首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C-reactive protein (CRP) is an acute phase reactant which humoral concentration rises drastically following tissue injury or inflammation. CRP of all species binds to phosphorylcholine residues. In the present studies CRP was found to inhibit platelet-activating factor-induced platelet aggregation, and to stabilize platelet membranes against the lytic effect of lysophosphatidylcholine. Inhibition of platelet aggregation by CRP is accompanied by an inhibition of arachidonic acid release from both phosphatidylcholine and phosphatidylinositol. This suggests that phospholipases are inhibited. Hydrolysis of multilamellar dipalmitoylphosphatidylcholine liposomes by purified phospholipase A2, was also inhibited by CRP. These results suggest that CRP can stabilize membranes from the detergent-like effects of lysolipids and from potentially toxic materials such as platelet-activating factor. By inhibition of phospholipases, production of inflammatory mediators would be blocked. CRP might thus act as an early protective recognition mechanism in acute inflammatory states.  相似文献   

2.
C-reactive protein (CRP) is an acute phase reactant which shares numerous functional characteristics with the immunoglobulins. In the present study CRP was found to inhibit the aggregation of human platelets stimulated by either modified human immunoglobulin or thrombin. This effect did not involve chelation of calcium or cytotoxicity, and was overcome by larger amounts of the aggregating agents. CRP also inhibited the activation but not the activity of platelet factor 3 and the release of beta-glucuronidase. Thus, CRP can inhibit multiple platelet reactivities. We suggest that this property of CRP may play an important role in the control of platelet responsiveness during reactions of inflammation, defense, and repair.  相似文献   

3.

Introduction

Thrombotic and inflammatory mechanisms are involved in the pathophysiology of acute coronary syndrome (ACS). The aim of the study was the evaluation of inflammation (white blood cells count/WBC, C-reactive protein/CRP, interleukin-6/IL-6) and platelet (platelet count/PLT, mean platelet volume/MPV, large platelet/LPLT, beta-thromboglobulin/β-TG) biomarkers in the groups of ACS patients depending on the severity of signs and symptoms and compared to controls without coronary artery disease.

Materials and methods

The study group included 93 patients categorized into 3 subgroups depending on the severity of signs and symptoms of ACS. PLT, MPV, LPLT, and WBC were determined on hematological analyzer, IL-6 and β-TG were measured using the ELISA method.

Results

In the whole group of ACS patients WBC, CRP, IL-6, MPV, and β-TG were significantly higher as compared to controls. Analyzing the inflammation and platelet biomarkers depending on the severity of signs and symptoms in comparison to controls, statistically significant differences for above-mentioned parameters were also found. There were no significant differences between the advancement of coronary artery changes and inflammation as well as platelet parameters, except for CRP concentrations. The AUCs for all inflammation parameters tested were similar, however the highest AUCs showed WBC and CRP. Among platelet parameters the highest AUC revealed β-TG.

Conclusion

Markers of inflammation and platelet activation may be associated to myocardial ischemia and myocardial injury. WBC, CRP and IL-6 as inflammation parameters and MPV and β-TG as platelet biomarkers may be useful indicators of the presence of coronary artery disease.  相似文献   

4.
Procalcitonin has been shown to be useful in separating infection from non-infective disorders. However, infection is often paralleled by tissue inflammation. Most studies supporting the use of procalcitonin were confounded by more significant inflammation in the infection group. Few studies have examined the usefulness of procalcitonin when adjusted for inflammation.Pleural inflammation underlies the development of most exudative effusions including pleural infection and malignancy. Pleurodesis, often used to treat effusions, involves provocation of intense aseptic pleural inflammation. We conducted a two-part proof-of-concept study to test the specificity of procalcitonin in differentiating infection using cohorts of patients with pleural effusions of infective and non-infective etiologies, as well as subjects undergoing pleurodesis.

Methods

We measured the blood procalcitonin level (i) in 248 patients with pleural infection or with non-infective pleural inflammation, matched for severity of systemic inflammation by C-reactive protein (CRP), age and gender; and (ii) in patients before and 24–48 hours after induction of non-infective pleural inflammation (from talc pleurodesis).

