首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies were carried out to determine the distribution of the following: (1) carbamoyl phosphate synthetase (EC 2.7.2.9), (2) ornithine carbamoyltransferase (EC 2.1.3.3), (3) argininosuccinate synthetase (EC 6.3.4.5), and (4) argininosuccinate lyase (EC 4.3.2.1) in soybean cells grown in suspension culture. Protoplasts were produced from the soybean cells by treatment with cellulase (EC 3.2.1.4) and pectinase (EC 3.2.1.15); the protoplasts were then ruptured by osmotic shock with distilled water. This treatment was followed by differential centrifugation and sucrose density gradient centrifugation to isolate various organelle fractions including mitochondria and plastids. Examination of these fractions using specific enzyme assays showed that carbamoylphosphate synthetase and ornithine carbamoyltransferase were localized in a fraction found to be composed primarily of plastids. Argininosuccinate synthetase and argininosuccinate lyase appeared to be associated with either the cytosol or a membrane fraction in close association with the cytosol such as the endoplasmic reticulum or protoplast membrane.  相似文献   

2.
An Aspergillus nidulans strain which is deficient in ornithine transcarbamylase due to the arg B1 mutation was transformed with a plasmid containing the ornithine transcarbamylase cDNA from rat liver under the control of the amd S promoter. Stable transformants were obtained by selection on arginine free medium indicating complementation of the arg B mutation. Proof of expression of the rat enzyme in transformants was obtained by immunoprecipitation of all ornithine transcarbamylase activity from cell extracts with antibodies specific for the rat enzyme. The presence of catalytically active rat ornithine transcarbamylase in the transformants indicated that it is capable of being imported into mitochondria in A. nidulans, proteolytically processed and assembled into its homotrimeric form. In vitro uptake experiments using isolated A. nidulans mitochondria demonstrate that processing of the precursor of rat ornithine transcarbamylase occurs in two temporally separated steps as it does in rat liver mitochondria suggesting evolutionary conservation of the processing machinery. Up to 560 ng of active rat enzyme was produced per gm wet weight mycelia. Use of beta-D-alanine, an inducer of amd S, as sole N-source resulted in increased levels of active rat ornithine transcarbamylase relative to uninduced cultures.  相似文献   

3.
1. Growth of a biotin-requiring strain of Saccharomyces cerevisiae in a medium containing a suboptimum concentration of biotin for growth caused a decreased synthesis of ornithine carbamoyltransferase as compared with yeast grown in a medium containing an optimum concentration of biotin. Inclusion of the biotin homologues norbiotin or homobiotin, but not bishomobiotin, in the biotin-deficient medium caused an appreciable increase in ornithine carbamoyltransferase synthesis without affecting growth or synthesis of total RNA and protein. The addition of norbiotin to biotin-deficient medium had no effect on the respiratory activity of the yeast or on the synthesis of aspartate carbamoyltransferase, acid phosphatase, beta-fructofuranosidase or malate dehydrogenase. 2. Synthesis of acetylornithine deacetylase and acetylornithine acetyltransferase was slightly diminished by the imposition of biotin deficiency, but the effect was not as great as on ornithine carbamoyltransferase synthesis. Incorporation of norbiotin in the biotin-deficient medium had no marked effect on the synthesis of any other arginine-pathway enzyme except ornithine carbamoyltransferase. 3. l-Ornithine induced synthesis of ornithine carbamoyltransferase in yeast grown in biotin-deficient medium, but in yeast grown in this medium supplemented with norbiotin it repressed synthesis of the enzyme. l-Arginine had no detectable effect on ornithine carbamoyltransferase synthesis by the yeast grown in biotin-deficient medium with or without norbiotin. l-Aspartate repressed synthesis of ornithine carbamoyltransferase in biotin-deficient yeast and completely nullified the stimulatory effect of norbiotin on synthesis of the enzyme in this yeast. 4. There was no increase in ornithine carbamoyltransferase synthesis in biotin-deficient yeast incubated in phosphate buffer, pH4.5, containing glucose and biotin or norbiotin. In biotin-deficient yeast suspended in complete medium containing an optimum concentration of biotin, there was an increase in ornithine carbamoyltransferase synthesis only after the onset of growth.  相似文献   

