首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A procedure for purification of two copper-containing proteins from bovine adrenal medulla has been developed. The method is based on the extraction of proteins with Triton X-100, DEAE-cellulose chromatography and fractionation with polyethylene glycol. The yield of dopamine-beta-monooxygenase and extremely acidic copper-containing protein per 1 kg of brain medullar tissue is 100 and 150 mg, correspondingly. The ability of the reduced extremely acidic copper-containing protein to act as an electron donor in the reactions of side chain hydroxylation of tyramine and dopamine catalyzed by dopamine-beta-monooxygenase was demonstrated. The kinetics of the products formation and oxygen consumption in the course of these reactions and the specific activities of dopamine-beta-monooxygenase were compared, using the reduced extremely acidic copper-containing protein, ascorbate and ferrocyanide as cosubstrates.  相似文献   

2.
Cytochrome b561 from bovine adrenal medulla chromaffin granules has been purified by fast protein liquid chromatography chromatofocusing. The purified cytochrome was reconstituted into ascorbate-loaded phosphatidylcholine vesicles. With this reconstituted system transmembrane electron transfer for extravesicular soluble dopamine beta-hydroxylase activity was demonstrated. In accordance with the model proposed by Njus et al. (Njus, D., Knoth, J., Cook, C., and Kelley, P. M. (1983) J. Biol. Chem. 258, 27-30), catalytic amounts of a redox mediator were necessary to achieve electron transfer between cytochrome and soluble dopamine beta-hydroxylase. Our observations also showed that when membranous dopamine beta-hydroxylase was reconstituted on cytochrome containing vesicles, electron transfer occurred only in the presence of a redox mediator. Since cytochrome b561 has been found in secretory vesicles associated with peptidyl glycine alpha-amidating monooxygenase, electron transfer to this enzyme was also examined. Analogous to the results obtained for dopamine beta-hydroxylase, transmembrane electron transfer to peptidyl glycine alpha-amidating monooxygenase appears to require a redox mediator between cytochrome and this monooxygenase. These observations indicate that purified cytochrome b561 is capable of providing a transmembrane supply of electrons for both monooxygenases. Since no direct protein to protein electron transfer occurs, the results support the hypothesis that the ascorbate/semidehydroascorbate redox pair serves as a mediator for these enzymes in vivo.  相似文献   

3.
Low-temperature EPR spectra of chromaffin granule membranes from bovine adrenal medulla reveal 3 different signals of the ferric cytochrome b-561. A typical gZ signal of a low-spin cytochrome observed at g approximately 3 is comprised of a high-potential component with gZ = 3.14 and a low-potential one with gZ = 3.11, the low-potential signal showing significantly faster relaxation. In addition, a highly temperature-sensitive heme signal at g = 3.7 is observed which is fully retained in the preparation of granule membranes with b-561 reduced by 50% but disappears upon full reduction of the cytochrome by ascorbate. The signal is strikingly similar to that of the mitochondrial low-potential cytochrome b heme (bL or b-566). The presence of several forms of b-561 in chromaffin granule membranes may provide a structural basis for the transmembrane electron transfer believe to be catalyzed by this hemoprotein.  相似文献   

4.
A soft method of purification of cytochrome-561 from the membranes of chromaffin granules has been developed. It permits isolating a protein in its natural microsurroundings, i.e. a complex with lipids, provided that a buffer with high ionic force is used without a detergent. This method helps obtaining an electrophoretically homogeneous preparation as a high-molecular lipoprotein hexamer whose molecular weight is about 400 kDa. Basic physicochemical parameters of this preparation (subunit composition, content and composition of lipids, heme content, spectra of optical absorption of the oxidized and reduced forms) are determined. Possible presence of two forms of cytochrome b-561 in the chromaffin granules is discussed.  相似文献   

5.
Electron transfer across the chromaffin granule membrane   总被引:5,自引:0,他引:5  
Membrane vesicles (ghosts) containing ascorbic acid were prepared from bovine chromaffin granules. When ferricyanide or ferricytochrome c were added to the external medium, a membrane potential (interior positive) developed across the ghost membrane. This membrane potential could not be elicited from ascorbate-free ghosts or by ferrocyanide added instead of ferricyanide. These results indicate that the chromaffin-granule membrane has a transmembrane electron carrier with a midpoint potential between that of ascorbate (+85 mV) and that of cytochrome c (+255 mV). The most likely candidate is cytochrome b-561 (+140 mV).  相似文献   