Results

1) Procalcitonin was significantly higher in patients with pleural infection compared with controls with non-infective effusions (n = 32 each group) that were case-matched for systemic inflammation as measured by CRP [median (25–75%IQR): 0.58 (0.35–1.50) vs 0.34 (0.31–0.42) µg/L respectively, p = 0.003]. 2) Talc pleurodesis provoked intense systemic inflammation, and raised serum CRP by 360% over baseline. However procalcitonin remained relatively unaffected (21% rise). 3) Procalcitonin and CRP levels did not correlate. In 214 patients with pleural infection, procalcitonin levels did not predict the survival or need for surgical intervention.

Conclusion

Using a pleural model, this proof-of-principle study confirmed that procalcitonin is a biomarker specific for infection and is not affected by non-infective inflammation. Procalcitonin is superior to CRP in distinguishing infection from non-infective pleural diseases, even when controlled for the level of systemic inflammation.  相似文献   

5.
The presence of a membrane receptor for C-reactive protein (CRP-R) on the human monocytic cell line U-937 was the basis for determining the metabolic fate of the receptor-bound ligand and the functional response of the cells to CRP. Internalized [125I]CRP was measured by removing cell surface-bound [125I]CRP with pronase. Warming cells to 37 degrees C resulted in the internalization of approx. 50% of the receptor-bound [125I]CRP or receptor-bound [125I]CRP-PC-KLH complexes. U-937 cells degraded about 25% of the internalized [125I]CRP into TCA-soluble radiolabeled products. The lysosomotrophic agents (chloroquine, NH4Cl) greatly decreased the extent of CRP degradation without altering binding or internalization. In addition, a pH less than 4.0 resulted in dissociation of receptor-bound [125I]CRP. Treatment of U-937 cell with monensin, a carboxylic ionophore which prevents receptor recycling, resulted in accumulation of internalized [125I]CRP. Therefore, it appears that the CRP-R complex is internalized into an endosomal compartment where the CRP is uncoupled from its receptor and subsequently degraded. CRP initiated the differentiation of the U-937 cells so that they acquired the ability to produce H2O2 and also display in vitro tumoricidal activity. The results support the concept that internalization and degradation of CRP leads to the activation of monocytes during inflammation.  相似文献   

6.

Background

Newly formed platelets are associated with increased aggregation and adverse outcomes in patients with coronary artery disease (CAD). The mechanisms involved in the regulation of platelet turnover in patients with CAD are largely unknown.

Aim

To investigate associations between platelet turnover parameters, thrombopoietin and markers of low-grade inflammation in patients with stable CAD. Furthermore, to explore the relationship between platelet turnover parameters and type 2 diabetes, prior myocardial infarction, smoking, age, gender and renal insufficiency.

Methods

We studied 581 stable CAD patients. Platelet turnover parameters (immature platelet fraction, immature platelet count, mean platelet volume, platelet distribution width and platelet large cell-ratio) were determined using automated flow cytometry (Sysmex XE-2100). Furthermore, we measured thrombopoietin and evaluated low-grade inflammation by measurement of high-sensitive CRP and interleukin-6.

Results

We found strong associations between the immature platelet fraction, immature platelet count, mean platelet volume, platelet distribution width and platelet large cell ratio (r = 0.61–0.99, p<0.0001). Thrombopoietin levels were inversely related to all of the platelet turnover parameters (r = −0.17–−0.25, p<0.0001). Moreover, thrombopoietin levels were significantly increased in patients with diabetes (p = 0.03) and in smokers (p = 0.003). Low-grade inflammation evaluated by high-sensitive CRP correlated significantly, yet weakly, with immature platelet count (r = 0.10, p = 0.03) and thrombopoietin (r = 0.16, p<0.001). Also interleukin-6 correlated with thrombopoietin (r = 0.10, p = 0.02).