4.
A protease that cleaves the precursor of ornithine carbamoyltransferase (EC 2.1.3.3), a mitochondrial matrix enzyme, has been partially purified from the matrix fraction of rat liver mitochondria. The protease cleaved the precursors of several other matrix proteins at apparently correct sites. The protease was inhibited by 1,10-phenanthroline and EDTA, was reactivated by excess Mn2+ or Co2+, and did not cleave the alkali-denatured precursor proteins. These and other results indicate that this protease is responsible for the processing of at least several matrix protein precursors, and that the enzyme recognizes some three-dimensional conformation of the precursors as well as the amino acid sequences around the cleavage sites.  相似文献   

5.
Rat liver ornithine carbamoyltransferase appears to be located exclusively in the mitochondria; the activity that is found in the soluble fraction is indistinguishable from mitochondrial ornithine carbamoyltransferase by simple kinetic criteria, and seems to result from breakage of mitochondria during homogenization. Of several rat tissues studied, only the liver and the mucosa of small intestine contain significant amounts of ornithine carbamoyltransferase; the activity in intestinal mucosa is less than one thousandth of that in liver. Qualitatively, this distribution coincides with that of carbamoyl phosphate synthetase I and its cofactor, acetylglutamate. The rat liver contents of carbamoyl phosphate and ornithine were 0.1 and 0.15mumol/g wet wt. of tissue respectively. On the basis of these values, it is proposed that in vivo the ornithine carbamoyltransferase activity of liver may be much lower than its maximal activity in vitro might suggest.  相似文献   

6.
The precursor of rat liver ornithine carbamoyltransferase (EC 2.1.3.3) synthesized in vitro was taken up and processed to the mature enzyme by isolated rat liver mitochondria. Potassium ion, magnesium ion, and a reticulocyte cytosolic protein(s), in addition to the precursor and the mitochondria, were required for maximal transport and processing of the precursor. The concentrations of potassium and magnesium ions required for maximal transport and processing were about 120 and 0.8-1.6 mM, respectively. Dialyzed postribosomal supernatant of rabbit reticulocyte lysate (36 mg of protein/ml), in combination with potassium and magnesium ions, stimulated the transport and processing severalfold. The stimulatory activity of the dialyzed lysate was inactivated by trypsin treatment or heating at 100 degrees C for 2 min. No significant amount of the precursor was associated with the mitochondria when incubation was performed in the absence of these components. These results suggest that potassium ion, magnesium ion, and a reticulocyte cytosolic protein(s) stimulate the binding and transport of the ornithine carbamoyltransferase precursor to the mitochondria. Dialyzed supernatant of rabbit erythrocyte lysate was equally effective in stimulating the precursor transport and processing, and a dialyzed cytosol fraction of Ehrlich ascites cells was partly stimulatory. On the other hand, dialyzed cytosol fractions of rat liver and rat kidney, and dialyzed supernatant of wheat germ extracts did not stimulate the precursor transport and processing but rather inhibited it.  相似文献   

7.
8.
Aspergillus nidulans argB mutant was transformed with the plasmid DNA containing the argB gene. Analysis of transformants revealed that transformation was due to integration of either argB gene alone or the whole plasmid DNA into the A. nidulans genome. In 5 out of 23 transformants studied, integration took place in the locus different than the original argB locus. The amplification of integrated sequences was often observed. Integrated DNA was found to be mitotically stable, while the meiotic stability depends on the mode of integration. The activity of the ornithine carbamoyltransferase (the argB gene product) was measured and in some transformants bearing the amplified argB sequence was found to be strongly elevated.  相似文献   

9.
Studies of X-linked enzymes provide an approach to the study of tumour and normal cellular development. We have assessed the technique for the histochemical demonstration of one such enzyme, ornithine carbamoyltransferase (EC 2.1.3.3). Various stages in the Mizutani technique for ornithine carbamoyltransferase were re-examined, and the resulting improved technique applied to normal mice and to mice of the sparse fur strain (Spf) known to have an abnormal form of ornithine carbamoyltransferase inherited as an X-linked characteristic. Positive enzyme activity was present in all hepatocytes from normal mice, the strongest reaction being present in the periportal area with a gradual reduction of activity towards the centrilobular region. No activity was demonstrable in hepatocytes from hemizygous male Spf mice. In heterozygous female Spf mice, there was a clear-cut separation of ornithine carbamoyl-transferase-positive and -negative cells. These were present in very variable proportions in different liver lobes and different animals. Preliminary studies were also carried out using a high pH reaction mixture to detect the abnormal enzyme. These studies demonstrate conclusively the X-linkage of ornithine carbamoyltransferase in mice, showing the mosaic pattern of distribution predicted by the Lyon hypothesis. They show that the Spf strain of mice can be used for studies of both development and tumorigenesis in the liver, and that histochemical study of an animal strain with an X-linked enzyme abnormality provides a powerful investigative tool.  相似文献   

