首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of divalent cations and nucleotide to bovine brain glutamine synthetase and their effects on the activity of the enzyme were investigated. In ADP-supported gamma-glutamyl transfer at pH 7.2, kinetic analyses of saturation functions gave [S]0.5 values of approximately 1 microM for Mn2+, approximately 2 mM for Mg2+, 19 nM for ADP.Mn, and 7.2 microM for ADP.Mg. The method of continuous variation applied to the Mn2+-supported reaction indicated that all subunits of the purified enzyme express activity when 1.0 equiv of ADP is bound per subunit. Measurements of equilibrium binding of Mn2+ to the enzyme in the absence and presence of ADP were consistent with each subunit binding free Mn2+ (KA approximately equal to 1.5 X 10(5) M-1) before binding the Mn.ADP complex (KA' approximately equal to 1.1 X 10(6) M-1). The binding of the first Mn2+ or Mg2+ to each subunit produces structural perturbations in the octameric enzyme, as evidenced by UV spectral and tryptophanyl residue fluorescence changes. The enzyme, therefore, has one structural site per subunit for Mn2+ or Mg2+ and a second site per subunit for the metal ion-nucleotide complex, both of which must be filled for activity expression. Chloride binding (KA' approximately equal to 10(4) M-1) to the enzyme was found to have a specific effect on the protein conformation, producing a substantial (30%) quench of tryptophanyl fluorescence and increasing the affinity of the enzyme 2-4-fold for Mg2+ or Mn2+. Arsenate, which activates the gamma-glutamyl transfer activity by binding to an allosteric site, and L-glutamate also cause conformational changes similar to those produced by Cl- binding. Anion binding to allosteric sites and divalent metal ion binding at active sites both produce tryptophanyl residue exposure and tyrosyl residue burial without changing the quaternary enzyme structure.  相似文献   

2.
3.
4.
5.
Virulence, as determined in a mouse model, and the virulence factor activities of catalase, superoxide dismutase, and listeriolysin O were examined in a parental strain (10403S) and in a nonhemolytic mutant strain (DP-L224) of Listeria monocytogenes. The cells were propagated in media containing various concentrations of sodium chloride or potassium chloride. Strains 10403S and DP-L224 exhibited significant increases in catalase activity and listeriolysin O activity when grown in medium containing either salt at 428 mM. The superoxide dismutase activities for both strains increased when they were grown in medium containing either salt. The superoxide dismutase activity was significantly increased only when cells were propagated in medium containing no salt compared with that when they were propagated in medium containing either salt at 1,112 mM. In addition, the listeriolysin O activity was highest for cells propagated in medium containing KCl at 428 mM, while the activity was significantly less for cells propagated in medium containing NaCl at an equal concentration. Virulence was examined in mouse livers and spleens after intravenous infection, and approximate 50% lethal doses were determined after intragastric and intraperitoneal infection. Each method of infection indicated that listeriolysin O is required for virulence, while growth in salt-containing medium or the production of higher levels of catalase, superoxide dismutase, and listeriolysin O do not appear to enhance the virulence of L. monocytogenes.  相似文献   

6.
G Battaglia  M Shannon  M Titeler 《Life sciences》1983,32(22):2597-2601
The effect of LiCl, NaCl, and KCl on serotonin competition for 3H-ketanserin binding to S2 serotonin receptors in homogenates of rat prefrontal cortex were investigated. LiCl was the most potent of the ionic modulators in lowering the apparent affinity of serotonin for the S2 serotonin receptor. A threshold effect was noted at 12 mM LiCl (a 60% change in IC50); at 120 mM LiCl a nine-fold shift in the serotonin IC50 was noted. 120 mM NaCl or KCl demonstrated similar effects as 12 mM LiCl in reducing serotonin's apparent affinity. These results indicated that monovalent cations modulate S2 serotonin receptor affinity for serotonin and that lithium ion is more potent than sodium or potassium.  相似文献   

7.
A HPLC method is described for the simultaneous determination of d-fenfluramine (FEN), d-norfenfluramine (NF) and fluoxetine (FLX) using fluorometric detection after precolumn derivatization with dansyl-chloride. The method has limits of quantitation of 200 fmol for FEN and NF, 500 fmol for FLX in brain microdialysate, and 1 pmol for NF and FEN, and 2 pmol for FLX in plasma. Brain tissue standards were linear between 5 and 200 pmol/mg for all three compounds. The inter-assay variability (relative standard deviation) was 6.6%, 6.9% and 9.3% for FEN, 4.6%, 3.7% and 7.9% for NF and 10.4%, 4.9% and 12.2% for FLX, for brain microdialysate (2 pmol/μl), plasma (2 pmol/ μl) and brain tissue (50 pmol/mg), respectively. Intra-assay variability was always lower, typically several times lower than inter-assay variability. Extraction recovery was 108% and 48% for FEN, 105% and 78% for NF and 94% and 45% for FLX, in plasma (2 pmol/μl) and brain tissue (5 pmol/mg), respectively. Due to the stability of the dansyl-chloride derivatives this method is well suited for an autoinjector after manual derivatization with dansyl chloride at room temperature for 4 h.  相似文献   

