首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LIM-nebulette (LASP2) is a small focal adhesion protein and a member of the nebulin family of actin binding proteins. This recently identified splice variant of the nebulette locus is widely expressed and highly enriched in neuronal tissue. Other than that LIM-nebulette is a focal adhesion protein and interacts with zyxin, nothing is known about its function. Given that LIM-nebulette has an identical modular organization and overlapping tissue distributions to that of LASP1, we have analyzed the role of LIM-nebulette in comparison with that of LASP1. We find that LIM-nebulette is a dynamic focal adhesion protein that increases the rate of attachment and spreading of fibroblasts on fibronectin coated surfaces. Additionally, LIM-nebulette is recruited from the cortical cytoskeleton in non-motile cells to focal adhesions at the leading edge of stimulated cells. In confluent cultures of HeLa and NIH3T3 cells, LIM-nebulette co-localizes with alpha-catenin in putative adherens junctions, whereas LASP1 is devoid of these areas. Interestingly, overexpression of LIM-nebulette in PC6 cells inhibits neurite outgrowth in response to growth factors. Collectively, our data indicate that LIM-nebulette and LASP1 have distinct roles in the actin cytoskeleton.  相似文献   

2.
Nebulin, a giant, actin-binding protein, is the largest member of a family of proteins (including N-RAP, nebulette, lasp-1 and lasp-2) that are assembled in a variety of cytoskeletal structures, and expressed in different tissues. For decades, nebulin has been thought to act as a molecular ruler, specifying the precise length of actin filaments in skeletal muscle. However, emerging evidence suggests that nebulin should not be viewed as a ruler but as an actin filament stabilizer required for length maintenance. Nebulin has also been implicated recently in an array of regulatory functions independent of its role in actin filament length regulation. In this review, we discuss the current evolutionary, biochemical, and functional data for the nebulin family of proteins - a family whose members, both large and small, function as cytoskeletal scaffolds and stabilizers.  相似文献   

3.
Zyxin is a versatile component of focal adhesions in eukaryotic cells. Here we describe a novel binding partner of zyxin, which we have named LIM-nebulette. LIM-nebulette is an alternative splice variant of the sarcomeric protein nebulette, which, in contrast to nebulette, is expressed in non-muscle cells. It displays a modular structure with an N-terminal LIM domain, three nebulin-like repeats, and a C-terminal SH3 domain and shows high similarity to another cytoskeletal protein, Lasp-1 (LIM and SH3 protein-1). Co-precipitation studies and results obtained with the two-hybrid system demonstrate that LIM-nebulette and Lasp-1 interact specifically with zyxin. Moreover, the SH3 domain from LIM-nebulette is both necessary and sufficient for zyxin binding. The SH3 domains from Lasp-1 and nebulin can also interact with zyxin, but the SH3 domains from more distantly related proteins such as vinexin and sorting nexin 9 do not. On the other hand, the binding site in zyxin is situated at the extreme N terminus as shown by site-directed mutagenesis. LIM-nebulette and Lasp-1 use the same linear binding motif. This motif shows some similarity to a class II binding site but does not contain the classical PXXP sequence. LIM-nebulette reveals a subcellular distribution at focal adhesions similar to Lasp-1. Thus, LIM-nebulette, Lasp-1, and zyxin may play an important role in the organization of focal adhesions.  相似文献   

4.
The actin-binding proteins, nebulette, and nebulin, are comprised of a four-domain layout containing an acidic N-terminal region, a repeat domain, a serine-rich-linker region, and a Src homology-3 domain. Both proteins contain homologous N-terminal regions that are predicted to be in different environments within the sarcomere. The nebulin acidic N-terminal region is found at the distal ends of the thin filaments. Nebulette, however, is predicted to extend 150 nm from the center of the Z-line. To dissect out the functions of the N-terminal domain of nebulette, we have performed a yeast two-hybrid screen using nebulette residues 1-86 as bait. We have identified filamin-C, ZASP-1, and tropomyosin-1 as binding partners. Characterization of the nebulette-filamin interaction indicates that filamin-C predominantly interacts with the modules. These data suggest that filamin-C, a known component of striated muscle Z-lines, interacts with nebulette modules.  相似文献   

