首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Laminin promotes epithelial cell adhesion in part through a site of nine amino acids CDPGYIGSR on the B1 chain. Using smaller synthetic peptides from this sequence as well as various peptides with amino acid substitutions, we find that the minimum sequence necessary for efficient cell adhesion as well as receptor binding is YIGSR. The deletion of tyrosine or the substitution of arginine in the peptides resulted in a significant loss of activity. The presence of an amide group on the terminal arginine of either peptide increases activity significantly. YIGSR is active in promoting the adhesion of a variety of epithelial cells; however, it is inactive with chondrocytes, fibroblasts, and osteoblasts.  相似文献   

2.
In an attempt to delineate potential folding initiation sites for different protein structural motifs, we have synthesized series of peptides that span the entire length of the polypeptide chain of two proteins, and examined their conformational preferences in aqueous solution using proton nuclear magnetic resonance and circular dichroism spectroscopy. We describe here the behavior of peptides derived from a simple four-helix bundle protein, myohemerythrin. The peptides correspond to the sequences of the four long helices (the A, B, C and D helices), the N- and C-terminal loops and the connecting sequences between the helices. The peptides corresponding to the helices of the folded protein all exhibit preferences for helix-like conformations in solution. The conformational ensembles of the A- and D-helix peptides contain ordered helical forms, as shown by extensive series of medium-range nuclear Overhauser effect connectivities, while the B- and C-helix peptides exhibit conformational preferences for nascent helix. All four peptides adopt ordered helical conformations in mixtures of trifluoroethanol and water. The terminal and interconnecting loop peptides also appear to contain appreciable populations of conformers with backbone phi and psi angles in the alpha-region and include highly populated hydrophobic cluster and/or turn conformations in some cases. Trifluoroethanol is unable to drive these peptides towards helical conformations. Overall, the peptide fragments of myohemerythrin have a marked preference towards secondary structure formation in aqueous solution. In contrast, peptide fragments derived from the beta-sandwich protein plastocyanin are relatively devoid of secondary structure in aqueous solution (see accompanying paper). These results suggest that the two different protein structural motifs may require different propensities for formation of local elements of secondary structure to initiate folding, and that there is a prepartitioning of conformational space determined by the local amino acid sequence that is different for the helical and beta-sandwich structural motifs.  相似文献   

3.
Laminin-111 is a large trimeric basement membrane glycoprotein with many active sites. In particular, four peptides active in tumor malignancy studies have been identified in laminin-111 using a systematic peptide screening method followed by various assays. Two of the peptides (IKVAV and AG73) are found on the α1 chain, one (YIGSR) of the β1 chain and one (C16) on the γ1 chain. The four peptides have distinct activities and receptors. Since three of the peptides (IKVAV, AG73 and C16) strongly promote tumor growth, this may explain the potent effects laminin-111 has on malignant cells. The peptide, YIGSR, decreases tumor growth and experimental metastasis via a 32/67 kD receptor while IKVAV increases tumor growth, angiogenesis and protease activity via integrin receptors. AG73 increases tumor growth and metastases via syndecan receptors. C16 increases tumor growth and angiogenesis via integrins. Identification of such sites on laminin-111 will have use in defining strategies to develop therapeutics for cancer.  相似文献   

4.
The tripeptide sequence arginine-glycine-aspartic acid (RGD) has been shown to be the key recognition segment in numerous cell adhesion proteins. The solution conformation and dynamics in DMSO-d6 of the cyclic pentapeptides, [formula: see text], a potent fibrinogen receptor antagonist, and [formula: see text], a weak fibrinogen receptor antagonist, have been characterized by nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. 1H-1H distance constraints derived from two-dimensional NOE spectroscopy and torsional angle constraints obtained from 3JNH-H alpha coupling constants, combined with computer-assisted modeling using conformational searching algorithms and energy minimization have allowed several low energy conformations of the peptides to be determined. Low temperature studies in combination with molecular dynamics simulations suggest that each peptide does not exist in a single, well-defined conformation, but as an equilibrating mixture of conformers in fast exchange on the NMR timescale. The experimental results can be fit by considering pairs of low energy conformers. Despite this inherent flexibility, distinct conformational preferences were found which may be related to the biological activity of the peptides.  相似文献   

