首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The oviduct-derived embryotrophic factor, ETF-3, enhances the development of trophectoderm and the hatching process of treated embryos. Monoclonal anti-ETF-3 antibody that abolishes the embryotrophic activity of ETF-3 recognized a 115-kDa protein from the conditioned medium of immortalized human oviductal cells. Mass spectrometry analysis showed that the protein was complement C3. Western blot analysis using an antibody against C3 confirmed the cross-reactivities between anti-C3 antibody with ETF-3 and anti-ETF-3 antibody with C3 and its derivatives, C3b and iC3b. Both derivatives, but not C3, were embryotrophic. iC3b was most efficient in enhancing the development of blastocysts with larger size and higher hatching rate, consistent with the previous reported embryotrophic activity of ETF-3. Embryos treated with iC3b contained iC3b immunoreactivity. The oviductal epithelium produced C3 as evidenced by the presence of C3 immunoreactivity and mRNA in the human oviduct and cultured oviductal cells. Cyclical changes in the expression of C3 immunoreactivity and mRNA were also found in the mouse oviduct with the highest expression at the estrus stage. Molecules involving in the conversion of C3b to iC3b and binding of iC3b were present in the human oviduct (factor I) and mouse preimplantation embryo (Crry and CR3), respectively. In conclusion, the present data showed that the oviduct produced C3/C3b, which was converted to iC3b to stimulate embryo development.  相似文献   

3.
To evaluate the embryotrophic role of three hexoses (glucose, fructose, and galactose), bovine embryos derived from somatic cell nuclear transfer (SCNT) or in vitro-fertilization (IVF) were cultured in a modified synthetic oviductal fluid (mSOF), which contained either glucose (1.5 or 5.6 mM), fructose (1.5 or 5.6 mM), or galactose (1.5 or 5.6 mM). Compared to 1.5 mM glucose, use of 1.5 mM fructose significantly enhanced blastocyst formation in both SCNT (23 vs. 33%) and IVF embryos (26 vs. 34%), while 5.6 mM fructose did not improve blastocyst formation. Using 1.5 mM galactose did not improve blastocyst formation in SCNT embryos (22 vs. 23%), whereas it significantly inhibited blastocyst formation in IVF embryos (26 vs. 0%). In both SCNT and IVF embryos, 5.6 mM glucose or galactose significantly inhibited embryo development. In a second experiment, in glucose-free mSOF, fructose at concentrations of 0.75, 1.5, 3.0, or 5.6 mM was able to support to morula (32-42 vs. 12%) and blastocyst formation (30-38 vs. 12%) compared to 0 mM fructose. In Experiment 3, addition of fructose (1.5, 3.0, or 5.6 mM) to mSOF containing 1.5 mM glucose did not further promote blastocyst formation in SCNT embryos compared with replacement with 1.5 mM fructose only. Replacement of glucose with 1.5 mM fructose significantly increased total blastomeres (143 vs. 123 cells) and trophectodermal (TE) cells (116 vs. 94 cells) and decreased inner cell mass (ICM) to TE cell ratio (0.24 vs. 0.31) in blastocysts, compared to 1.5 mM glucose. The combined addition of 1.5 mM fructose and glucose significantly increased ICM cell number (36.7 cells) and ICM/TE ratio (0.46). In conclusion, fructose might be a more efficient energy substrate than glucose for producing large number of transferable blastocysts derived from SCNT.  相似文献   

