CRIM1 is critical for cell-cell adhesion during neural development because it is required for the function of cadherin-dependent junctions.  相似文献   

12.
Cysteine-rich motor neuron 1 (CRIM1) is expressed in vascular endothelial cells and plays a crucial role in angiogenesis. In this study, we investigated the expression of CRIM1 mRNA in human umbilical vein endothelial cells (HUVECs). CRIM1 mRNA levels were not altered in vascular endothelial growth factor (VEGF)-stimulated monolayer HUVECs or in cells in collagen gels without VEGF. In contrast, the expression of CRIM1 mRNA was elevated in VEGF-stimulated cells in collagen gels. The increase in CRIM1 mRNA expression was observed even at 2 h when HUVECs did not form tubular structures in collagen gels. Extracellular signal-regulated kinase (Erk) 1/2, Akt and focal adhesion kinase (FAK) were activated by VEGF in HUVECs. The VEGF-induced expression of CRIM1 mRNA was significantly abrogated by PD98059 or PF562271, but was not affected by LY294002. These results demonstrate that CRIM1 is an early response gene in the presence of both angiogenic stimulation (VEGF) and environmental (extracellular matrix) factors, and Erk and FAK might be involved in the upregulation of CRIM1 mRNA expression in vascular endothelial cells.  相似文献   

13.
14.
Steroid hormones alter several aspects of microvascular function within the CNS. Both microvessel formation and blood-brain barrier expression appear to be influenced by interactions between astrocytes and endothelial cells. To determine if steroids alter astrocyte-endothelial interactions, we studied their effects on astroglial-induced microvessel morphogenesis in vitro. C6 astroglial cells induce bovine retinal microvascular endothelial cells to differentiate into capillary-like structures. Dexamethasone, hydrocortisone, and progesterone at 10 nM inhibited C6-induced microvessel morphogenesis by 75, 35, and 30%, respectively. Inhibition by dexamethasone was both time and concentration dependent, reaching 80-100% at 1 microM. Tetrahydrocortisone and 17 alpha-hydroxyprogesterone had only marginal inhibitory effects. Cortexolone, a glucocorticoid receptor antagonist, blocked inhibition by dexamethasone. Progesterone receptors were expressed in C6 but not bovine retinal microvascular endothelial cells, identifying the astroglial cell as the likely effector of progesterone-mediated inhibition. Astroglial cells were further implicated as the effectors of steroid-mediated inhibition because none of the steroids inhibited astroglial-independent capillary-like structure formation in response to a reconstituted extracellular matrix, Matrigel. These findings are evidence that steroids modulate neural microvascular endothelial cell functions indirectly through perivascular astrocytes via a receptor-mediated mechanism.  相似文献   

15.
CEA-related cell adhesion molecule 1 (CEACAM1) exhibits angiogenic properties in in vitro and in vivo angiogenesis assays. CEACAM1 purified from granulocytes and endothelial cell media as well as recombinant CEACAM1 expressed in HEK293 cells stimulate proliferation, chemotaxis, and capillary-like tube formation of human microvascular endothelial cells. They increase vascularization of chick chorioallantoic membrane and potentiate the effects of vascular endothelial growth factor (VEGF)165. VEGF165 increases CEACAM1 expression both on the mRNA and the protein level. VEGF165-induced endothelial tube formation is blocked by a monoclonal CEACAM1 antibody. These data suggest that CEACAM1 is a major effector of VEGF in the early microvessel formation. Since CEACAM1 is expressed in tumor microvessels but not in large blood vessels, CEACAM1 may be a target for the inhibition of tumor angiogenesis.  相似文献   

16.
Disabled-2 (DAB2) is an adaptor protein implicated in signal transduction pathways and in protein traffic regulation. Here, we show that DAB2 is highly expressed in human endothelial cells. DAB2 silencing in endothelial cells by lentiviral-mediated small hairpin RNA expression affects cell migration and differentiation into capillary-like structures while increasing cell proliferation and viability. DAB2 knockdown causes activation of the Src-FAK signal pathway, extracellular-signal regulated kinase and c-Jun NH2-terminal kinase activation, and inhibition of p38 phosphorylation. In DAB2 silenced endothelial cells, pharmacological inhibition of Src with its specific inhibitor PP2 abolishes focal adhesion kinase activation and restores differentiation of endothelial cells. These results suggest that DAB2, via Src and focal adhesion signaling, plays a role in human endothelial cell function.  相似文献   