5.
Crystal structures of human thymidylate synthase (hTS) revealed that the protein exists in active and inactive conformations, defined by the position of a loop containing the active site nucleophile. TS is highly homologous among diverse species; however, the residue at position 163 (hTS) differs among species. Arginine at this position is predicted by structural modeling to enable conformational switching. Arginine or lysine is reported at this position in all mammals in the GenBank and Ensembl databases, with arginine reported in only primates. Sequence analysis of the TS gene of representative primates revealed that arginine occurs at this relative position in all primates except a representative of prosimians. Mutant human proteins were created with residues at position 163 that occur in TSs from prokaryotes and eukaryotes. Catalytic constants (k cat) of mutant enzymes were 45–149% of hTS, with the lysine mutant (R163K) exhibiting the highest k cat. The effect of lysine substitution on solution structure and on ligand binding was investigated. R163K exhibited higher intrinsic fluorescence, a more negative molar ellipticity, and higher dissociation constants (K d) for ligands that modulate protein conformation than hTS. Temperature effects on intrinsic fluorescence and catalytic activity of hTS and R163K are consistent with proteins populating different conformational states. The data indicate that the enzyme with arginine at the position corresponding to 163 (hTS) evolved after the divergence of prosimians and simians and that substitution of lysine by arginine confers unique structural and functional properties to the enzyme expressed in simian primates.  相似文献   

6.
K S Long  D M Crothers 《Biochemistry》1999,38(31):10059-10069
Basic peptides from the carboxy terminus of the HIV-1 Tat protein bind to the apical stem-loop region of TAR RNA with high affinity and moderate specificity. The conformations of the unbound and 24 residue Tat peptide (Tfr24)-bound forms of TAR RNA have been characterized by NMR spectroscopy. The unbound form of TAR exists in major and minor forms having different trinucleotide bulge conformations. A specific TAR RNA conformational change is observed upon complex formation with Tfr24, consisting of coaxial stacking of helical stems and base triple formation. A U23-A27-U38 base triple is proposed based on exchangeable proton NMR data, where U23 forms a base pair with A27 in the major groove. No evidence for base triple formation was found for Tat peptides in which lysine residues are extensively substituted for arginine.  相似文献   

7.
Laminin is present on the apical and basolateral sides of epithelial cells of very early sea urchin blastulae. We investigated whether small laminin-peptides, known to have cell binding activities, alter the development of sea urchin embryos. The peptide YIGSR-NH2 (850 μM) and the peptide PA22-2 (5 μM), which contains the peptide sequence IKVAV (Tashiro et al., J. Biol. Chem. 264, 16174, 1989), typically blocked archenteron formation when added to the sea water soon after fertilization. At lower doses, the YIGSR peptide allowed invagination of the archenteron but blocked archenteron extension and differentiation and evagination of the feeding arms. The effect of YIGSR and PA22-2 peptides declined when added to progressively older stages until no effect was seen when added at the mesenchyme blastula stage (24 hours after fertilization). Control peptides GRGDS, YIGSE, and SHA22, a dodeca-peptide with a scrambled IKVAV sequence, had no effect on development. The YIGSK peptide containing a conserved amino acid modification had only a small effect on gastrulation. The results suggest that YIGSR and IKVAV peptides specifically disrupt cell/extracellular matrix interactions required for normal development of the archenteron and feeding arms. Our recent finding that YTGIR is at the cell binding site of the B1 chain of S. purpuratus laminin supports this conclusion. Evidently, laminin or other laminin-like molecules are among the many extracellular matrix components needed for the invagination and extension of the archenteron during the gastrulation movements of these embryos.  相似文献   