Conclusion

In stable CAD patients, thrombopoietin was inversely associated with platelet turnover parameters. Furthermore, thrombopoietin levels were increased in patients with diabetes and in smokers. However, low-grade inflammation did not seem to have a substantial impact on platelet turnover parameters.  相似文献   

7.
The purpose of this study was to investigate the associations among central obesity, inflammation, and left ventricular (LV) diastolic dysfunction by structural equation modeling. Echocardiographic parameters were assessed in 102 otherwise-healthy adults over age 30. The participants were classified as having LV diastolic dysfunction by echocardiographic findings including mitral inflow E/A ratio <1, deceleration time >220 cm/s, or decreased peak annular early diastolic velocity in tissue Doppler imaging or otherwise the control group. Serum C-reactive protein (CRP) and lipid profile were also measured. The homeostasis model of insulin resistance (HOMA) was calculated. Central obesity was assessed by computerized tomography (CT) at the L4 level. In a multivariate regression analysis, the relationship between visceral adipose tissue (VAT) and LV diastolic dysfunction became insignificant when CRP was introduced into the model, although CRP itself was significantly associated with LV diastolic dysfunction (odds ratio (OR): 1.32, 95% confidence interval (CI): 1.01-1.72, P = 0.04). A significant correlation was also found between VAT and CRP (r = 0.70; P < 0.001). We then performed path analysis as illustrated by the structural equation model. This proved our hypotheses that VAT might affect LV diastolic dysfunction through the effect of CRP (total fat load with inflammation (B = 1.133, P < 0.001) and that inflammation might affect LV diastolic dysfunction (B = 0.373. P < 0.001)). Using structural equation modeling, we concluded that higher amounts of VAT were associated with low-grade inflammation and this may lead to subclinical LV diastolic dysfunction in otherwise-healthy subjects.  相似文献   

8.
Blood platelets and C-reactive protein (CRP) are both used clinically as markers of ongoing inflammation, and both participate actively in inflammatory responses, although the biological effects are still incompletely understood. Rapidly adhering platelets express receptors for complement factor 1q (C1q) and the Fc part of immunoglobulin G (IgG), and CRP is known to activate/regulate complement via C1q binding, and to ligate FcgammaRs. In the present study, we used normal human IgG pre-adsorbed to a well-characterized methylated surface as a model solid-phase immune complex when investigating the effects of CRP and C1q on platelet adhesion and activation. Protein adsorption was characterized using ellipsometry and polyclonal antibodies, and human serum albumin (HSA) and non-coated surfaces were used as reference surfaces. Platelet adhesion to IgG and HSA was inhibited by both C1q and CRP. Furthermore, CRP (moderately) and C1q (markedly) decreased the spreading of adhering platelets. The combination of C1q and CRP was slightly more potent in reducing cell adhesion to IgG, and also impaired the adhesion to HSA and non-coated surfaces. Platelet production of thromboxane B2 (TXB(2)) was also reduced by C1q both in the presence and absence of CRP, whereas CRP alone had no effect on TXB(2) production. We conclude that CRP and C1q regulate the behaviour of platelets, and that this may be an important immunoregulatory mechanism during inflammatory conditions.  相似文献   

9.
Platelet activation contributes to organs failure in inflammation and plays an important role in endotoxemia. Clopidogrel inhibits platelet aggregation and activation. However, the role of clopidogrel in modulating inflammatory progression of endotoxemia remains largely unexplored. Therefore, we investigated the role of clopidogrel on the activation of platelet and leukocytes in lipopolysaccharide (LPS)‐induced inflammation in mice. Animals were treated with clopidogrel or vehicle before LPS induction. The expression of neutrophil‐platelet aggregates and platelet activation and tissue factor was determined. Immunofluorescence was used to analyze platelet‐leukocyte interactions and tissue factor (TF) expression on leukocytes. Clopidogrel pretreatment markedly decreased lung damage, inhibited platelet‐neutrophil aggregates and TF expression. In addition, clopidogrel reduced thrombocytopenia and affected the number of circulating white blood cell in endotoxemia mice. Moreover, clopidogrel also reduced platelet shedding of CD40L and CD62P in endotoxemic mice. Taken together, clopidogrel played an important role through reducing platelet activation and inflammatory process in endotoxemia.  相似文献   

10.