5.
Nebulin, a vertebrate skeletal muscle actin binding protein, plays an important role in thin filament architecture. Recently, a number of reports have indicated evidence for nebulin expression in vertebrate hearts. To investigate the ability of nebulin to interact with cardiac myofilaments, we have expressed nebulin cDNA fragments tagged with green fluorescent protein (GFP) in chicken cardiomyocytes and PtK2 cells. Nebulin fragments from both the superrepeats and single repeats were expressed minus and plus the nebulin linker. Nebulin fragment incorporation was monitored by fluorescent microscopy and compared with the distribution of actin, alpha-actinin and titin. Expression of nebulin N-terminal superrepeats displayed a punctate cytoplasmic distribution in PtK2 cells and cardiomyocytes. Addition of the nebulin linker to the superrepeats resulted in association of the punctate staining with the myofibrils. Nebulin C-terminal superrepeats plus and minus the linker localized with stress fibers of PtK2 cells and associated with the cardiac myofilaments at the level of the Z-line. Expression of the single repeats plus and minus the nebulin linker region resulted in both a Z-line distribution and an A-band distribution. These data suggest that N-terminal superrepeat nebulin modules are incapable of supporting interactions with the cardiac myofilaments; whereas the C-terminal nebulin modules can. The expression of the N-terminal or C-terminal superrepeats did not alter the distribution of actin, alpha-actinin or titin in either atrial or ventricular cultures.  相似文献   

6.
Nebulin is an approximately 700 kDa filamentous protein in vertebrate skeletal muscle. It binds to the Z line and also binds side-by-side to the entire thin (actin) filament in a sarcomere. Nebulin is currently thought to be a molecular ruler regulating the length of the thin filament to 1 mum. The complete sequence of human skeletal muscle nebulin was determined by . Because of its large size, only fragmental sequence information has been available for nebulins other than human skeletal muscle. This paper describes for the first time the sequence of about one third (C terminal region) of chicken skeletal muscle nebulin. It was found that the fundamental structure of human nebulin, consisting of 35 amino acid repeats (modules) plus C terminal serine-rich and SH3 domains linked to the Z line are well conserved with chicken nebulin. Sequence identity ranged from 74 to 91%. There were super-repeats (seven modules), a first linker repeat, simple repeat and a second linker repeat in addition to the Z line binding region as in human nebulin. However, there were 2 fewer modules in the first linker repeat and 6 fewer in the simple repeat in chicken nebulin as compared to human nebulin. Two isoforms of chicken nebulin were sequenced indicating insertion of approximately 6 or 11 modules to a structure similar to that of human nebulin. Recombinant first linker repeats M51 approximately 56 were shown to bind to actin using the ELISA technique as well as human nebulin recombinants.  相似文献   

7.
The regions of mouse nebulin extending from the ends of the super repeats to the C-terminus and N-terminus were cloned and sequenced. Comparison of the mouse sequence with the previously published human sequence shows that the terminal regions of nebulin are highly conserved. The four phosphorylation motifs and SH3 domain found at the C-terminus of mouse nebulin are identical to those found in human nebulin, with the exception of four conservative substitutions. The modules linking this C-terminal region to the super repeats have deletions relative to both fetal and adult human nebulins that correspond to integral numbers of modules, making the mouse C-terminal simple repeat region among the shortest observed to date. The N-terminal region and the C-terminal modules were expressed in Escherichia coli and used for antibody production. Immunofluorescent labeling of these regions of nebulin in isolated myofibrils demonstrates that they are located near the center of the sarcomere and near the Z-line, respectively. Immunogold labeling with antibodies raised against the N-terminal nebulin sequence localizes this region in the A-band near the tips of the thin filaments. Nebulin localization is complementary to that of N-RAP, another muscle-specific protein containing nebulin-like super repeats; nebulin is exclusively found in the sarcomeres, while N-RAP is confined to the terminal bundles of actin filaments at the myotendinous junction. Cell Motil. Cytoskeleton 3:211-222, 2000 Published 2000 Wiley-Liss, Inc.  相似文献   

8.
The nebulin family of actin-binding proteins plays an important role in actin filament dynamics in a variety of cells including striated muscle. We report here the identification of a new striated muscle Z-disc associated protein: lasp-2 (LIM and SH3 domain protein-2). Lasp-2 is the most recently identified member of the nebulin family. To evaluate the role of lasp-2 in striated muscle, lasp-2 gene expression and localization were studied in chick and mouse tissue, as well as in primary cultures of chick cardiac and skeletal myocytes. Lasp-2 mRNA was detected as early as chick embryonic stage 25 and lasp-2 protein was associated with developing premyofibril structures, Z-discs of mature myofibrils, focal adhesions, and intercalated discs of cultured cardiomyocytes. Expression of GFP-tagged lasp-2 deletion constructs showed that the C-terminal region of lasp-2 is important for its localization in striated muscle cells. Lasp-2 organizes actin filaments into bundles and interacts directly with the Z-disc protein alpha-actinin. These results are consistent with a function of lasp-2 as a scaffolding and actin filament organizing protein within striated muscle Z-discs.  相似文献   

