首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This study was designed to analyze PGs in human gastric mucosa using biopsy specimens at femtomole level by the combination of microcolumn HPLC and He/Cd laser induced fluorescence detection. Biopsy specimens were taken along the greater curvature at the corpus of the stomach, in which no gastric disease was revealed by endoscopic examination. PGs extracted from human gastric mucosa were derivatized with ADAM, and ADAM-derivatized PGs were injected into the column for analysis. The mobile phase of acetonitrile-water (73:27) containing 0.01% of phosphoric acid was used at a constant pressure of 20 kgf/cm2. Using this system, PGs in few mg of human gastric mucosa obtained by biopsy were well separated and detected; i.e., 1653 +/- 254 (femtomole/mg tissue), 279 +/- 56, 729 +/- 153, 831 +/- 199 for 6-keto-PGF1 alpha, PGF2 alpha, PGE2, and PGD2, respectively. In conclusion, the microcolumn HPLC system with laser induced fluorescence detection is a reliable method for determining individual PGs in human gastric mucosa. In addition, PGI2 is the predominant PG in human gastric mucosa and probably plays an important role in gastric function.  相似文献   

2.
3.
A reversed-phase high-performance liquid chromatographic method for the determination of sinefungin, a new antiprotozoal drug, in rat plasma has been developed and validated. Sample preparation was performed at 4°C by deproteinization with acetonitrile. Vidarabine was used as an internal standard. Both sinefungin and vidarabine were separated on a C18 column with a mobile phase of ammmonium dihydrogenphosphate-acetonitrile (95:5, v/v) and detected by ultraviolet absorbance at 260 nm. Recoveries of sinefungin from plasma were 75 ± 3.2% and 81 ± 4.8% following dosage at concentrations of 10 μg/ml and 30 μ/ml, respectively. Using 25- μl of rat plasma the limit of quantitation was 1 μg/ml sinefungin, and the assay was linear from 1 to 30 μg/ml. This method appears sensitive enough to be used in further pharmacokinetic studies of sinefungin in animal models.  相似文献   

4.
Rats fed with a fat-free or an olive oil-rich diet were employed to compare the response of two chromatographic techniques in the determination of rat liver triglyceride (TG) molecular species composition. Gas–liquid chromatography (GLC) on polarizable liquid phase and reversed-phase high-performance liquid chromatography (RP-HPLC) have been commonly employed for TG analysis, obtaining a similar number of chromatographic peaks when used for animal tissue TG determination. In the present study similar results were achieved with regard to most relevant chromatographic peaks, however, important differences were found in the content of minor TGs. Indeed, RP-HPLC permitted separation of long chain polyunsaturated fatty acids, which were not detected by GLC, while the latter technique reported a higher number of myristoyl-containing TG species. RP-HPLC analysis reported a greater number of TGs, with more similarity to a random composition, made up from the liver fatty acid composition. Therefore, it was concluded that utilization of both techniques would be helpful for liver TG analysis as the use of only one of them does not provide a complete profile of liver TGs. Nevertheless RP-HPLC seems to be more useful for this purpose since revealed a more extensive profile.  相似文献   

5.
6.
A method based on a liquid-liquid extraction procedure followed by high-performance liquid chromatography (HPLC) coupled with UV-visible detection is described and validated for the determination of lauroyl-indapamide in rat whole blood. The blood sample was extracted with diethyl ether after the addition of 10% trifluoroacetic acid (aq.). The chromatographic separation was performed on a Chromasil ODS column, using methanol-acetonitrile-tetrahydrofuran-0.2% trifluoroacetic acid (170:20:15:38, v/v/v/v) as the mobile phase. The UV detection wavelength was set at 240 nm. The extraction recovery of lauroyl-indapamide was ranged from 76.5 to 82.6%, and the calibration curve had a good linearity in the range of 0.048-200 microg/ml (r = 0.9976). The method presents appropriate intra-day and inter-days repeatabilities, showing values below 7.4% in terms of the percentage of relative standard deviation (R.S.D.). The method proposed is simple, rapid and sensitive, being useful for pharmacokinetic studies in rats.  相似文献   