8.
Expression of the 37 kDa laminin receptor precursor protein (37LRP) correlates directly with increased invasiveness and the metastatic potential of tumors. The 37LRP matures to a 67 kDa protein which facilitates the binding of cancer cells to basement membranes. The palindrome peptide sequence LMWWML, corresponding to the 173-178-residue stretch of the human 37LRP sequence, has been identified as the laminin-1-binding site. Peptides from 37LRP of species that contain this palindrome-bind laminin-1 with high affinity. Nuclear magnetic resonance (NMR) conformational studies have been undertaken on a synthetic 15-residue peptide (KGAHSVGLMWWMLAR) containing the palindrome to establish the structural basis of this activity. To further correlate the structural data with laminin-1-binding function, analogous structural studies were conducted for a similar peptide (RGKHSIGLIWYLLAR) lacking the palindrome, originating from 37LRP sequence of Saccharomyces cerevisiae and exhibiting low laminin-1-binding affinity. Finally, in vitro cell invasion assays were performed to investigate the possibility that the laminin-1-binding affinity of the peptides influences their inhibitory activity.  相似文献   

9.
Eight cyclic heptapeptides related to the full sequence of deltorphin have been synthesized. The synthesis of linear peptides containing diamino acid residues in positions 2 and 4 was carried out on a 4-methylbenzhydrylamine resin. Depending on protection procedures, the N-protected peptide-resins or N-protected peptide amides with free amino groups in the side chains were obtained, which were subsequently treated with bis-(4-nitrophenyl)carbonate to form a urea unit. Opioid activities of the peptides were determined in the guinea pig ileum (GPI) and mouse vas deferens (MVD) assays. Several compounds showed high delta opioid agonist potency and high selectivity for delta receptors. The results were compared with those obtained earlier for respective 1-4 deltorphin analogs. The conformations of these peptides have been studied using 2D-NMR in H2O/D2O and molecular dynamics. We observed that the backbone rings had well defined conformations, while the Tyr and Phe side chains and the C-terminal tail had significant conformational freedom. The bioassay data and conformational parameters of these peptides were compared with those of previously described, corresponding 1-4 deltorphin analogs. This comparison permitted an assessment of the role of the C-terminal peptide segment in defining the conformation and receptor interaction of the N-terminal portion and provided insight into the relationship between the putative bioactive conformations and bioactivity.  相似文献   

10.
Laminin is a basement membrane-specific glycoprotein that promotes cell adhesion, proliferation, differentiation, and tumor cell migration. Synthetic peptides from the amino acid sequence deduced from a cDNA clone of the B1 chain of laminin were tested for their ability to promote the migration of B16F10 melanoma cells. A peptide, CDPGYIGSR, that is able to mediate epithelial cell attachment to laminin was found to promote migration, and the constituent pentapeptide YIGSR was also active but to a lesser degree. This nine-amino acid peptide blocked migration of melanoma cells to laminin but had no effect on migration to fibronectin. These data suggest that the cell-binding site and migration site on laminin share a common sequence that is unique to laminin.  相似文献   

11.
We utilized a 9-mer random phage display library to identify sequences which bind to laminin-1 and elute with heparan sulfate or peptide 11 (CDPGYIGSR). Laminin-1 derivatized plates were used for biopanning. Three consecutive rounds of low pH elutions were carried out, followed by three rounds of specific elutions, each consisting of a heparan sulfate elution followed by a peptide 11 elution. The random sequence inserts were sequenced for phage populations eluted at low pH, by heparan sulfate and by peptide 11. Specifically eluted phage populations exhibited three classes of mimotopes for different regions in the cDNA derived amino acid sequence of the 67 kDa laminin binding protein (LBP). These regions were (1) a palindromic sequence known as peptide G, (2) a predicted helical domain corresponding to LBP residues 205-229, and (3) TEDWS-containing C-terminal repeats. All elution conditions also yielded phage with putative heparin binding sequences. We modeled the LBP(205-229) domain, which is strongly predicted to have a helical secondary structure, and determined that this region likely possesses heparin-binding characteristics located to one side of the helix, while the opposite side appears to contain a hydrophobic patch where peptide 11 could bind. Using ELISA plate assays, we demonstrated that peptide 11 and heparan sulfate individually bound to synthetic LBP(205-229) peptide. We also demonstrated that the QPATEDWSA peptide could inhibit tumor cell adhesion to laminin-1. These data support the proposal that the 67 kDa LBP can bind the beta-1 laminin chain at the peptide 11 region, and suggest that heparan sulfate is a likely alternate ligand for the binding interactions. Our results also confirm previous data suggesting that the most C-terminal region of the LBP, which contains the TEDWS repeats, is involved in cell adhesion to laminin-1, and we specifically implicate the repeat sequence in that activity.  相似文献   