Introduction

Progression of arterial involvement is often observed in patients with Takayasu arteritis (TA) thought to be in remission. This reflects the failure of currently used biomarkers and activity criteria to detect smouldering inflammation occurring within arterial wall. Pentraxin-3 (PTX3) is a soluble pattern recognition receptor produced at sites of inflammation and could reveal systemic as well as localized inflammatory processes. We verified whether the blood concentrations of PTX3 and of C-reactive protein (CRP) in patients with Takayasu arteritis (TA) might reflect vascular wall involvement, as assessed by signal enhancement after contrast media administration, and the progression of arterial involvement.

Methods

A cross-sectional single-centre study was carried out on 42 patients with TA that comprised assessment of PTX3, of CRP and erythrocyte sedimentation velocity (ESR). In total, 20 healthy controls and 20 patients with Systemic Lupus Erythematous (SLE) served as controls. Vascular imaging was carried out by magnetic resonance angiography, doppler ultrasonography and computed tomography angiography.

Results

Patients with TA and SLE had higher plasmatic PTX3 and CRP concentrations than healthy controls (P = 0.009 and 0.017, respectively). PTX3 levels did not correlate with those of CRP. Patients with active systemic TA had significantly higher concentrations of CRP but similar levels of PTX3 than patients with quiescent disease. In contrast, patients with vascular inflammation detectable at imaging had higher PTX3 concentrations (P = 0.016) than those in which vessel inflammation was not evident, while CRP levels were similar. The concentration of PTX3 but not that of CRP was significantly higher in TA patients with worsening arterial lesions that were not receiving antagonists of tumor necrosis factor-α or interleukin-6.

Conclusions

Arterial inflammation and progression of vascular involvement influence plasma PTX3 levels in TA, while levels of CRP accurately reflect the burden of systemic inflammation. These results support the contention that PTX3 reflects different aspects of inflammation than CRP and might represent a biomarker of actual arteritis in TA.  相似文献   

11.
C-reactive protein (CRP), an acute phase reactant which increases in concentration during inflammation, has been found to bind to human T cells and to inhibit certain of their functions. In the present study CRP was found to display a binding specificity for theta-bearing cells from mouse peripheral lymphoid tissue but not for thymus cells. CRP inhibited the proliferative response in a similar manner in both murine and human mixed lymphocyte reactions. This inhibition was prevented by the addition of the CRP substrate, pneumococcal C-polysaccharide (CPS), and was not a result of toxicity of CRP for lymphocytes. By contrast the response of spleen lymphocytes to mitogenic Con A concentrations was not altered by CRP. CRP also exerted an inhibitory effect on the in vitro generation of cytolytic T lymphocytes (CL) in mixed lymphocyte reactions of mouse spleen cells. The expression of the cytolytic process by T cells sensitized either in vivo or in mixed lymphocyte cultures was not altered in the presence of CRP. Therefore, CRP appears to influence the inductive phase of the allograft response and perhaps exerts a regulatory effect on cellular immune responsiveness during inflammatory reactions.  相似文献   

12.
Binding of fibronectin by the acute phase reactant C-reactive protein   总被引:4,自引:0,他引:4  
Following tissue injury, the concentration of C-reactive protein (CRP) is known to increase in plasma rapidly, while that of fibronectin often decreases. We now report that CRP immobilized onto polystyrene surfaces binds soluble plasma fibronectin (Kd = 1.5 X 10(-8) M). The binding of fibronectin by CRP was relatively sensitive to ionic conditions, being maximal at physiological NaCl concentrations. A decrease of pH from neutral to 5-6 greatly enhanced the binding of fibronectin by CRP. Ca2+ ions at greater than 1 mM inhibited binding. No binding was observed between fibronectin and CRP in soluble phase. CRP was found also to bind fibrinogen, which competed with fibronectin for CRP-binding sites. This was shown to explain why fibronectin was effectively bound from serum but not from plasma by immobilized CRP. The amount of CRP immobilized was critical in binding fibronectin; a too dense molecular layer of CRP inhibited the binding, as did the postsaturation of free surfaces with albumin, which itself was not bound by CRP. Soluble fibronectin agglutinated CRP-coated latex particles. Most or all of the CRP-binding activity in the fibronectin molecule was localized to the 120-140-kilodalton fragment, which also contains cell-binding and heparin-binding domains of fibronectin. The results provide a link between acute phase response and tissue repair.  相似文献   