6.
A.N. Malviya  A. Rendon  D. Aunis 《FEBS letters》1983,160(1-2):153-158
Cytochrome b-561 in chromaffin granules interacts with antimycin and its -peak shifts 1 nm towards red. When chromaffin granules were treated with Triton X-100 antimycin no effect was observed. Cytochrome b-561 is located in the plasma membrane isolated from the chromaffin cells. The plasma membrane b-561 does not seem to interact with antimycin. A number of NADH or NADPH (acceptor) oxidoreductase activity has been observed in isolated plasma membrane providing clues to the origin of plasma membrane dehydrogenase. The possible role of cytochrome b561 in secretory granules other than its accredited energy conserving electron transport property is projected.  相似文献   

7.
Secretory vesicles from the neurohypophysis have a transmembrane electron carrier very similar to that found in adrenal medullary chromaffin granules. Two different tests show that ascorbic acid contained in the vesicles will reduce an external electron acceptor. First, reduction of cytochrome c or ferricyanide in the medium by a neurosecretory vesicle suspension can be followed spectrophotometrically. Second, the membrane potential (inside positive) generated by electron transfer can be monitored using the membrane potential-sensitive optical probe Oxonol VI. As in chromaffin granules, this electron transfer is probably mediated by cytochrome b561. It may function to regenerate internal ascorbic acid and to provide reducing equivalents needed by the intravesicular amidating enzyme.  相似文献   

8.
In chromaffin vesicles, the enzyme dopamine beta-monooxygenase converts dopamine to norepinephrine. It is believed that reducing equivalents for this reaction are supplied by intravesicular ascorbic acid and that the ascorbate is regenerated by importing electrons from the cytosol with cytochrome b-561 functioning as the transmembrane electron carrier. If this is true, then the ascorbate-regenerating system should be capable of providing reducing equivalents to any ascorbate-requiring enzyme, not just dopamine beta-monooxygenase. This may be tested using chromaffin-vesicle ghosts in which an exogenous enzyme, horseradish peroxidase, has been trapped. If ascorbate and peroxidase are trapped together within chromaffin-vesicle ghosts, cytochrome b-561 in the vesicle membrane is found in the reduced form. Subsequent addition of H2O2 causes the cytochrome to become partially oxidized. H2O2 does not cause this oxidation if either peroxidase or ascorbate are absent. This argues that the cytochrome is oxidized by semidehydroascorbate, the oxidation product of ascorbate, rather than by H2O2 or peroxidase directly. The semidehydroascorbate must be internal because the ascorbate from which it is formed is sequestered and inaccessible to external ascorbate oxidase. This shows that cytochrome b-561 can transfer electrons to semidehydroascorbate within the vesicles and that the semidehydroascorbate may be generated by any enzyme, not just dopamine beta-monooxygenase.  相似文献   

9.
Cytochromes b(561) are a family of transmembrane proteins found in most eukaryotic cells and contain two haem b prosthetic groups per molecule being coordinated with four His residues from four different transmembrane alpha-helices. Although cytochromes b(561) residing in the chromaffin vesicles has long been known to have a role for a neuroendocrine-specific transmembrane electron transfer from extravesicular ascorbate to intravesicular monodehydroascorbate radical to regenerate ascorbate, newly found members were apparently lacking in the sequence for putative ascorbate-binding site but exhibiting a transmembrane ferrireductase activity. We propose that cytochrome b(561) has a specific mechanism to facilitate the concerted proton/electron transfer from ascorbate by exploiting a cycle of deprotonated and protonated states of the N(delta1) atom of the axial His residue at the extravesicular haem center, as an initial step of the transmembrane electron transfer. This mechanism utilizes the well-known electrochemistry of ascorbate for a biological transmembrane electron transfer and might be operative for other type of electron transfer reactions from organic reductants.  相似文献   

10.
Extremely acidic copper-containing proteins, neurocupreins, were isolated from brains of various mammals (bovine, rabbit, pig and sheep). Neurocupreins from all these sources were found to have similar physico-chemical and antigenic properties. Using the immunological approach, it was shown that neurocuprein is located only in brain cytosol and synaptosomal fractions. Extremely acidic copper-containing proteins were also isolated from soluble and membranous fractions of chromaffin granules from bovine adrenal medulla. The soluble form of the protein from the granules has practically the same physico-chemical and antigenic properties as neurocupreins. The copper protein isolated from membranes of granules has slightly higher molecular weight and somewhat different amino acid composition, although their EPR spectra are identical. However, both copper proteins from chromaffin granules are immunoprecipitated with antibodies to neurocuprein. It is suggested the the membranous form differs from the soluble one in possessing a peptide which prolongs the protein chain without changes in its antigenic properties.  相似文献   