12.
In an attempt to understand the earliest events in the protein folding pathway, the complete sequence of French bean plastocyanin has been synthesized as a series of short peptide fragments, and the conformational preferences of each peptide examined in aqueous solution using proton n.m.r. methods. Plastocyanin consists largely of beta-sheet, with reverse turns and loops between the strands of the sheet, and one short helix. The n.m.r. experiments indicate that most of the peptides derived from the plastocyanin sequence have remarkably little propensity to adopt folded conformations in aqueous solution, in marked contrast to the peptides derived from the helical protein, myohemerythrin (accompanying paper). For most plastocyanin peptides, the backbone dihedral angles are predominantly in the beta-region of conformational space. Some of the peptides show weak NOE connectivities between adjacent amide protons, indicative of small local populations of backbone conformations in the a region of (phi,psi) space. A conformational preference for a reverse turn is seen in the sequence Ala65-Pro-Gly-Glu68, where a turn structure is found in the folded protein. Significantly, the peptide sequences that populate the alpha-region of (phi,psi) space are mostly derived from turn and loop regions in the protein. The addition of trifluoroethanol does not drive the peptides into helical conformations. In one region of the sequence, the n.m.r. spectra provide evidence of the formation of a hydrophobic cluster involving aromatic and aliphatic side-chains. These results have significance for understanding the initiation of protein folding. From these studies of the fragments of plastocyanin (this paper) and myohemerythrin (accompanying paper), it appears that there is a pre-partitioning of the conformational space sampled by the polypeptide backbone that is related to the secondary structure in the final folded state.  相似文献   

13.
Peptide 11, CDPGYIGSR-NH2, is a segment of laminin which blocks tumor cell invasion. A high affinity laminin receptor in tumor cells is thought to be blocked by the carboxyl-terminal YIGSR, and conformational energy calculations suggest that the glycine in YIGSR allows an important conformational bend. We replaced the YIGSR glycine residue in peptide 11 with either D-alanine or L-alanine to allow or disfavor the proposed glycine bend. We found the Gly7-->D-Ala7 analog to be equal to peptide 11 in inhibiting tumor cell invasion of basement membrane matrix. The Gly7-->L-Ala7 analog was much less capable of invasion inhibition. Two-dimensional 1H-1H NMR was used to study the solution conformations of the peptide 11 analogs. NOESY experiments revealed close NH-NH contacts in peptide 11 and the D-Ala7 analog, but not in the L-Ala7 analog. Molecular dynamics generated low energy structures with excellent NOE agreement for peptide 11 and its analogs. Both peptide 11 and the D-Ala7 analog, but not the less active L-Ala7 analog, were predicted to have similar bends around Gly7 or D-Ala7. These results suggest that a bend in the YIGSR region of peptide 11 may be important for the binding of laminin to its metastasis-associated receptor.  相似文献   

14.
Peptide T (ASTTTNYT), a segment corresponding to residues 185-192 of gp120, the coat protein of HIV, has several important biological properties in vitro that have stimulated the search for simpler and possibly more active analogs. We have previously shown that pseudocyclic hexapeptide analogs containing the central residues of peptide T retain considerable chemotactic activity. We have now extended the design of this type of analogs to peptides containing different aromatic residues and/or Ser in lieu of Thr. The complex conformation-activity relationship of these analogs called for a reexamination of the basic conformational tendencies of peptide T itself. Here, we present an exhaustive NMR conformational study of peptide T in different media. Peptide T assumes a gamma-turn in aqueous mixtures of ethylene glycol, a type-IV beta-turn conformation in aqueous mixtures of DMF, and a type-II beta-turn conformation in aqueous mixtures of DMSO. The preferred conformations for the analogs were derived from modeling, starting from the preferred conformations of peptide T. The best models derived from the gamma-turn conformation of peptide T are those of peptides XII (DSNYSR), XIII (ETNYTK) and XVI (ESNYSR). The best models derived from the type-IV beta-turn conformation of peptide T are those of peptides XIV (KTTNYE) and XV (DSSNYR). No low-energy models could be derived starting from the type-II beta-turn conformation of peptide T. The analogs with the most favored conformations are also the most active in the chemotactic test.  相似文献   