7.
8.
Plasma phenobarbital (PB) concentrations in rat offspring were determined using a 9 μl capillary by high-performance liquid chromatography (HPLC). Capillary plasma which was put into a Bond Elut® cartridge column by using 1 ml of 0.01 M KH2PO4 was applied to the column with 50 μl of 2 μg/ml of acetanilide (internal standard, I.S.). After washing the column, PB and I.S. were eluted with methanol and injected into the HPLC system. There were excellent linear correlation between the amount of PB and length of the capillary at three different concentrations. Calibration for PB was linear in the range of 0–50 μg/ml. The coefficients of variation were 3.4–5.0% and 5.9–7.5% in the within-day and between-day assays, respectively. The extraction recovery rates were 87.5–105.4%. By this method, it was possible to measure plasma PB concentrations in rat offspring without killing. These results suggested that this method is very useful to determine the plasma PB concentration derived from mother’s milk in newborn rats.  相似文献   

9.
A precise and accurate HPLC assay for polymyxin E(1) in rat and dog plasma has been validated. Samples and standards are extracted from plasma with a 96-well C(8) extraction disk plate. Sample extracts are derivatized with dansyl chloride, and polymyxin E(1) derivative is quantitated on a C(8) column by HPLC with fluorescence detection. The assay is linear in the range of 0.050-5.00 micro g/ml for polymyxin E(1). The precision and accuracy of polymyxin E(1) plasma assay was well within the recommended limits set in the FDA Guidance for Bioanalytical Method Validation. Polymyxin E(1) stability in rat and dog plasma for 24 h at room temperature and through three freeze-thaw cycles was demonstrated.  相似文献   

10.
A simple, accurate and sensitive high-performance liquid chromatographic method was developed for the determination of propofol, an intravenous anaesthetic agent, in rat whole blood or plasma samples. The method is based on precipitation of the protein in the biological fluid sample and direct injection of the supernatant into an HPLC system involving a C18 reversed-phase column using a methanol-water (70:30) mobile phase delivered at 1 ml/min. Propofol and the internal standard (4-tert.-octylphenol) were quantified using a fluorescence detector set at 276 nm (excitation) and 310 nm (emission). The analyte and internal standard had retention times of 6.3 and 10.5 min, respectively. The limit of quantification for propofol was 50 ng/ml using 100 μl of whole blood or plasma sample. Calibration curves were linear (r2=0.99) over a 1–10 μg/ml concentration range and intra- and inter-day precision were between 4–11%. The assay was applied to the determination of propofol whole blood pharmacokinetics and propofol whole blood to plasma distribution ratios in rats.  相似文献   

11.
A novel and highly sensitive method has been developed for the determination of catecholamines [noradrenaline (NA), dopamine (DA), serotonin (5-HT) and their metabolites 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA)] in brain tissue. The method uses isocratic reversed-phase HPLC with amperometric end-point detection. The calibration curve was linear over the range 10–150 pg on-column. The assay limits of detection for NA, DA, 5-HT, 5-HIAA and HVA were 3.8, 3.8, 6.8, 5 and 7.5 pg on-column, respectively. The mean inter- and intra-assay relative standard deviations (RSDs) over the range of the standard curve were less than 5%. The absolute recoveries averaged 99.1%, 99.5%, 97.7%, 99.5% and 98.8% for NA, DA, 5-HT, 5-HIAA and HVA, respectively.  相似文献   

12.
We studied the use of high-performance liquid chromatography (HPLC) with spectrofluorometric detection, using a solid-phase extraction for a simple, rapid and sensitive determination of plasma carvedilol levels in rats. Extracted aliquots were analyzed by HPLC, using a reversed-phase octadecyl silica column. The analytical mean recovery of carvedilol added to the blank plasma was 94.2%. The detection limit was 3.6 ng/ml in the plasma. The reproducibilities (C.V.) were 2.7–7.5% for the within-day assay, and 2.6–7.4% for the between-day assay, indicating that the method was effective for the determination of carvedilol plasma levels.  相似文献   