11.
Extremely acidic copper-containing proteins, neurocupreins, were isolated from brains of various mammals (bovine, rabbit, pig and sheep). Neurocupreins from all these sources were found to have similar physico-chemical and antigenic properties. Using the immunological approach, it was shown that neurocuprein is located only in brain cytosol and synaptosomal fractions. Extremely acidic copper-containing proteins were also isolated from soluble and membranous fractions of chromaffin granules from bovine adrenal medulla. The soluble form of the protein from the granules has practically the same physico-chemical and antigenic properties as neurocupreins. The copper protein isolated from membranes of granules has slightly higher molecular weight and somewhat different amino acid composition, although their EPR spectra are identical. However, both copper proteins from chromaffin granules are immunoprecipitated with antibodies to neurocuprein. It is suggested that the membranous form differs from the soluble one in possessing a peptide which prolongs the protein chain without changes in its antigenic properties.  相似文献   

12.
Myxothiazol, an inhibitor of the ubiquinol oxidase site of the ubiquinol:cytochrome c2 oxidoreductase complex, has been shown in the present work to inhibit a part of the electrogenic process indicated by phase III of the carotenoid change, in addition to the part of the change inhibited by antimycin. This finding shows that there is an antimycin-insensitive, but myxothiazol-sensitive portion of the slow phase, which indicates the existence of an electrogenic event within the ubiquinol:cytochrome c2 oxidoreductase complex, in addition to that linked to oxidation of cytochrome b-561 which has been previously characterized. Redox titrations show that the appearance of the new electrogenic step is correlated with the amount of cytochrome b-561 available in the oxidized form before the flash. The rate of the antimycin-insensitive and myxothiazol-sensitive portion of the carotenoid change correlates well with the rate of reduction of cytochrome b-561. No carotenoid change associated with reduction of cytochrome b-566 was seen. These findings suggest that the newly identified electrogenic process is linked to electron transfer between cytochrome b-566 and b-561. Calculations of the contribution of this new electrogenic step to the total electrogenic event within the complex show that electrons passing from cytochrome b-566 to cytochrome b-561 pass about 35-50% of the distance across the whole membrane.  相似文献   

13.
Cytochrome b561 catalyzes transmembrane electron transfer   总被引:1,自引:0,他引:1  
Purified cytochrome b561 from bovine adrenal medulla chromaffin vesicles has been reconstituted into phosphatidylcholine vesicles by a detergent-dialysis method. When the reconstituted cytochrome-containing vesicles were preloaded with ascorbic acid and cytochrome c was added to the external medium, the internal ascorbic acid was able to reduce the external cytochrome c. This reduction of cytochrome c was dependent on the presence of cytochrome b561 in the membrane and was not due to leakage of ascorbate from the vesicles. These results demonstrate that cytochrome b561 catalyzes a transmembrane electron transfer.  相似文献   

14.
The involvement of cytochrome b561, an integral membrane protein, in electron transfer across chromaffin-vesicle membranes is confirmed by changes in its redox state observed as changes in the absorption spectrum occurring during electron transfer. In ascorbate-loaded chromaffin-vesicle ghosts, cytochrome b561 is nearly completely reduced and exhibits an absorption maximum at 561 nm. When ferricyanide is added to a suspension of these ghosts, the cytochrome becomes oxidized as indicated by the disappearance of the 561 nm absorption. If a small amount of ferricyanide is added, it becomes completely reduced by electron transfer from intravesicular ascorbate. When this happens, cytochrome b561 returns to its reduced state. If an excess of ferricyanide is added, the intravesicular ascorbate becomes exhausted and the cytochrome b561 remains oxidized. The spectrum of these absorbance changes correlates with the difference spectrum (reduced-oxidized) of cytochrome b561. Cytochrome b561 becomes transiently oxidized when ascorbate oxidase is added to a suspension of ascorbate-loaded ghosts. Since dehydroascorbate does not oxidize cytochrome b561, it is likely that oxidation is caused by semidehydroascorbate generated by ascorbate oxidase acting on free ascorbate. This suggests that cytochrome b561 can reduce semidehydroascorbate and supports the hypothesis that the function of cytochrome b561 in vivo is to transfer electrons into chromaffin vesicles to reduce internal semidehydroascorbate to ascorbate.  相似文献   