15.
R Tan  A D Frankel 《Biochemistry》1992,31(42):10288-10294
Short basic peptides from the HIV Tat protein bind specifically to a bulge region in TAR RNA, with a single arginine residue providing the only sequence-specific contact. The free amino acid arginine also binds specifically to TAR. Previous circular dichroism (CD) experiments suggested that peptide binding induces a conformational change in TAR. Here we confirm this observation using single arginine-containing peptides and show that arginine or guanidine binding also induces a conformational change in TAR. A peptide containing a single arginine within a stretch of histidines (CYHHHRHHHHHA) shows pH-dependent binding and a corresponding change in TAR conformation, as detected by a decrease in the CD signal at 265 nm. Arginine and guanidine, which bind to TAR with apparent Kd's of approximately 1.5 mM, induce similar CD changes. In contrast, lysine, which does not bind specifically to TAR, has no effect. Mutants of TAR that abolish specific binding (a U-->C substitution in the three-nucleotide bulge, a deletion of the bulge, or an A-U to U-A base pair change above the bulge) show no change in the CD signal upon binding of peptides, arginine, or guanidine. The results suggest that binding of a single guanidinium group to a specific site in TAR induces a change in RNA conformation.  相似文献   

16.

Background

Type II transmembrane serine proteases (TTSPs) are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors.

Methodology/Principal Finding

To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS). Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin) to simultaneously determine sequence preferences on the N-terminal non-prime (P) and C-terminal prime (P’) sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1′ position. TTSP cleavage between R↓K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived.

Conclusions

Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1′ positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity.  相似文献   

17.
Although the function of laminin in the basement membrane is known, the function of soluble “neuronal” laminin is unknown. Since laminin is neuroprotective, we determined whether the soluble laminin-1 induces signaling for neuroprotection via its 67KDa laminin-1 receptor (67LR). Treatment of Neuroscreen-1 (NS-1) cells with laminin-1 or YIGSR peptide, which corresponds to a sequence in laminin-1 β1 chain that binds to 67LR, induced a decrease in the cell-surface expression of 67LR and caused its internalization. Furthermore, intracellular cAMP-elevating agents, dibutyryl-cAMP, forskolin, and rolipram, also induced this internalization. Both soluble laminin-1 and YIGSR induced a sustained elevation of intracellular cAMP under defined conditions, suggesting a causal role of cAMP in the endocytosis of 67LR. This endocytosis was not observed in cells deficient in protein kinase A (PKA) nor in cells treated with either SQ 22536, an inhibitor for adenylyl cyclase, or ESI-09, an inhibitor for the exchange protein directly activated by cAMP (Epac). In addition, when internalization occurred in NS-1 cells, 67LR and adenylyl cyclase were localized in early endosomes. Under conditions in which endocytosis had occurred, both laminin-1 and YIGSR protected NS-1 cells from cell death induced by serum withdrawal. However, under conditions in which endocytosis did not occur, neither laminin-1 nor YIGSR protected these cells. Conceivably, the binding of laminin-1 to 67LR causes initial signaling through PKA and Epac, which causes the internalization of 67LR, along with signaling enzymes, such as adenylyl cyclase, into early endosomes. This causes sustained signaling for protection against cell death induced by serum withdrawal.  相似文献   