13.
An isocratic reverse-phase high-performance liquid chromatography method for the separation and quantitation of total pyridine dinucleotides in hepatocyte cultures is described. Cells are extracted with cold 3 M perchloric acid or 0.5 N sodium hydroxide containing 50% (v/v) ethanol and 35% cesium chloride for the determination of the oxidized or reduced pyridine dinucleotides, respectively. Pyridine dinucleotides in the neutralized extracts were separated on an Excellopak ODS C18 (4.6 X 150 mm) column with 0.1 M potassium phosphate, pH 6.0, containing 3.75% methanol as the mobile phase. NAD+ and NADP+ were detected spectrophotometrically at 254 nm. The response was linear from 5 to 4000 pmol with recoveries of NAD+ and NADP+ of 98 and 101.1%, respectively. NADH and NADPH were monitored fluorometrically by activation at 370 nm and emission in the 400-700 nm range. The reduced pyridine dinucleotides had a linear response from 7.5 to 60 pmol with recoveries of NADH and NADPH of 99.4 and 101.3%, respectively. The coefficients of variation for all of the pyridine dinucleotide standards were less than 3.5%.  相似文献   

14.
This paper describes a novel liquid chromatographic method for the quantitation of 2-naphthol in human urine. Urine samples were extracted after enzymatic hydrolysis of glucuronides and sulfates; 2-naphthol was then separated using reversed-phase high-performance liquid chromatography. The corresponding detection limits were 0.04 ng/ml for the standard sample in acetonitrile and 0.13 ng/ml for urine samples. The level of urinary 2-naphthol in 100 Korean shipyard workers was analyzed using this new method. The level ranged from 0.21 ng/ml (0.26 μmol/mol creatinine) to 34.19 ng/ml (59.11 μmol/mol creatinine), and the mean±standard deviation was 5.08 ng/ml (6.60 μmol/mol creatinine)±5.75 ng/ml (9.22 μmol/mol creatinine). The mean±standard deviation of urinary 2-naphthol level of smokers, 7.03 ng/ml (8.49 μmol/mol creatinine)±6.16 ng/ml (10.23 μmol/mol creatinine), was significantly higher than that of non-smokers, 2.49 ng/ml (4.10 μmol/mol creatinine)±3.92 ng/ml (7.03 μmol/mol creatinine).  相似文献   

15.
A method for the rapid chromatography of histones by high-performance liquid chromatography (HPLC) using a reverse-phase μBondapak C18 column containing a packing of octadecylsilane chemically bonded to silica and a linear elution gradient running from water to acetonitrile is described. Two conditions were found to be necessary to achieve histone fractionation: (i) silylation of the active groups of the silica solid support, and (ii) trifluoroacetic acid (TFA) in the eluting solvents. Greater than 90% of the total [3H]lysine-labeled protein applied to the column was eluted from the column. The fractionation of the histones appears to be based on the hydrophobic properties of the proteins. The HPLC histone fractions (identified by their electrophoretic mobilities) were eluted from the column in the following order: H1, H2B, (LHP)H2A, (MHP)H2A + H4, (LHP)H3, and (MHP)H3 (where LHP and MHP refer to the less hydrophobic and more hydrophobic histone variants). Phosphorylated histone species were not resolved from their unmodified parental species. The volatile nature of the water/acetonitrile/TFA eluting solvent facilitated the recovery of salt-free histones from the eluted HPLC fractions by simple lyophilization. This system is very useful for the rapid isolation of the lysine-rich histones, H1 and H2B, and the variants of histone H3. With further development, this system is expected to extend the advantages of HPLC to the fractionation of histone H4 and the variants of histone H2A as well.  相似文献   

16.
The separation and determination of chlorophylls by high-performance liquid chromatography (HPLC) is described. Chlorophylls and their derivatives were separated by reversed-phase HPLC based on hydrophobic interaction between solute and support, using an octadecyl silica column and elution with 100% methanol. Separated pigments were detected fluorometrically with a sensitivity in the picomole range: the fluorescence response was linear over a wide pigment concentration range. Resolution of five chlorophylls a and four protochlorophyll species esterified with different alcohols was achieved within 22 min in a single experiment. This method can be used for the determination of chlorophyll b, bacteriochlorophyll a esters and products synthesized from chlorophyll, but not for nonesterified pigments, i.e., chlorophyllide, protochlorophyllide and chlorophyll c. The chromatographic mobility of chlorophyll a esterified with different alcohols increases with increasing number of carbon atoms in the esterifying alcohols. The plots obtained from the logarithm of the capacity factor (k′) of these pigments versus the numbers of carbon atoms of the alcohol molecule gave a straight line, thus permitting the estimation of the chain length of unknown pigment esterifying alcohols. This HPLC separation technique did not cause the formation of artifacts. The deviation of the individual retention time for each pigment is less than ±0.5%, thus making this method suitable for the rapid identification and quantification of unknown pigments.  相似文献   