15.
Cytochrome b561 is a transmembrane electron transport protein that is specific to a subset of secretory vesicles containing catecholamines and amidated peptides. This protein is thought to supply reducing equivalents to the intravesicular enzymes dopamine-beta-hydroxylase and alpha-peptide amidase. We have purified cytochrome b561 from bovine adrenal chromaffin granules by reverse phase chromatography and have determined internal amino acid sequences from peptides. Complementary oligonucleotides were used to isolate two cDNA clones from a bovine brain library. The structure predicted by the sequences of these cDNAs suggests a highly hydrophobic protein of 273 amino acids which spans the membrane six times with little extramembranous sequence. Cytochrome b561 is not homologous to any other cytochrome and thus represents a new class of electron carriers. RNA blotting experiments indicate that cytochrome b561 is expressed in the adrenal medulla and all brain regions of the cow, but not in visceral organs. This result agrees well with the putative function of this unique cytochrome and with the notion that this protein is localized to large dense-core synaptic vesicles.  相似文献   

16.
Bovine adrenal chromaffin granule cytochrome (cyt) b561 is a transmembrane hemoprotein that plays a key role in transporting reducing equivalents from ascorbate to dopamine-beta-hydroxylase for catecholamine synthesis. We have developed procedures for expression and purification of functional bovine adrenal cyt b561 in insect and yeast cell systems. The bovine cyt b561 coding sequence, with or without a hexahistidine-tag sequence at the C-terminus, was cloned into the pVL1392 transfer vector under the control of the polyhedrin promoter to generate recombinant baculovirus for protein expression in Sf9 insect cells (approximately 0.5 mg detergent-solubilized cyt b561/L culture). For the yeast system, the cyt b561 cDNA was modified with a hexahistidine-tag sequence at the C-terminus, and inserted into the pPICZB vector under the control of the alcohol oxidase promoter. The recombinant plasmid was transformed into Pichia pastoris GS115 competent cells to give methanol-inducible cyt b561 expression (approximately 0.7 mg detergent-solubilized cyt b561/L culture). Recombinant His-tagged cyt b561 expressed in Sf9 or Pichia cells was readily solubilized from membrane fractions with dodecyl maltoside and purified to electrophoretic homogeneity by one-step chromatography on Ni-NTA affinity resin. The purified recombinant cytochrome from both systems had a heme to protein ratio close to two and was fully functional, as judged by comparison with the spectroscopic and kinetic parameters of the endogenous cytochrome from chromaffin granules. A novel procedure for isolation of chromaffin granule membranes was developed to utilize frozen adrenal glands instead of fresh tissue.  相似文献   