8.
gamma-Aminobutyric acid (GABA) receptor-mediated 36chloride (36Cl-) uptake was measured in synaptoneurosomes from rat brain. GABA and GABA agonists stimulated 36Cl- uptake in a concentration-dependent manner with the following order of potency: Muscimol greater than GABA greater than piperidine-4-sulfonic acid (P4S)greater than 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridin-3-ol (THIP) = 3-aminopropanesulfonic acid (3APS) much greater than taurine. Both P4S and 3APS behaved as partial agonists, while the GABAB agonist, baclofen, was ineffective. The response to muscimol was inhibited by bicuculline and picrotoxin in a mixed competitive/non-competitive manner. Other inhibitors of GABA receptor-opened channels or non-neuronal anion channels such as penicillin, picrate, furosemide and disulfonic acid stilbenes also inhibited the response to muscimol. A regional variation in muscimol-stimulated 36Cl- uptake was observed; the largest responses were observed in the cerebral cortex, cerebellum and hippocampus, moderate responses were obtained in the striatum and hypothalamus and the smallest response was observed in the pons-medulla. GABA receptor-mediated 36Cl- uptake was also dependent on the anion present in the media. The muscimol response varied in media containing the following anions: Br- greater than Cl- greater than or equal to NO3- greater than I- greater than or equal to SCN- much greater than C3H5OO- greater than or equal to ClO4- greater than F-, consistent with the relative anion permeability through GABA receptor-gated anion channels and the enhancement of convulsant binding to the GABA receptor-gated Cl- channel.  相似文献   

9.
In brain slice preparations, chloride movements across the cell membrane of living cells are measured traditionally with 36Cl- tracer methods, Cl--selective microelectrodes, or whole-cell recording using patch clamp analysis. We have developed an alternative, noninvasive technique that uses the fluorescent Cl- ion indicator, 6-methoxy-N-ethylquinolinium iodide (MEQ), to study changes in intracellular Cl- by epifluorescence or UV laser scanning confocal microscopy. In brain slices taken from rodents younger than 22 days of age, excellent cellular loading is achieved with the membrane-permeable form of the dye, dihydro-MEQ. Subsequent intracellular oxidation of dihydro-MEQ to the Cl--sensitive MEQ traps the polar form of the dye inside the neurons. Because MEQ is a single-excitation and single-emission dye, changes in intracellular Cl- concentrations can be calibrated from the Stern-Volmer relationship, determined in separate experiments. Using MEQ as the fluorescent indicator for Cl-, Cl- flux through the gamma-aminobutyric acid (GABA)-gated Cl- channel (GABAA receptor) can be studied by dynamic video imaging and either nonconfocal (epifluorescence) or confocal microscopy in the acute brain slice preparation. Increases in intracellular Cl- quench MEQ fluorescence, thereby reflecting GABAA receptor activation. GABAA receptor functional activity can be measured in discrete cells located in neuroanatomically defined populations within areas such as the neocortex and hippocampus. Changes in intracellular Cl- can also be studied under various conditions such as oxygen/glucose deprivation ("in vitro ischemia") and excitotoxicity. In such cases, changes in cell volume may also occur due to the dependence of cell volume regulation on Na+, K+, and Cl- flux. Because changes in cell volume can affect optical fluorescence measurements, we assess cell volume changes in the brain slice using the fluorescent indicator calcein-AM. Determination of changes in MEQ fluorescence versus calcein fluorescence allows one to distinguish between an increase in intracellular Cl- and an increase in cell volume.  相似文献   

10.
11.
12.
13.
The effects of 1,4-diazepines with two annelated heterocycles [brotizolam (WE 941), ciclotizolam (WE 973) and WE 1008] on gamma-aminobutyric acid (GABA)-stimulated chloride influx into rat brain membrane vesicles were examined. Brotizolam enhanced GABA (30 microM)-stimulated 36Cl- influx (146.1% of control), while ciclotizolam and WE 1008 showed only a small enhancement (119.3% and 119.1%, respectively) of GABA-stimulated 36Cl- uptake. Brotizolam resulted in a left shift of the GABA dose response curve at lower concentrations of GABA (10 microM), while at higher concentrations of GABA (1 mM), brotizolam caused a reduction of the maximal response. The enhancement of GABA-stimulated 36Cl- uptake by brotizolam (0.1 microM) was antagonized by Ro 15-1788. At higher concentration of GABA (300 microM), brotizolam inhibited GABA-stimulated 36Cl- uptake in a dose dependent manner and Ro15-1788 failed to antagonize this effect. These results suggest that 1) brotizolam produces an enhancement of GABA (30 microM)-stimulated chloride influx through the benzodiazepine receptor. 2) brotizolam inhibition of GABA (300 microM)-stimulated chloride influx involves an additional mechanism, and 3) the sedative-hypnotic action of brotizolam may be related to its high efficacy at the benzodiazepine/GABA-gated chloride channel.  相似文献   