18.
The 21 residue polyalanine-based F(s) peptide was studied using thousands of long, explicit solvent, atomistic molecular dynamics simulations that reached equilibrium at the ensemble level. Peptide conformational preference as a function of hydrophobicity was examined using a spectrum of explicit solvent models, and the peptide length-dependence of the hydrophilic and hydrophobic components of solvent-accessible surface area for several ideal conformational types was considered. Our results demonstrate how the character of the solvation interface induces several conformational preferences, including a decrease in mean helical content with increased hydrophilicity, which occurs predominantly through reduced nucleation tendency and, to a lesser extent, destabilization of helical propagation. Interestingly, an opposing effect occurs through increased propensity for 3(10)-helix conformations, as well as increased polyproline structure. Our observations provide a framework for understanding previous reports of conformational preferences in polyalanine-based peptides including (i) terminal 3(10)-helix prominence, (ii) low pi-helix propensity, (iii) increased polyproline conformations in short and unfolded peptides, and (iv) membrane helix stability in the presence and absence of water. These observations provide physical insight into the role of water in peptide conformational equilibria at the atomic level, and expand our view of the complexity of even the most "simple" of biopolymers. Whereas previous studies have focused predominantly on hydrophobic effects with respect to tertiary structure, this work highlights the need for consideration of such effects at the secondary structural level.  相似文献   

19.
Ras farnesyltransferase catalyzes the carboxyl-terminal farnesylation of Ras as well as other proteins involved in signal transduction processes. Previous studies demonstrated that its inhibition suppresses the activity of Ras transformed phenotypes in cultured cells, causing tumor regression in animal models. This observation led to the consideration of farnesyltransferase as a target for cancer therapy. In the present work we report the results of a computational study aimed at assessing the bioactive conformation of the peptide Cys-Val-Phe-Met, known to be the minimum peptide sequence that inhibits farnesyltransferase. For this purpose the conformational preferences of four analogs of the peptide were assessed by means of thorough searches of their respective conformational spaces, using a simulated annealing protocol as sampling technique. Specifically, two active analogs: Cys-Val-Tic-Met and Cys-Val-psi(CH2NH)Tic-Met and two inactive analogs: Cys-Val-Tic-psi(CH2NH)Met and Cys-Val-Aic-Met were selected for the present study. Low energy conformations of the four analogs were classified according to their structural motifs. The putative bioactive conformation of the minimum farnesyltransferase recognition motif was assessed by cross-comparison of the different classes of conformations obtained for the two active and the two inactive analogs. The putative bioactive conformation is characterized by two structural motifs: i) a C14 pseudo-ring stabilized by a hydrogen bond between the amino group of Cys1 and the carboxylate group of Met4 and a C11 pseudo-ring involving the residues Cys1 and Tic3. In addition, the thiol group of Cys1 side chain of the bioactive conformation points to the carboxylate moiety of Met4.  相似文献   

20.
The biologically relevant conformation of substance P is likely to be dictated by the lipid milieu wherein the hormone would interact with its receptor. Assuming that specific constraints to the hormone structure may be imparted by its interaction with Ca2+ ions in the low dielectric lipid medium, the interaction of substance P and its inactive analog, Ala7-substance P, has been characterized in a lipid-mimetic solvent. Circular dichroism (CD) and NMR spectral methods were employed to study the conformation of the free and Ca2+-bound forms of the peptides and the conformational changes that occur on Ca2+ binding. The results show that both peptides assume a helical structure in the non-polar solvent used, a mixture of acetonitrile and trifluoroethanol. The N-terminal region is, however, less ordered in the analog peptide compared with the native hormone. Ca2+ addition causes significant conformational changes in both the peptides. However, while substance P binds two Ca2+ ions in a cooperative manner, Ala7-substance P binds only one Ca2+ ion with a relatively weaker affinity. Computations of the minimum-energy conformations of the free and Ca2+-bound peptides were performed using interproton distances derived from nuclear Overhauser enhancement spectra of the two peptides, as well as the information provided by changes in proton chemical shifts caused by Ca2+ addition. Taken together, the results of this study suggest that differences in the interaction of substance P and Ala7-substance P with Ca2+ in the non-polar milieu, which in turn leads to differences in their Ca2+-bound conformations, may be the basis for the differences in their biological potencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号