17.
NADP+, NAD+, NADPH, and NADH were assayed by selective extraction and isocratic reversephase HPLC. Sample preparation involves freeze clamping and powdering liver under liquid nitrogen, extraction of dinucleotides with basic (reduced species) or acidic (oxidized species) cold ethanol, and injection onto the HPLC for quantitation at 340 nm (reduced) and 254 nm (oxidized). The mobile phase for the oxidized species is pH 5.25, 0.2 M ammonium phosphate/methanol, and for the reduced species is pH 6.0, 0.2 M ammonium phosphate/methanol/tributylamine. The method is linear over the range 0.016 to 2.0 nmol for the reduced species, and from 0.005 to 0.8 nmol for the oxidized pyridine dinucleotides. The recoveries were from 94.5% for NAD+ to 99.3% for NADPH, with standard deviations of approximately 2.5% for all species other than NADP+, which had a standard deviation of 10.4%. The coefficients of variation for repeated determinations of standards over 3 months were less than 4%.  相似文献   

18.
A new high-performance liquid chromatograhic procedure for simultaneous determination of pyrazinamide (PZA) and its three metabolites 5-hydroxypyrazinamide (5-OH-PZA), pyrazinoic acid (PA), and 5-hydroxypyrazinoic acid (5-OH-PA), in rat urine was developed. 5-OH-PZA and 5-OH-PA standards were obtained by enzymatic synthesis (xanthine oxidase) and checked by HPLC and GC–MS. Chromatographic separation was achieved in 0.01 M KH2PO4 (pH 5.2), circulating at 0.9 ml/min, on a C18 silica column, at 22°C. The limits of detection were 300 μg/l for PZA, 125 μg/l for PA, 90 μg/l for 5-OH-PZA and 70 μg/l for 5-OH-PA. Good linearity (r2>0.99) was observed within the calibration ranges studied: 0.375–7.50 mg/l for PZA, 0.416–3.33 mg/l for PA, 0.830–6.64 mg/l for 5-OH-PZA and 2.83–22.6 mg/l for 5-OHPA. Accuracy was always lower than ±10.8%. Precision was in the range 0.33–5.7%. The method will constitute a useful tool for studies on the influence of drug interactions in tuberculosis treatment.  相似文献   

19.
A quantitative analytical method for measuring unchanged cisplatin (CDDP) and high- and low-molecular-mass metabolites (fixed and mobile metabolites) in rat kidney and liver was developed. Unchanged CDDP, separated from fixed and mobile metabolites in tissue homogenates by consecutive procedures of fractionation and ultrafiltration, was determined by high-performance liquid chromatography (HPLC) with post-column derivatization. Although unchanged CDDP was found to be partly metabolized to fixed metabolites during the preparation of cytosolic ultrafiltrates, the recovery of unchanged CDDP gave a constant value (about 70%), which was independent of tissue type and CDDP concentration (from 1 to 10 μg/ml). The detection limit for unchanged CDDP in the cytosolic ultrafiltrate was 20 ng/ml, corresponding to a concentration detection limit of 65 ng Pt per g of tissue in the kidney and liver. The concentrations of fixed and mobile metabolites were determined as platinum concentrations in the tissue homogenate and in the cytosolic ultrafiltrate using atomic absorption spectrometry after correcting for transformation of unchanged CDDP to fixed metabolites. The distribution of unchanged CDDP, mobile metabolites and fixed metabolites in rat kidney and liver, after bolus injection of CDDP (5 mg/kg), was determined using this method.  相似文献   

20.
A simple method was developed for separation and quantification of riluzole in rat brain. The analyses were performed by high-performance liquid chromatography using a C18 reversed-phase column (Hypersil ODS) with UV detection at 264 nm. The mobile phase consisted of methanol-water containing 1% triethylamine adjusted with orthophosphoric acid to pH 3.2. The retention time was 8.6 min. A simple liquid-liquid extraction with ethyl acetate was used to obtain riluzole from brain samples. The limit of quantification was 10 ng/g. The recovery was about 80%. The relationship between peak areas and concentrations was linear over the range between 0.01 and 0.8 microg/g, with r2 value over 0.99. The assay provided good reproducibility and accuracy and proved to be suitable for pharmacokinetic studies of riluzole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号