14.
The effects of ammonium ions on the frequency of spontaneous action potentials in guinea-pig cerebellar slices, recorded with an extracellular microelectrode, and on the contents of sodium, potassium and chloride ions in incubated guinea-pig cerebellar, and rat brain cortex, slices have been investigated. The frequencies of the spontaneous action potentials are partially suppressed by concentrations of NH4Cl less than 2 mm and completely abolished by concentrations exceeding 2 mm . The amplitudes of the spike discharges are unaffected. A lag period of at least 15 s precedes the inhibition. The suppressing action of NH on the spike frequency is reversible, as shown by complete recovery on removal of NH after short time intervals. Deficiency of Cl? in the superfusion medium causes conversion of inhibition by NH to excitation. Reduction of [K+], or of [Na+], causes increase of inhibition by NH in a normal [Cl1], and reduction of excitation in a low [Cl1], medium. The inhibitory effects of NH on spike frequency are unaffected by picrotoxin or strychnine. NH4Cl, even at 1 or 2 mm , causes a significant increase of aerobic glycolysis. It is suggested that the lag period preceding the suppression of the frequency of spike discharges by NH is partly due to a metabolic change induced by NH, perhaps a transient lowering of pH in the responsible neurons, causing changed permeability to Cl? and possibly to K+ and Na+, NH promotes, in guinea-pig cerebellar slices, an inward flow of Na+ and an outward flow of K+, the latter being greater than that due to exchange of K+ for NH. NH4Cl at 1 or 2 mm causes an outward flow of K+ and an inward flow of Cl? in rat brain cortex slices. The movement of Cl? is biphasic, the first phase, seen with low [NH], consisting of an increase of tissue content of Cl? with little or no fluid uptake and a second phase, seen with high (> 5 mm ) concentrations of NH, in which the uptake of Cl? is directly proportional to the fluid uptake. It is suggested that the first phase is largely neuronal in location whilst the second is largely glial. In infant rat brain cortex slices, there seems to be predominantly an equal exchange of NH for K+. There is little evidence of energy assisted concentrative uptake of NH by brain slices and this is thought to be due largely to the rapid diffusion of undissociated NH3 across cell membranes. It is suggested that some NH (amounting to about 2 mequiv/1) may be bound in the brain. It is concluded that changes in ionic permeabilities, particularly that of Cl?, partly due to a metabolic action, may be responsible for some of the acute cerebral effects of NH administration.  相似文献   

15.
16.
Chloropromazine (CPZ) and imipramine at a concentration of 1×10–3 M inhibit rat brain mitochondrial monoamine oxidase activity in vitro by 70 and 55% respectively, while lithium, even at a concentration of 0.05 M, inhibits the activity of this enzyme very negligibly (4%). In vivo, these drugs at a dose level of 56 mg CPZ, 76 mg Jimipramine and 76 mg lithium chloride/Kg body wt., did not cause any observable variation from normal in brain mitochondrial monoamine oxidase activity.To whom correspondence should be addressed.  相似文献   

17.
Hg2+ (10-20 microM), at concentrations comparable to mercury levels reportedly occurring in mercury neurotoxicity (Minamata disease), effectively inhibited both cytosolic (IC50 for Hg2+ = 4.1 microM) and mitochondrial (IC50 for Hg2+ = 1.4 microM) rat brain hexokinases. Kidney (IC50 for Hg2+ approximately equal to 3 microM) and spleen hexokinases were less susceptible to inhibition by Hg2+. IC50 values for Hg2+ in inhibiting cytosolic and mitochondrial spleen hexokinases were 8.9 and 3.1 microM, respectively. In both brain and spleen, mitochondrial hexokinases were more susceptible to inhibition by Hg2+ than cytosolic forms, suggesting that the microenvironment of the mitochondrial membranes may exert some modulatory effects on the properties of hexokinases. These results also suggest that inhibition of glucose utilization may be an important mechanism of tissue damage in mercury poisoning.  相似文献   