10.
Glenn E 《Plant physiology》1977,60(1):122-126
The spatially separated forms of ornithine transcarbamoylase (EC 2.1.3.3) of different molecular weights coexist in sugarcane (Saccharum sp.). The smaller form of the enzyme (mol wt 79,000) appears to be cytoplasmic, while a larger form (mol wt 224,000) sedimented with mitochondria. The Km of the cytoplasmic enzyme for ornithine was 3.11 mm, while the enzyme in the mitochondrial fraction had a Km of 0.50 mm for this substrate; both enzymes had similar affinity for carbamoyl phosphate (0.12 mm). Characteristics of the smaller ornithine transcarbamoylase are in keeping with a predominantly catabolic function, those of the enzyme which sediments with mitochondria, with an anabolic function. Only the mitochondrial enzyme was regulated in vivo by exogenous arginine.  相似文献   

11.
Male mice carrying the spfash mutation have 5-10% of the normal activity of ornithine carbamoyltransferase, yet are only slightly hyperammonaemic and develop quite well. A study of liver mitochondria from normal and spfash males showed that they differ in important ways. (1) The spfash liver contains about 33% more mitochondrial protein per g than does normal liver. (2) The specific activities of carbamoyl-phosphate synthetase (ammonia) and glutamate dehydrogenase are about 15% lower than normal in mitochondria from spfash mice, whereas those of beta-hydroxybutyrate dehydrogenase and cytochrome oxidase are 22% higher and 30% lower respectively. (3) In the presence of 10 mM-ornithine and the substrates for carbamoyl phosphate synthesis, coupled and uncoupled mitochondria from spfash mice synthesize citrulline at unexpectedly high rates, about 25 and 44 nmol/min per mg respectively. Though these are somewhat lower than the corresponding rates obtained with normal mitochondria, the difference does not arise from the deficiency in ornithine carbamoyltransferase, but from the lower carbamoyl-phosphate synthetase activity of the mutant mitochondria. (4) At lower external [ornithine] (less than 2 mM), a smaller fraction of the carbamoyl phosphate synthesized is converted into citrulline in spfash than in normal mitochondria. These studies show that what appears to be a single mutation brings about major adaptations in the mitochondrial component of liver. In addition, they clarify the role of ornithine transport and of protein-protein interactions in citrulline synthesis in normal mitochondria.  相似文献   

12.
The transformation of Aspergillus oryzae has been achieved with a plasmid carrying the Aspergillus nidulans argB gene coding for ornithine carbamoyltransferase (OCTase). The frequency of transformation was relatively low (0.7 transformants/μg DNA) but the transformed phenotype was extremely stable for many generations without selective pressure.

Southern blot analysis revealed that transformation had occurred by integration of multiple tandem copies of plasmid DNA into the host genome through non-homologous recombination. There was no evidence of the existence of free plasmid in the transformants. The number of integrated copies of the plasmid ranged from 15 to 60. The specific activity of OCTase in the cell- free extract was proportional to the copy number of the plasmid, indicating that most of the integrated argB gene was expressed.  相似文献   

13.
Rat liver 3-ketoacyl-CoA thiolase, a mitochondrial matrix enzyme which catalyzes a step of fatty acid beta-oxidation, was synthesized in a rabbit reticulocyte lysate cell-free system. The in vitro product was apparently the same in molecular size and charge as the subunit of the mature enzyme. The enzyme synthesized in vitro was transported into isolated rat liver mitochondria in an energy-dependent manner. In pulse experiments with isolated rat hepatocytes at 37 degrees C, the radioactivity of the newly synthesized enzyme in the cytosolic fraction remained essentially unchanged during 5-20 min of incubation, whereas that of the enzyme in the particulate fraction increased with time during the incubation. The pulse-labeled enzyme disappeared with an apparent half-life of less than 3 min from the cytosolic fraction, in pulse-chase experiments. Purified 3-ketoacyl-CoA thiolase inhibited the mitochondrial uptake and processing of the precursors of the other matrix enzymes, ornithine carbamoyltransferase, medium-chain acyl-CoA dehydrogenase and acetoacetyl-CoA thiolase. These results indicate that 3-ketoacyl-CoA thiolase has an internal signal which is recognized by the mitochondria and suggest that this enzyme and the three others are transported into the mitochondria by a common pathway.  相似文献   