9.
To evaluate nebulette's role in cardiac myofibrils, cardiomyocytes expressing green fluorescent protein (GFP)-nebulette constructs were monitored for their ability to contract and myofilament protein distribution was analyzed. Cells expressing full-length GFP-nebulette appear unaffected and exhibit normal beating frequencies. Expression of the GFP linker and SH3 results in loss of the endogenous nebulette and tropomyosin; however, Z-line and thick filaments are undisturbed. Cells expressing either of these domains have dramatically reduced beating frequencies, consistent with the loss of thin filament proteins. This loss was inhibited by the addition of protease inhibitors during culturing. The GFP repeat domain disrupts both myofibrillogenesis and contraction in spreading cardiomyocytes, whereas introduction of this protein into well-spread cardiomyocytes results in localization at the Z-line and a 50% reduction in beating frequency. Ultimately, these cells form bundles containing the GFP repeat and many myofilament proteins. Interestingly, butanedione monoxime inhibition of contraction inhibited the formation of these bundles. These results show that the GFP-nebulette domains have a dominant-negative effect on the distribution and function of the sarcomeric proteins. Taken together with the observation that nebulette colocalizes with alpha-actinin in the pre-, nascent, and mature myofibrils, our data demonstrate the importance of this cardiac-specific nebulin isoform in myofibril organization and function.  相似文献   

10.
11.
Focal adhesions are intricate protein complexes that facilitate cell attachment, migration, and cellular communication. Lasp-2 (LIM-nebulette), a member of the nebulin family of actin-binding proteins, is a newly identified component of these complexes. To gain further insights into the functional role of lasp-2, we identified two additional binding partners of lasp-2: the integral focal adhesion proteins vinculin and paxillin. Of interest, the interaction of lasp-2 with its binding partners vinculin and paxillin is significantly reduced in the presence of lasp-1, another nebulin family member. The presence of lasp-2 appears to enhance the interaction of vinculin and paxillin with each other; however, as with the interaction of lasp-2 with vinculin or paxillin, this effect is greatly diminished in the presence of excess lasp-1. This suggests that the interplay between lasp-2 and lasp-1 could be an adhesion regulatory mechanism. Lasp-2’s potential role in metastasis is revealed, as overexpression of lasp-2 in either SW620 or PC-3B1 cells—metastatic cancer cell lines—increases cell migration but impedes cell invasion, suggesting that the enhanced interaction of vinculin and paxillin may functionally destabilize focal adhesion composition. Taken together, these data suggest that lasp-2 has an important role in coordinating and regulating the composition and dynamics of focal adhesions.  相似文献   

12.
We describe here a novel sarcomeric 145-kD protein, myopalladin, which tethers together the COOH-terminal Src homology 3 domains of nebulin and nebulette with the EF hand motifs of alpha-actinin in vertebrate Z-lines. Myopalladin's nebulin/nebulette and alpha-actinin-binding sites are contained in two distinct regions within its COOH-terminal 90-kD domain. Both sites are highly homologous with those found in palladin, a protein described recently required for actin cytoskeletal assembly (Parast, M.M., and C.A. Otey. 2000. J. Cell Biol. 150:643-656). This suggests that palladin and myopalladin may have conserved roles in stress fiber and Z-line assembly. The NH(2)-terminal region of myopalladin specifically binds to the cardiac ankyrin repeat protein (CARP), a nuclear protein involved in control of muscle gene expression. Immunofluorescence and immunoelectron microscopy studies revealed that myopalladin also colocalized with CARP in the central I-band of striated muscle sarcomeres. Overexpression of myopalladin's NH(2)-terminal CARP-binding region in live cardiac myocytes resulted in severe disruption of all sarcomeric components studied, suggesting that the myopalladin-CARP complex in the central I-band may have an important regulatory role in maintaining sarcomeric integrity. Our data also suggest that myopalladin may link regulatory mechanisms involved in Z-line structure (via alpha-actinin and nebulin/nebulette) to those involved in muscle gene expression (via CARP).  相似文献   