13.
The enzymatic degradation of insoluble elastin has been studied at several pH values using purified pepsin and cathepsin D, and neutrophil extracts. Pepsin degraded elastin throughout the pH range of 1.2-4.0 with the optimum pH below 2.0. Molecular sieve chromatography and gel electrophoresis indicated that a spectrum of molecular weight degradation products was produced. The degradation by pepsin was inhibited by sodium dodecyl sulfate (SDS), NaCl and pepstatin. Cathepsin D, which, like pepsin, degrades hemoglobin at acid pH and is inhibited by pepstatin, had no activity against insoluble elastin in the pH range of 3.2-7.2. Extracts of neutrophils degraded elastin above pH 4.0. The pH profile of elastin degradation by neutrophil extracts generally followed that of purified human leukocyte elastase. Our results suggest that during alimentation or pulmonary aspiration of gastric contents, extracellular elastin may be digested by gastric juice at acid pH. Inflammatory cells would not appear to be capable of contributing to such actions until local pH approaches neutrality. Cathepsin D, a major constituent of inflammatory cells, does not digest all types of connective tissue proteins.  相似文献   

14.
C反应蛋白与动脉粥样硬化   总被引:41,自引:0,他引:41  
Xie LQ  Wang X 《生理科学进展》2004,35(2):113-118
人类C反应蛋白 (C reactiveprotein ,CRP)是在感染和组织损伤时血浆浓度快速、急剧升高的主要的急性期蛋白。CRP可以激活补体和加强吞噬细胞的吞噬而起调理作用 ,从而清除入侵机体的病原微生物和损伤、坏死、凋亡的组织细胞 ,在机体的天然免疫过程中发挥重要的保护作用。关于CRP的研究已经有 70多年的历史 ,传统观点认为CRP是一种非特异的炎症标志物 ,但近十年的研究揭示了CRP直接参与了炎症与动脉粥样硬化等心血管疾病 ,并且是心血管疾病最强有力的预示因子与危险因子  相似文献   

15.
It was previously demonstrated that C-reactive protein (CRP) inhibits platelet aggregation and release reactions, activation of platelet factor 3, and platelet-dependent clot retraction. Multiple considerations including selective inhibition of secondary wave aggregation suggested that CRP exerted its inhibitory effects by interfering with the release of endogenous ADP. In the present investigation, CRP was found by direct assay to inhibit the release of endogenous ADP and/or serotonin concomitant with inhibition of platelet aggregation stimulated by ADP, epinephrine, thrombin, and AHGG. CRP did not induce an increase in the basal level of platelet cAMP, suggesting independence of a direct effect upon this mediator system. Furthermore, CRP did not inhibit the aggregation and secretion induced by the antibiotic ionophore A23187, suggesting the absence of a direct effect upon the activation of platelet contractile elements. By contrast, CRP did inhibit both thrombin-induced release of malondialdehyde, a prostaglandin endoperoxide nonprostanoate endproduct, and platelet aggregation induced by the prostaglandin endoperoxide precursor arachidonic acid. These data, therefore, raise the possibility that CRP inhibits platelet reactivities by interfering with an aspect of porstaglandin metabolism, and that this occurs subsequent to the hydrolytic accumulation of arachidonic acid and prior to the movement of calcium from the platelet dense tubules. These studies support the concept that CRP serves to modulate platelet reactivities during acute inflammatory reactions.  相似文献   

16.

Background

Previously, several studies have shown that Tyro3, Axl, and Mertk (TAM) receptors participate in platelet activation and thrombosis. However, the role of individual receptors is not fully understood.

Methods

Using single receptor-deficient platelets from TAM knockout mice in the C57BL/6?J strain, we performed a knockout study using single TAM-deficient mice. We treated platelets isolated from TAM knockout mice with the Glycoprotein VI (GPVI) agonists convulxin, poly(PHG), and collagen-related triple-helical peptide (CRP), as well as thrombin for in-vitro experiments. We used a laser-induced cremaster arterial injury model for thrombosis experiments in vivo.