14.
We have investigated mitochondrial import and processing of the precursor for human ornithine transcarbamylase (OTC; carbamoylphosphate:L-ornithine carbamoyltransferase, EC 2.1.3.3) in HeLa cells stably transformed with cDNA sequences encoding OTC precursors carrying mutations in their leader peptides. The mutant precursors studied included two with amino acid substitutions in the 32-amino-acid leader peptide (glycine for arginine at position 23, designated gly23; glycines for arginines at positions 15, 23, and 26, designated gly15,23,26) and two with deletions (deletion of residues 8 to 22, designated d8-22; deletion of residues 17 to 32, designated N16). Specific immunoprecipitation with anti-OTC antiserum of extracts of L-[35S]methionine-labeled cells expressing these mutations yielded only precursor species; neither mature nor intermediate-size OTC subunits were observed. Fractionation of radiolabeled cells, however, revealed important differences among the various mutants: the gly23 precursor was associated with mitochondria and was not detected in the cytosol; the d8-22 and N16 precursors were found with both the mitochondrial fraction and the cytosol; only the gly15,23,26 precursor was detected exclusively in the cytosol. A large fraction of each of the mitochondrially associated OTC species was in a trypsin-protected compartment. In particular, the gly23 precursor behaved in trypsin protection and mitochondrial fractionation studies in a manner consistent with its translocation into the mitochondrial matrix. On the other hand, the lack of binding of the gly23 protein to a delta-N-phosphonoacetyl-L-ornithine affinity column, which specifically recognizes active OTC enzyme, indicated that, despite its intramitochondrial location, the mutant protein did not assemble into the normal, active trimer. Further, the gly23 mutant precursor was unstable within the mitochondria and was degraded with a t1/2 of less further than 4 h. Thus, we have shown that, in intact HeLa cells, cleavage of the OTC leader peptide is not required for translocation into mitochondria, but is required for assembly into active enzyme.  相似文献   

15.
The three enzymes of the arginine deiminase pathway in Pseudomonas aeruginosa strain PAO were induced strongly (50- to 100-fold) by a shift from aerobic growth conditions to very low oxygen tension. Arginine in the culture medium was not essential for induction, but increased the maximum enzyme levels twofold. The induction of the three enzymes arginine deiminase (EC 3.5.3.6), catabolic ornithine carbamoyltransferase (EC 2.1.3.3), and carbamate kinase (EC 2.7.2.3) appeared to be coordinate. Catabolic ornithine carbamoyltransferase was studied in most detail. Nitrate and nitrite, which can replace oxygen as terminal electron acceptors in P. aeruginosa, partially prevented enzyme induction by low oxygen tension in the wild-type strain, but not in nar (nitrate reductase-negative) mutants. Glucose was found to exert catabolite repression of the deiminase pathway. Generally, conditions of stress, such as depletion of the carbon and energy source or the phosphate source, resulted in induced synthesis of catabolic ornithine carbamoyltransferase. The induction of the deiminase pathway is thought to mobilize intra- and extracellular reserves of arginine, which is used as a source of adenosine 5'-triphosphate in the absence of respiration.  相似文献   

16.
1,4-Diaminobutanone, a competitive inhibitor of ornithine decarboxylase in Aspergillus nidulans, is able to increase the half-life of this enzyme and thus stimulate an increase in its activity in vivo. It also protects ornithine decarboxylase against proteolysis by chymotrypsin in vitro.  相似文献   