4.
The human oviduct derived embryotrophic factor-3 (ETF-3) contains complement protein-3 (C3) and its derivates. Although C3 is not embryotrophic, it is converted into the embryotrophic derivative, iC3b in the presence of embryos and oviductal cells. The regulation of C3 production in the oviduct is not known. The objectives of this study were to investigate the effects of presence of preimplantation embryos and hormones on C3 expression in the oviducts in vitro and in vivo. The expression of C3 in the oviduct of pregnant mice was compared to that of pseudo-pregnant mice. The hormonal action on C3 expression was studied in the ovariectomized mouse oviducts and human oviductal epithelial (OE) cells. The results showed that the level of C3 mRNA in the mouse oviduct was high on Day 1 and Day 2, but decreased to a minimum on Day 4 of pregnancy, whereas that of pseudo-pregnancy remained relatively stable within the same period. The protein levels of C3 and iC3b specific fragments, alpha-115 and alpha-40, respectively in the mouse oviductal luminal fluid were highest on Day 3 of pregnancy, when the embryos were expected to be most sensitive to the embryotrophic activity of ETF-3. Estrogen elevated C3 expression in the ovariectomized mouse oviduct and the OE cells. Progesterone suppressed estrogen-induced C3 expression in the mouse oviduct, but had no effect on OE cells. In conclusion, the presence of embryo and steroid hormones regulate the synthesis and secretion of oviductal C3.  相似文献   

5.
Treatment of in vitro matured bovine oocytes with colcemid results in a membrane protrusion that contains maternal chromosomes, which can be easily removed by aspiration. Four experiments were designed to evaluate the overall and temporal effects of conditioned medium (CM) by bovine cumulus cells on development of nuclear transfer (NT) bovine embryos and to examine the chromosomal composition and allocation of inner cell mass (ICM) and trophectoderm (TE) of the subsequent blastocysts. The nuclear transfer embryos were cultured in various CR1aa media conditioned by preculture with bovine cumulus cells. Development to the blastocyst stage in BSA-containing CM (BCM) and serum-containing CM (SCM) were similar to co-culture group (24-30%). The 24 hr-conditioned BCM yielded higher blastocyst development than 48 and 72 hr-conditioned BCM. Temporary exposure of embryos to BCM and SCM followed by CR1aa was also studied. Morula and blastocyst development were not different among the groups cultured in BCM for 72, 96, and 168 hr, but were significantly higher (P < 0.01) than groups exposed to BCM for 24 and 48 hr, respectively. Blastocyst development in SCM for 24 hr (29%), 96 hr (25%), and 168 hr (27%) were much higher (P < 0.05) than those in SCM for 48 hr (12%) and 72 hr (10%). The analyses of chromosomal composition of the resulting blastocysts indicate approximately 80% of the blastocysts cultured in CR1aa with co-culture or groups initially exposed to BCM for 24 hr followed by culture in CR1aa were diploid. However, the incidence of diploidy were only 36-60% in SCM-cultured groups and groups cultured in BCM beyond 48 hr. Conditioned media did not affect the allocation of ICM and TE in the blastocyst. No difference was found in the ratio of inner cell mass to total cells in co-culture, BCM or SCM groups (0.424, 0.441, and 0.473, respectively). In conclusion, bovine cumulus cell-CM and CR1aa with co-culture supported comparable development and blastocyst ICM:total cell ratio of bovine NT embryos. However, CM affected the blastocyst chromosomal composition and induced higher mixploidy.  相似文献   

6.
The susceptibility of embryos to reactive oxygen species (ROS) varies in different stages of embryo development. The present study evaluated temporal effects of alpha-tocopherol and L-ascorbic acid on the porcine embryo development, and investigated whether a single or twice supplements of these two antioxidants at a divided concentrations favors the embryo development. In order to determine temporal effects of alpha-tocopherol and/or L-ascorbic acid, 100 microM alpha-tocopherol or 200 microM L-ascorbic acid were supplemented to the North Carolina State University (NCSU)-23 embryo culture media at 0, 48, 96 and 120 h of culture. In another set of experiments, the concentration was divided into two equal halves, i.e., 50 microM alpha-tocopherol and 100 microM L-ascorbic acid, and supplemented twice at 0 and 48, 0 and 96, or 48 and 96 h of culture. Supplementing culture media with 100 microM alpha-tocopherol for the entire culture period of 168 h or starting from the 48 h of culture yielded higher blastocyst percentage compared with the control or starting from the 96 or 120 h of culture. L-Ascorbic acid (200 microM) alone or together with alpha-tocopherol (100 microM) with a single supplement did not affect the frequency of blastocyst formation or number of cells in blastocyst. L-ascorbic acid with a divided supplements yielded higher blastocyst percentage compared with the control. No synergistic effect was observed on embryo development at a single supplement of these antioxidants. Although, at divided supplements higher blastocyst percentage was observed compared with control group, no further beneficial effect was observed compared with alpha-tocopherol or L-ascorbic acid alone. Our results demonstrated that the embryotrophic effects of alpha-tocopherol and/or L-ascorbic acid, in terms of frequency of blastocyst formation and number of cells in blastocyst, depends on the concentration and supplementation timing.  相似文献   