18.
Transport of gamma-aminobutyric acid (GABA) is electrogenic and completely depends on the presence of both sodium and chloride ions. These ions appear to be cotransported with gamma-aminobutyric acid through its transporter [reviewed in Kanner, B. I. (1983) Biochim. Biophys. Acta 726, 293-316]. Using proteoliposomes into which a partially purified gamma-aminobutyric acid transporter preparation was reconstituted, we have been able--for the first time--to provide direct evidence for sodium- and chloride-coupled gamma-aminobutyric acid transport. This has been done by measuring the fluxes of 22Na+, 36Cl-, and [3H]GABA. These fluxes have the following characteristics: There are components of the net fluxes of sodium and chloride that are gamma-aminobutyric acid dependent. The sodium flux is chloride dependent; i.e., when Cl- is replaced by inorganic phosphate or by SO4(2-), gamma-aminobutyric acid dependent sodium fluxes are abolished. The chloride flux is sodium dependent; i.e., when Na+ is replaced by Tris+ or by Li+, gamma-aminobutyric acid dependent chloride fluxes are abolished. Thus, the gamma-aminobutyric acid dependent sodium and chloride fluxes appear to be catalyzed by the transporter. Using these fluxes we have attempted to determine the stoichiometry of the process. We measured the initial rate of sodium-dependent gamma-aminobutyric acid fluxes and that of gamma-aminobutyric acid dependent sodium fluxes. This yields the stoichiometry between sodium and gamma-aminobutyric acid (2.58 +/- 0.99). Similarly, we measured the stoichiometry between chloride and gamma-aminobutyric acid, which is found to be 1.27 +/- 0.12.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Mercury is a toxic, environmentally heavy metal that can cause severe damage to all organs, including the nervous system. The functions of puerarin include antioxidant, anti-inflammatory, nerve cell repair, regulation of autophagy, and so forth. But because of the limited oral absorption of puerarin, it affects the protective effect on brain tissue. The nano-encapsulation of Pue can improve its limitation. Therefore, this study investigated the protective effect of Pue drug-loaded PLGA nanoparticles (Pue-PLGA-nps) on brain injury induced by mercuric chloride (HgCl2) in mice. The mice were divided into normal saline (NS) group, HgCl2 (4 mg/kg) group, Pue-PLGA-nps (50 mg/kg) group, HgCl2 + Pue (4 mg/kg + 30 mg/kg) group, and HgCl2 + Pue-PLGA-nps (4 mg/kg + 50 mg/kg) group. After 28 days of treatment, the mice were observed for behavioral changes, antioxidant capacity, autophagy and inflammatory response, and mercury levels in the brain, blood, and urine were measured. The results showed that HgCl2 toxicity caused learning and memory dysfunction in mice, increased mercury content in brain and blood, and increased serum levels of interleukin (IL-6), IL-1β, and tumor necrosis factor-α in the mice. HgCl2 exposure decreased the activity of T-AOC, superoxide dismutase, and glutathione peroxidase, and increased the expression of malondialdehyde in the brain of mice. Moreover, the expression levels of TRIM32, toll-like receptor 4 (TLR4), and LC3 proteins were upregulated. Both Pue and Pue-PLGA-nps interventions mitigated the changes caused by HgCl2 exposure, and Pue-PLGA-nps further enhanced this effect. Our results suggest that Pue-PLGA-nps can ameliorate HgCl2-induced brain injury and reduce Hg accumulation, which is associated with inhibition of oxidative stress, inflammatory response, and TLR4/TRIM32/LC3 signaling pathway.  相似文献   

20.
Leech blood apparently contains considerably less chloride than generally used in physiological experi ments. Instead of 85–130 mM Cl used in experimental salines, leech blood contains around 40 mM Cl and up to 45 mM organic anions, in particular malate. We have reinvestigated the distribution of Cl across the cell membrane of identified glial cells and neurones in the central nervous system of the leech Hirudo medicinalis L., using double-barrelled Cl- and pH-selective micro electrodes, in a conventional leech saline, and in a saline with a low Cl concentration (40 mM), containing 40 mM malate. The interference of anions other than Clto the response of the ion-selective microelectrodes was estimated in Cl-free salines (Cl replaced by malate and/or gluconate). The results show that the absolute intracellu lar Cl activities (aCli) in glial cells and neurones, but not the electrochemical gradients of Cl across the glial and the neuronal cell membranes, are altered in the low Cl, malate-based saline. In Retzius neurones, aCli is lower than expected from electrochemical equilibrium, while in pressure neurones and in neuropil glial cells, aCli is distributed close to its equilibrium in both salines, re spectively. The steady-state intracellular pH values in the glial cells and Retzius neurones are little affected (0.1 pH units) in the low Cl, malate-based saline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号