Results

Deficiency of the tyrosine kinase receptors, Axl or Tyro3, but not Mertk, inhibited aggregation, spreading, JON/A binding, and P-selectin expression of platelets in vitro. In vivo, platelet thrombus formation was significantly decreased in Axl?/? and Tyro3?/? mice, but not in Mertk?/? mice. Upon stimulation with glycoprotein VI (GPVI) agonists, tyrosine phosphorylation of signaling molecules, including spleen tyrosine kinase (Syk) and phospholipase C-γ2 (PLCγ2), was decreased in Axl?/? and Tyro3?/? platelets, but not in Mertk?/? platelets. While platelet aggregation induced by agonists did not differ in the presence or absence of the Gas6 neutralizing antibody, the platelet aggregation was inhibited by anti-Axl or anti-Tyro3 neutralizing antibodies antibody, but not the anti-Mertk antibody. Additionally, the recombinant extracellular domain of Axl or Tyro3, but not that of Mertk, also inhibited platelet aggregation.

Conclusions

These data suggest that Axl and Tyro3, but not Mertk, have an important role in platelet activation and thrombus formation, and mechanistically may do so by a pathway that regulates inside to outside signaling and heterotypic interactions via the extracellular domains of TAMs.
  相似文献   

17.
We have recently provided evidence that C-reactive protein (CRP) could act as an up-regulatable substrate for membrane-associated neutrophil serine protease(s). The resultant degradation of CRP yielded small soluble bioactive peptides that inhibit many of the proinflammatory functions of activated neutrophils and could oppose the tissue destructive potential of these cells. We report on the reverse phase HPLC separation of the small TCA-soluble peptides obtained when CRP is degraded with nonstimulated or PMA-stimulated neutrophils and purified neutrophil membranes. The amino acid sequence of seven peptides isolated from the CRP digest has been ascertained and synthetic peptides homologous to these sequences have been synthesized. Three of the synthetic peptides corresponding to residues 201-206 (CRP-III), 83-90 (CRP-IV), and 77-82 (CRP-V) of the intact protein were identified to significantly inhibit superoxide production from activated neutrophils at 50 microM whereas CRP-III and CRP-V in addition inhibited neutrophil chemotaxis at this concentration. These peptides act additively and their action likely involves the signal transduction pathways for neutrophil activation.  相似文献   

18.
Park WH  Kim HK  Nam KS  Shon YH  Jeon BH  Moon SK  Kim MG  Kim CH 《Life sciences》2004,75(25):3063-3076
Geiji-Bokryung-Hwan (GBH) was studied on antiplatelet activity in human platelet suspensions. GBH consists of the 5 herbs Cinnamomi Ramulus, Poria Cocos, Mountan Cortex Radicis, Paeoniae Radix, and Persicae Semen, which have been used in herbal medicine for thousands of years for atherosclerosis. The mechanism involved in the antiplatelet activity of GBH in human platelet suspensions was investigated. GBH inhibited platelet aggregation and Ca2+ mobilization in a concentration-dependent manner without increasing intracellular cyclic AMP and cyclic GMP. GBH had no inhibitory effect on thromboxane B2 (TXB2) production in cell-free systems. Collagen-related peptide (CRP)-induced Ca2+ mobilization is regulated by phospholipase C-2 (PLC-gamma2) activation. We evaluated the effect of GBH on tyrosine phosphorylation of PLC-gamma2 and the production of inositol-1,4,5-trisphosphate (IP3). GBH at concentrations that inhibited platelet aggregation and Ca2+ mobilization had no effects on tyrosine phosphorylation of PLC-gamma2 or on the formation of IP3 induced by CRP. Similar results were obtained with thrombin-induced platelet activation. GBH inhibited platelet aggregation and Ca2+ mobilization induced by thrombin without affecting the production of IP3. We then evaluated the effect of GBH on the binding of IP3 to its receptor. GBH at high concentrations partially blocked the binding of IP3 to its receptor. Therefore, the results suggested that GBH suppresses Ca2+ mobilization at a step distal to IP3 formation. GBH may provide a good tool for investigating Ca2+ mobilization.  相似文献   