17.
18.
An unbiased cDNA expression phage library derived from bone-marrow endothelial cells was used to identify novel surface adhesion molecules that might participate in metastasis. Herein we report that reticulocalbin 1 (RCN1) is a cell surface-associated protein on both endothelial (EC) and prostate cancer (PCa) cell lines. RCN1 is an H/KDEL protein with six EF-hand, calcium-binding motifs, found in the endoplasmic reticulum. Our data indicate that RCN1 also is expressed on the cell surface of several endothelial cell lines, including human dermal microvascular endothelial cells (HDMVECs), bone marrow endothelial cells (BMEC), and transformed human bone marrow endothelial cells (TrHBMEC). While RCN1 protein levels were highest in lysates from HDMVEC, this difference was not statistically significant compared BMEC and TrHBMEC. Given preferential adhesion of PCa to bone-marrow EC, these data suggest that RCN1 is unlikely to account for the preferential metastasis of PCa to bone. In addition, there was not a statistically significant difference in total RCN1 protein expression among the PCa cell lines. RCN1 also was expressed on the surface of several PCa cell lines, including those of the LNCaP human PCa progression model and the highly metastatic PC-3 cell line. Interestingly, RCN1 expression on the cell surface was upregulated by tumor necrosis factor alpha treatment of bone-marrow endothelial cells. Taken together, we show cell surface localization of RCN1 that has not been described previously for either PCa or BMEC and that the surface expression on BMEC is regulated by pro-inflammatory TNF-alpha.  相似文献   

19.
In multicellular organisms, morphogenesis is a highly coordinated process that requires dynamically regulated adhesion between cells. An excellent example of cellular morphogenesis is the formation of the neural tube from the flattened epithelium of the neural plate. Cysteine-rich motor neuron protein 1 (CRIM1) is a single-pass (type 1) transmembrane protein that is expressed in neural structures beginning at the neural plate stage. In the frog Xenopus laevis, loss of function studies using CRIM1 antisense morpholino oligonucleotides resulted in a failure of neural development. The CRIM1 knockdown phenotype was, in some cases, mild and resulted in perturbed neural fold morphogenesis. In severely affected embryos there was a dramatic failure of cell adhesion in the neural plate and complete absence of neural structures subsequently. Investigation of the mechanism of CRIM1 function revealed that it can form complexes with ß-catenin and cadherins, albeit indirectly, via the cytosolic domain. Consistent with this, CRIM1 knockdown resulted in diminished levels of cadherins and ß-catenin in junctional complexes in the neural plate. We conclude that CRIM1 is critical for cell-cell adhesion during neural development because it is required for the function of cadherin-dependent junctions.  相似文献   

20.
Astrocytes maintain a unique association with the central nervous system microvasculature and are thought to play a role in neural microvessel formation and differentiation. We investigated the influence of astroglial cells on neural microvascular endothelial differentiation in vitro. Using an astroglial-endothelial coculture system, rat brain astrocytes and C6 cells of astroglial lineage are shown to induce bovine retinal microvascular endothelial (BRE) cells to form capillary-like structures. Light microscopic evidence for endothelial reorganization began within 48 hours and was complete 72-96 hours following the addition of BRE cells to 1-day-old astroglial cultures. The extent of BRE reorganization was quantitated by computer-assisted analysis and shown to be dependent upon the density of both the BRE and C6 cells within the cocultures. Coculture conditions in which BRE cells were separated from C6 cells by porous membranes failed to generate this endothelial cell change. Likewise, C6-conditioned media and C6-endothelial coculture conditioned media did not induce BRE cell reorganization. Extracellular laminin within the C6-endothelial cocultures, identified by indirect immunofluorescence, was concentrated at the endothelial-astroglial interface of capillary-like structures consistent with incipient basement membrane formation. Astroglial cells accumulated adjacent to capillary-like structures suggesting the presence of bidirectional influences between the reorganized endothelial cells and astroglia. This is the first demonstration of astroglial induction of angiogenesis in vitro and these findings support a functional role for perivascular astrocytes in the vascularization of neural tissue such as retina and brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号