7.
To improve efficiency of transgenesis, we compared M16 and CZB embryo culture media, supporting development to blastocysts of FVB/N mouse pronuclear-eggs, microinjected with enhanced green fluorescent protein (EGFP) transgene. When EGFP-injected-eggs were cultured (120 hr), blastocyst development was significantly (P < 0.03) higher in M16 medium (72.5 +/- 2.4%) than that in CZB (13.2 +/- 4.3%) or CZBG (CZB with 5.6 mM glucose at 48 hr culture) (62.1 +/- 3.7%) media. Blastocyst development of noninjected embryos was higher in M16 (92.0 +/- 2.6%) and CZBG (83.9 +/- 3.9%) media than in CZB (31.9 +/- 2.8%) medium (P < 0.0001). However, percentages of morulae at 72 hr were comparable in all treatments. Developed blastocysts were better in M16 than in CZB or CZBG media. Consistent with this, mean cell number per blastocyst, developed from injected embryos, was significantly (P < 0.002) higher in M16 medium (79.6), than those in CZB (31.3) or CZBG media (60.7); similar with noninjected embryos. Cell allocation to trophectoderm (TE) and inner cell mass (ICM), i.e., TE:ICM ratio, for injected blastocysts in M16 (3.0) was less than (P < 0.05) those in CZB (4.2) and CZBG (4.4) media; similar with noninjected blastocysts. Moreover, blastocysts, developed in M16 and CZBG media, hatched, attached, and exhibited trophoblast outgrowth; 18% of them showed EGFP-expression. Importantly, blastocysts from M16 medium produced live transgenic "green" pups (11%) following embryo transfer. Taken together, our results indicate that supplementation of glucose, at 48 hr of culture (CZBG), is required for morula to blastocyst transition; M16 medium, containing glucose from the beginning of culture, is superior to CZB or CZBG for supporting development of biologically viable blastocysts from EGFP-transgene-injected mouse embryos.  相似文献   

8.
The objective of this study was to examine the effect of paternal heat stress on the in vivo development of preimplantation embryos in the mouse. Synchronised B6CBF1 female mice were mated either to a control male mouse or to one that had been exposed at 7, 21 or 35 days previously, for 24 h to an ambient temperature of 36+/-0.3 degrees C and 66+/-5.6% relative humidity. Embryos were collected from the oviducts of mice at 14-16 h, 34-39 h or 61-65 h after mating or from the uterus at 85-90 h after mating and their developmental status was evaluated morphologically. The number of cells within blastocysts was also determined using bisbenzimide-propidium iodide staining. Paternal heat stress 7 days before mating reduced the proportion of embryos developing from 4-cell (4-C) to morulae (M), hatched blastocysts, total blastocysts and the number of inner cell mass (ICM) and trophectoderm (TE) cells in the blastocyst. Paternal heat stress 21 days prior to mating reduced the proportion of 2-C and 4-C to M embryos with no embryos developing to blastocysts. There were also increases in the number of 1-C and abnormal embryos recorded at this time. Paternal heat stress 35 days before mating decreased the proportion of 2-C embryos, expanded blastocysts and ICM and TE cells in the blastocyst. These results support previous work demonstrating that both the sperm in the epididymis and germ cells in the testis are susceptible to damage by environmental heat stress, with spermatocytes being the most vulnerable. This study also demonstrates that subtle effects on the male such as a short exposure to elevated environmental temperatures can translate to quite profound paternal impacts on early embryo development.  相似文献   