19.
Ligand-complexed C-reactive protein (CRP), like aggregated or complexed IgG, can react with C1q and activate the classical C pathway. Whereas IgG is known to bind to the globular region and not to the collagen-like region (CLR) of C1q, the site of interaction of C1q with CRP has not been defined. CRP-trimers were prepared by cross-linking and found to bind to C1q and to activate the C system. Heat-aggregated IgG (Agg-IgG) did not block the binding of CRP-trimers to C1q, nor did CRP-trimers block binding of Agg-IgG to C1q, suggesting that CRP and IgG bind at different sites. ELISA and Western blot analysis showed that CRP-trimers bound to the CLR, whereas Agg-IgG bound only to the globular region; similarly, anti-CLR mAb inhibited binding of CRP-trimers to C1q whereas anti-globular region mAb did not. Reactivity with CRP-trimers as well as with Agg-IgG was retained after reduction/alkylation and SDS treatment of C1q. A group of 22 anti-CRP mAb directed against at least six distinct native-CRP epitopes and eight distinct neo-CRP epitopes was tested for ability to inhibit the CRP-CLR interaction; one mAb, anti-native CRP mAb 8D8, with strong inhibitory activity was identified. Fab' of 8D8 blocked binding of CRP-trimers to intact C1q as well as CLR, and also inhibited CRP (CRP-trimers and CRP-protamine complexes) induced C activation, but had no effect on C1q binding or C activation by Agg-IgG. These results indicate that a conformation-determined region on CRP binds to a sequence-determined region on the CLR of C1q in an interaction which leads to C activation. Anti-CRP and anti-C1q mAb that specifically inhibit this interaction are described.  相似文献   

20.
A multicatalytic proteinase (MCP) purified from lobster claw and abdominal muscles degrades a variety of peptide and protein substrates. The enzyme is activated by low concentrations (0.03%) of sodium dodecyl sulfate (SDS) and brief (1 min) heating at 60 degrees C. The lobster MCP can assume three stable and functionally distinct states in vitro; these are classified as the basal, heat-activated, and SDS-activated forms. The basal MCP possessed high trypsin-like peptidase activity and low chymotrypsin-like peptidase, peptidylglutamyl-peptide hydrolase, and caseinolytic activities; incubation of the basal form with SDS stimulated the peptidylglutamyl-hydrolase activity about 30-fold and inhibited the other three activities 80% to 100%. Heating the basal form stimulated caseinolytic activity about 6-fold with little effect on the peptidase activities. The heat-activated enzyme also degraded myosin, tropomyosin, troponin, and actin depolymerizing factor; alpha-actinin was resistant to proteolysis. Incubation of the heat-activated MCP with SDS inhibited the trypsin-like, chymotrypsin-like, and proteinase activities 95 to 100% and stimulated the peptidylglutamyl-hydrolase activity about 16-fold. Incubation of myosin with either the basal or the heat-activated forms in the presence of SDS generated identical proteolytic fragments of the myosin heavy chain, suggesting that SDS induced a third form that can be produced from either the basal or the heat-activated forms. The heat-activated form produced proteolytic fragments of myosin heavy chain different from those generated by either basal or heat-activated enzymes in the presence of SDS. Furthermore, 100 mM KCl stimulated the caseinolytic activity of the heat-activated form 24% and inhibited the trypsin-like and peptidylglutamyl-hydrolase activities 56 and 20%, respectively. These results, though indirect, suggest that heating induced a proteinase activity that was distinct from the three peptidase activities. Activation of the basal form with SDS was reversible, since precipitation of dodecyl sulfate with 100 mM KCl restored trypsin-like activity and inhibited peptidylglutamyl-hydrolase activity. In contrast, removal of dodecyl sulfate from the SDS-activated form that was derived from the heat-activated MCP induced its conversion to the basal form. Thus, although heat-activation was irreversible, the heat-activated form was converted back to the basal form via the SDS-activated form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号