17.
18.
(1) The role of the ubiquinone pool in the reactions of the cyclic electron-transfer chain has been investigated by observing the effects of reduction of the ubiquinone pool on the kinetics and extent of the cytochrome and electrochromic carotenoid absorbance changes following flash illumination. (2) In the presence of antimycin, flash-induced reduction of cytochrome b-561 is dependent on a coupled oxidation of ubiquinol. The ubiquinol oxidase site of the ubiquinol:cytochrome c(2) oxidoreductase catalyses a concerted reaction in which one electron is transferred to a high-potential chain containing cytochromes c(1) and c(2), the Rieske-type iron-sulfur center, and the reaction center primary donor, and a second electron is transferred to a low-potential chain containing cytochromes b-566 and b-561. (3) The rate of reduction of cytochrome b-561 in the presence of antimycin has been shown to reflect the rate of turnover of the ubiquinol oxidase site. This diagnostic feature has been used to measure the dependence of the kinetics of the site on the ubiquinol concentration. Over a limited range of concentration (0-3 mol ubiquinol/mol cytochrome b-561), the kinetics showed a second-order process, first order with respect to ubiquinol from the pool. At higher ubiquinol concentrations, other processes became rate determining, so that above approx. 25 mol ubiquinol/mol cytochrome b-561, no further increase in rate was seen. (4) The kinetics and extents of cytochrome b-561 reduction following a flash in the presence of antimycin, and of the antimycin-sensitive reduction of cytochrome c(1) and c(2), and the slow phase of the carotenoid change, have been measured as a function of redox potential over a wide range. The initial rate for all these processes increased on reduction of the suspension over the range between 180 and 100 mV (pH 7). The increase in rate occurred as the concentration of ubiquinol in the pool increased on reduction, and could be accounted for in terms of the increased rate of ubiquinol oxidation. It is not necessary to postulate the presence of a tightly bound quinone at this site with altered redox properties, as has been previously assumed. (5) The antimycin-sensitive reactions reflect the turnover of a second catalytic site of the complex, at which cytochrome b-561 is oxidized in an electrogenic reaction. We propose that ubiquinone is reduced at this site with a mechanism similar to that of the two-electron gate of the reaction center. We suggest that antimycin binds at this site, and displaces the quinone species so that all reactions at the site are inhibited. (6) In coupled chromatophores, the turnover of the ubiquinone reductase site can be measured by the antimycin-sensitive slow phase of the electrochromic carotenoid change. At redox potentials higher than 180 mV, where the pool is completely oxidized, the maximal extent of the slow phase is half that at 140 mV, where the pool contains approx. 1 mol ubiquinone/mol cytochrome b-561 before the flash. At both potentials, cytochrome b-561 became completely reduced following one flash in the presence of antimycin. The results are interpreted as showing that at potentials higher than 180 mV, ubiquinol stoichiometric with cytochrome b-561 reaches the complex from the reaction center. The increased extent of the carotenoid change, when one extra ubiquinol is available in the pool, is interpreted as showing that the ubiquinol oxidase site turns over twice, and the ubiquinone reductase sites turns over once, for a complete turnover of the ubiquinol:cytochrome c(2) oxidoreductase complex, and the net oxidation of one ubiquinol/complex. (7) The antimycin-sensitive reduction of cytochrome c(1) and c(2) is shown to reflect the second turnover of the ubiquinol oxidase site. (8) We suggest that, in the presence of antimycin, the ubiquinol oxidase site reaches a quasi equilibrium with ubiquinol from the pool and the high- and low-potential chains, and that the equilibrium constant of the reaction catalysed constrains the site to the single turnover under most conditions. (9) The results are discussed in the context of a detailed mechanism. The modified Q-cycle proposed is described by physicochemical parameters which account well for the results reported.  相似文献   

19.
Kamensky YA  Palmer G 《FEBS letters》2001,491(1-2):119-122
Low-temperature electron paramagnetic resonance (EPR) spectroscopy, circular dichroism and two-component redox titration have previously provided evidence for two different ascorbate-reducible heme centers in cytochrome b(561) present in chromaffin granule membranes. These species have now been observed by room and liquid nitrogen temperature absorption spectroscopy. The visualization of these heme centers becomes possible as a consequence of utilizing chromaffin granule membranes prepared by a mild procedure. Additionally, a new redox center, not reducible by ascorbate, was discovered by both EPR and absorption spectroscopy. It constitutes about 15% of the heme absorbance of chromaffin membranes at 561 nm and has EPR characteristics of a well-organized highly axial low-spin heme center (thus making it unlikely that it is a denatured species). This species is either an alternative form of one of the hemes of cytochrome b(561) that has a very low redox potential or a b-type cytochrome distinct from b(561).  相似文献   

20.
The subcellular distribution of three proteins of synaptic vesicles (synaptin/synaptophysin, p65 and SV2) was determined in bovine adrenal medulla and sympathetic nerve axons. In adrenals most p65 and SV2 is confined to chromaffin granules. Part of synaptin/synaptophysin is apparently also present in these organelles, but a considerable portion is found in a light vesicle which does not contain significant concentrations of typical markers of chromaffin granules (cytochrome b-561, dopamine beta-hydroxylase or the amine carrier). An analogous finding was obtained for sympathetic axons. The large dense core vesicles contain most p65 and also SV2 but only a smaller portion of synaptin/synaptophysin. A lighter vesicle containing this latter antigen and some SV2 has also been found. These results establish that in adrenal medulla and sympathetic axons three typical antigens of synaptic vesicles are not restricted to light vesicles. Apparently, a varying part of these antigens is found in chromaffin granules and large dense core vesicles. On the other hand, the light vesicles do not contain significant concentrations of functional antigens of chromaffin granules. Thus, the biogenesis of small presynaptic vesicles which contain all three antigens as well as functional components like the amine carrier is likely to involve considerable membrane sorting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号