9.
Li R  Wen L  Wang S  Bou S 《Theriogenology》2006,66(2):404-414
In this study, we examined the development, freezability and amino acid consumption of in vitro produced bovine embryos cultured in a chemically defined medium (SOF+polyvinyl alcohol), supplemented with 24 amino acids at concentrations measured in bovine oviductal or uterine fluid. Amino acids at concentrations in oviductal fluid tested by Elhanssan (EOAA) significantly improved development to the hatched blastocyst stage, compared to Sigma amino acid solutions BME and MEM (SAA). Amino acids at concentrations in uterine fluid tested by Li (LUAA) were not compared to SAA, and development in LUAA was not significantly different from development in EOAA. Amino acids at concentrations in uterine fluid tested by Elhanssan (EUAA) significantly reduced cleavage rate and blocked further embryo development. When the IVF embryos were cultured in EOAA for 48, 72, 96, or 120 h and then transferred to LUAA, blastocyst and hatched blastocyst rates were not significantly affected. The freezability of blastocysts cultured in EOAA for the first 72 h and then moved to LUAA was improved compared to that in SAA. During the 1-8-cell stages, embryos secreted all 23 amino acids (total, 6,368 pmol/embryo). During the 8-cell to morula stages, embryos continued to secrete 21 amino acids (total, 2,495 pmol/embryo), meanwhile embryos began to absorb Arg (70 pmol/embryo) and Gln (18 pmol/embryo). After the morula stage, embryos began to absorb 15 amino acids including Glu, Gly, Arg, and Gln (total, 2,742 pmol/embryo) and secreted eight amino acids (total, 1,616 pmol/embryo). Embryos absorbed only Arg (183 pmol/embryo) and secreted the other 22 amino acids (total, 3,697 pmol/embryo) when the culture medium was not changed during the entire culture period (zygote to blastocyst).  相似文献   

10.
The ability of trophectoderm (TE) cells to produce chimeric mice (pluripotency) was compared with that of inner cell mass (ICM) cells. TE and ICM cells of blastocysts and hatching or hatched blastocysts derived from albino mice (CD-1, Gpi-1a/a) were aggregated with zona cut 8- to 16-cell stage embryos or injected into the blastocoele from non-albino mice (C57BL/6 x C3H/He, Gpi-1b/b). After transfer to pseudopregnant female mice, the contribution of the donor cells was examined by glucose phosphate isomerase (GPI) analysis of embryos, membrane and placenta at mid-gestation (Day 10.5 and 12.5) or by the coat color of newborn mice. In contrast to ICM cells, there was no contribution of TE cells in the conceptuses and no coat color chimeric young were obtained. After pre-labeling of TE cells with fluorescent latex microparticles, they were aggregated with embryos and the allocation of TE cells at the compacted morula and blastocyst stages was observed under a fluorescent microscope. Although the TE cells were observed attached onto the surface of the embryos at morula and blastocyst stages, unlike the ICM cells, they were not positively incorporated into the embryos. Thus, the pluripotency of TE cells from mouse blastocysts was not induced by the aggregation and injection methods.  相似文献   

11.
The objective of these experiments was to assess putative embryotrophic effects of leukemia inhibitory factor (LIF) on bovine preimplantation development in chemically defined media. Recombinant human LIF was added to embryo culture media at a concentration of 100 ng/ml. When added for culture of morulae LIF had no positive effect on the proportion of embryos reaching the blastocyst stage. However, LIF significantly reduced development to the blastocyst stage when added for culture of 4-cell stage embryos (P<0.05). In contrast, a positive effect was found for progression of blastocyst development. In vitro blastocyst hatching rates were significantly improved in the presence of LIF (P<0.02). Number of total cells and of inner cell mass (ICM) cells were increased in LIF-treated blastocysts. In vitro survival of frozen-thawed blastocysts was not improved by adding LIF to morula stage embryos before cryopreservation. The pregnancy rate after direct transfer of cryopreserved LIF-treated embryos was not different from that for untreated control embryos. Data indicate that addition of LIF has no major beneficial effect on bovine embryos produced in these chemically defined conditions.  相似文献   