13.
A Nebulin Ruler Does Not Dictate Thin Filament Lengths   总被引:1,自引:0,他引:1  
To generate force, striated muscle requires overlap between uniform-length actin and myosin filaments. The hypothesis that a nebulin ruler mechanism specifies thin filament lengths by targeting where tropomodulin (Tmod) caps the slow-growing, pointed end has not been rigorously tested. Using fluorescent microscopy and quantitative image analysis, we found that nebulin extended 1.01-1.03 μm from the Z-line, but Tmod localized 1.13-1.31 μm from the Z-line, in seven different rabbit skeletal muscles. Because nebulin does not extend to the thin filament pointed ends, it can neither target Tmod capping nor specify thin filament lengths. We found instead a strong correspondence between thin filament lengths and titin isoform sizes for each muscle. Our results suggest the existence of a mechanism whereby nebulin specifies the minimum thin filament length and sarcomere length regulates and coordinates pointed-end dynamics to maintain the relative overlap of the thin and thick filaments during myofibril assembly.  相似文献   

14.
The actin (thin) filaments in striated muscle are highly regulated and precisely specified in length to optimally overlap with the myosin (thick) filaments for efficient myofibril contraction. Here, we review and critically discuss recent evidence for how thin filament lengths are controlled in vertebrate skeletal, vertebrate cardiac, and invertebrate (arthropod) sarcomeres. Regulation of actin polymerization dynamics at the slow-growing (pointed) ends by the capping protein tropomodulin provides a unified explanation for how thin filament lengths are physiologically optimized in all three muscle types. Nebulin, a large protein thought to specify thin filament lengths in vertebrate skeletal muscle through a ruler mechanism, may not control pointed-end actin dynamics directly, but instead may stabilize a large core region of the thin filament. We suggest that this stabilizing function for nebulin modifies the lengths primarily specified by pointed-end actin dynamics to generate uniform filament lengths in vertebrate skeletal muscle. We suggest that nebulette, a small homolog of nebulin, may stabilize a correspondingly shorter core region and allow individual thin filament lengths to vary according to working sarcomere lengths in vertebrate cardiac muscle. We present a unified model for thin filament length regulation where these two mechanisms cooperate to tailor thin filament lengths for specific contractile environments in diverse muscles.  相似文献   

15.
Nebulette is a cardiac-specific isoform of the giant actin-binding protein nebulin. Nebulette, having a mass of ∼ 100 kDa, is only predicted to extend 150 nm from the edge of the Z-lines. Overexpression of the nebulette C-terminal linker and/or SH3 domains in chicken cardiomyocytes results in a loss of endogenous nebulette with a concomitant loss of tropomyosin (TPM) and troponin, as well as a shortening of the thin filaments. These data suggest that nebulette's position in the sarcomere is important for the maintenance of TPM, troponin and thin filament length. To evaluate this hypothesis, N-terminal nested truncations tagged with GFP were expressed in chicken cardiomyocytes and the cells were analyzed for the distribution of myofilament proteins. Minimal effects on the myofilaments were observed with N-terminal deletions of up to 10 modules; however, deletion of 15 modules replicated the phenotype observed with expression of the C-terminal fragments. Expression of internal deletions of nebulette verifies that a site between module 10 and 15 is important for TPM maintenance within the sarcomeric lattice. We have additionally isolated TPM cDNAs from a yeast two hybrid (Y2H) analysis. These data indicate the importance of the nebulette-TPM interactions in the maintenance and stability of the thin filaments.  相似文献   

16.
Ma K  Wang K 《FEBS letters》2002,532(3):273-278
Skeletal muscle nebulin is thought to determine thin filament length and regulate actomyosin interaction in a calcium/calmodulin or S100 sensitive manner. We have investigated the binding of nebulin SH3 with proline-rich peptides derived from the 28-mer PEVK modules of titin and the Z-line protein myopalladin, using fluorescence, circular dichroism and nuclear magnetic resonance techniques. Of the six peptides studied, PR2 of titin (VPEKKAPVAPPK) and myopalladin MyoP2 (646VKEPPPVLAKPK657) bind to nebulin SH3 with micromolar affinity (approximately 31 and 3.4 microM, respectively), whereas the other four peptides bind weakly (>100 microM). Sequence analysis of titins reveals numerous SH3 binding motifs that are highly enriched in the PEVK segments of titin isoforms. Our findings suggest that titin PEVK and myopalladin may play signaling roles in targeting and orientating nebulin to the Z-line during sarcomere assembly.  相似文献   