17.
Unlike most mitochondrial matrix proteins, the mitochondrial 3-oxoacyl-CoA thiolase [EC 2.3.1.16] is synthesized with no cleavable presequence and possesses information for mitochondrial targeting and import in the mature protein. This mitochondrial thiolase is homologous with the mature portion of peroxisomal 3-oxoacyl-CoA thiolase and acetoacetyl-CoA thiolase [EC 2.3.1.9] of Zoogloea ramigera along the entire sequence. A hybrid gene encoding the NH2-terminal 16 residues (MALLRGVFIVAAKRTP) of the mitochondrial thiolase fused to the mature portion of rat ornithine carbamoyltransferase [EC 2.1.3.3] (lacking its own presequence) was transfected into COS cells, and subcellular localization of the fusion protein was analyzed. Cell fractionation and immunocytochemical analyses showed that the fusion protein was localized in the mitochondria. These results indicate that the NH2-terminal 16 residues of the mitochondrial thiolase function as a noncleavable signal for mitochondrial targeting and import of this enzyme protein. The fusion protein containing the NH2-terminal 14 residues (MSTPSIVIASARTA) of the bacterial thiolase was also localized in the mitochondria. On the other hand, the fusion protein containing the corresponding portion (MQASASDVVVVHGQRTP) of the peroxisomal thiolase appeared not to be localized to the mitochondria. These results show that the import signal of mitochondrial 3-oxoacyl-CoA thiolase originated from the NH2-terminal portion of the ancestral thiolase. The ancestral enzyme might have already possessed a mitochondrial import activity when mitochondria appeared first, or that it might have acquired the import activity during evolution by accumulation of point mutations in the NH2-terminal portion of the enzyme.  相似文献   

18.
A mutant (nit8) with a lowered activity of glutamine synthetase (GS) was isolated in Aspergillus nidulans. The levels of GS and of an arginine catabolic enzyme, ornithine transaminase (OTA) were assayed under a variety of growth conditions leading to repression, depression and induction of OTA in the wild type, nit8 and several regulatory mutants. The results obtained appear to exclude the possibility of involvement of GS in the regulation of arginine catabolism in A. nidulans.  相似文献   

19.
Summary Ornithine transcarbamylase (ornithine carbamoyltransferase, EC 2.1.3.3), the second enzyme of urea synthesis, is localized in the matrix of liver mitochondria of ureotelic animals. The enzyme is encoded by a nuclear gene, synthesized outside the mitochondria, and must then be transported into the organelle. The rat liver enzyme is initially synthesized on membrane-free polysomes in the form of a larger precursor with an amino-terminal extension of 3 400–4 000 daltons. In rat liver slices and isolated rat hepatocytes, the pulse-labeled precursor is first released into the cytosol and is then transported with a half life of 1 2 min into the mitochondria where it is proteolytically processed to the mature form of the enzyme. The precursor synthesized in vitro exists in a highly aggregated form and has a conformation different from that of the mature enzyme. The precursor has an isoelectric point (pI = 7.9) higher than that of the mature enzyme (pI = 7.2).The precursor synthesized in vitro can be taken up and processed to the mature enzyme by isolated rat liver mitochondria. The mitochondrial transport and processing system requires membrane potential and a high integrity of the mitochondria. The transport and processing activities are conserved between mammals and birds or amphibians and is presumably common to more than one precursor. Potassium ion, magnesium ion, and probably a cytosolic protein(s), in addition to the transcarbamylase precursor and the mitochondria, are required for the maximal transport and processing of the precursor.A mitochondrial matrix protease which converts the precursor to a product intermediate in size between the precursor and the mature subunit has been highly purified. The protease has an estimated molecular weight of 108 000 and an optimal pH of 7.5–8.0, and appears to be a metal protease. The protease does not cleave several of the protein and peptide substrates tested. The role of this protease in the precursor processing remains to be elucidated.Rats subjected to different levels of protein intake and to fasting show significant changes in the level of enzyme protein and activity of ornithine transcarbamylase. The dietary-dependent changes in the enzyme level are due mainly to an altered level of functional mRNA for the enzyme. In contrast, during fasting, the increase in the enzyme level is associated with a decreased level of translatable mRNA forthe enzyme.Pathological aspects of ornithine transcarbamylase including the enzyme deficiency and reduced activities of the enzyme in Reye's syndrome are also described. A possibility that impaired transport of the enzyme precursor into the mitochondria leads to a reduced enzyme activity, is proposed.Abbreviation pOTC precursor of ornithine transcarbamylase  相似文献   

20.
The specific activity of the nuclear-gene-encoded, mitochondrial arginine biosynthetic enzyme ornithine carbamoyltransferase (EC 2.1.3.3) in Neurospora crassa was elevated in mycelia treated with chloramphenicol or ethidium bromide. The increase in specific activity was caused by an increase in the number of mature enzyme molecules rather than by the activation of a preexisting enzyme. Chloramphenicol and ethidium bromide appeared to act indirectly via arginine-mediated derepression. However, derepression did not appear to result from a drug-mediated decrease in the arginine pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号