17.
Integrin-induced adhesion leads to cytoskeletal reorganizations, cell migration, spreading, proliferation, and differentiation. The details of the signaling events that induce these changes in cell behavior are not well understood but they appear to involve activation of Rho family members which activate signaling molecules such as tyrosine kinases, serine/threonine kinases, and lipid kinases. The result is the formation of focal complexes, focal adhesions, and bundles and networks of actin filaments that allow the cell to spread. The present study shows that mu-calpain is active in adherent cells, that it cleaves proteins known to be present in focal complexes and focal adhesions, and that overexpression of mu-calpain increased the cleavage of these proteins, induced an overspread morphology and induced an increased number of stress fibers and focal adhesions. Inhibition of calpain with membrane permeable inhibitors or by expression of a dominant negative form of mu-calpain resulted in an inability of cells to spread or to form focal adhesions, actin filament networks, or stress fibers. Cells expressing constitutively active Rac1 could still form focal complexes and actin filament networks (but not focal adhesions or stress fibers) in the presence of calpain inhibitors; cells expressing constitutively active RhoA could form focal adhesions and stress fibers. Taken together, these data indicate that calpain plays an important role in regulating the formation of focal adhesions and Rac- and Rho-induced cytoskeletal reorganizations and that it does so by acting at sites upstream of both Rac1 and RhoA.  相似文献   

18.
Nebulin (600-900 kDa) and nebulette (107-109 kDa) are two homologous thin filament-associated proteins in skeletal and cardiac muscles, respectively. Both proteins are capped with a unique region at the amino terminus as well as a serine-rich linker domain and SH3 domains at the COOH terminus. Their significant size difference is attributed to the length of the central region wherein both proteins are primarily composed of approximately 35 amino acid repeats termed nebulin-like repeats or motifs. These motifs are marked by a conserved SXXXY sequence and high affinity binding to F-actin. To further characterize the effects that nebulin-like proteins may have on the striated muscle thin filament, we have cloned, expressed, and purified a five-motif chicken nebulette fragment and tested its interaction with the thin filament regulatory proteins. Both tropomyosin and troponin T individually bound the nebulette fragment, although the affinity of this interaction was significantly increased when tropomyosin-troponin T was tested as a binary complex. The addition of troponin I to the tropomyosin-troponin T complex decreased the binding to the nebulette fragment, indicating an involvement of the conserved T2 region of troponin T in this interaction. F-actin cosedimentation demonstrated that the nebulette fragment was able to significantly increase the affinity of the tropomyosin-troponin assembly for F-actin. The relationships provide a means for nebulin-like motifs to participate in the allosteric regulation of striated muscle contraction.  相似文献   

19.
Desmin interacts with nebulin establishing a direct link between the intermediate filament network and sarcomeres at the Z-discs. Here, we examined a desmin mutation, E245D, that is located within the coil IB (nebulin-binding) region of desmin and that has been reported to cause human cardiomyopathy and skeletal muscle atrophy. We show that the coil IB region of desmin binds to C-terminal nebulin (modules 160-164) with high affinity, whereas binding of this desmin region containing the E245D mutation appears to enhance its interaction with nebulin in solid-phase binding assays. Expression of the desmin-E245D mutant in myocytes displaces endogenous desmin and C-terminal nebulin from the Z-discs with a concomitant increase in the formation of intracellular aggregates, reminiscent of a major histological hallmark of desmin-related myopathies. Actin filament architecture was strikingly perturbed in myocytes expressing the desmin-E245D mutant because most sarcomeres contained elongated or shorter actin filaments. Our findings reveal a novel role for desmin intermediate filaments in modulating actin filament lengths and organization. Collectively, these data suggest that the desmin E245D mutation interferes with the ability of nebulin to precisely regulate thin filament lengths, providing new insights into the potential molecular consequences of expression of certain disease-associated desmin mutations.  相似文献   

20.
Xin and nebulette are striated muscle-specific actin-binding proteins that both contain multiple actin-binding repeats. The nature of these repeats is different: nebulette has nebulin-like repeats, while Xin contains its own unique repeats. However, the suggestion was made from biochemical data that the Xin-repeats may bind to multiple sites on the actin molecule as was found for nebulin. We have used electron microscopy and the iterative helical real space reconstruction to visualize complexes of F-actin with Xin fragments containing either three or six Xin-repeats, and with the CN5-nebulette fragment, containing five nebulin-like repeats. Our results indicate that Xin and nebulette fragments bind to F-actin in a similar manner and in two distinct modes: in one mode actin subdomain 1 is bound, while in the second mode the binding bridges between a different site on actin subdomains 1/2 of one protomer and subdomains 3/4 of an adjacent actin protomer. Taken together with published data about nebulin, tropomyosin and ADF/cofilin, our results suggest that the ability to bind in multiple modes to the actin protomer is a general property of many actin-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号