12.
Leukemia inhibitory factor (LIF) is a cytokine that shows conflicting effects on in vitro produced (IVP) bovine embryos. Bovine LIF (bLIF) has been cloned and used in culture, but there is no commercially available bLIF. Thus, researchers use human LIF (hLIF) to supplement the culture medium for bovine embryos because of its greater sequence homology compared to murine LIF (mLIF). We compared the effects of mLIF and hLIF on the development of bovine embryos in culture with the effects described for bLIF. Oocytes were matured and fertilized in vitro and cultured in modified synthetic oviduct fluid with BSA. On Day 6 post-insemination, morulae were cultured for 48h in the presence of: (1) mLIF, 100ngml(-1); (2) hLIF, 100ngml(-1); or (3) no LIF. Reduced blastocyst rates were observed on Day 8 for hLIF at the middle and expanded stages, while mLIF had no effect. In contrast, Day 8 blastocysts showed decreased cell counts both in terms of inner cell mass (ICM) and ICM/total cell proportions in the presence of mLIF, while hLIF had no effect. No changes were seen in trophectoderm (TE) and total cell counts. The increased hatching rates and TE cell counts previously described for bLIF, together with the disparate effects exhibited by hLIF and mLIF during blastocyst formation indicate these compounds are inappropriate to replace bLIF. We recommend that heterospecific LIF should not be used to supplement the culture medium for bovine embryo or embryonic stem cells.  相似文献   

13.
The success rates of assisted reproduction techniques are still unsatisfactory. Relatively few in vitro cultured embryos reach the blastocyst stage. The purpose of the study was to evaluate the protective potential of epidermal growth factor (EGF), insulin-like growth factors 1 and 2 (IGF-I, IGF-II) and stem cell factor (SCF) on in vitro development of pre-implantation mouse embryos exposed to tumor necrosis factor alpha (TNFalpha). C3B6F1 female mice were superovulated with 5 IU of pregnant mare serum gonadotropin (PMSG) and 48 h later with 5IU of equine chorionic gonadotropin (eCG). Following the second injection females were mated with DBA males. Two cell embryos were flushed out from the fallopian tubes 40 h after eCG administration. After retrieval, the embryos were divided into control and experimental media and incubated in groups of ten for 96 h (37 degrees C, 5%CO(2), in droplets of 50 microl under mineral oil). In the first part of experiment, the embryo development was tested in media containing EGF, IGF-I, IGF-II, SCF, TNF-alpha (1 to 1000 ng/ml). In the second part of the study, the development of embryos was examined in medium containing 100 ng/ml TNFalpha and one of following factors: IGF-I, IGF-II; EGF or SCF (100 ng/ml). During the culture embryos were examined at 24 hours intervals to assess the embryo development. Blastocyst rate was determined following 96 hours of culture. Evaluation of total blastocyst cell number (TB) and inner cell mass (ICM) was also performed. TNFalpha significantly reduced (p<0.05) the blastocyst rates as well as TB and ICM. The examined growth factors improved the development of embryos exposed to TNFalpha. Thus, in this study, the protective action of IGF-I and II, EGF and SCF against the detrimental influence of TNFalpha was demonstrated.  相似文献   

14.
The development of 181 surplus human embryos, including both normally and abnormally fertilized, was observed from day 2 to day 5, 6 or 7 in vitro. 63/149 (42%) normally fertilized embryos reached the blastocyst stage on day 5 or 6. Total, trophectoderm (TE) and inner cell mass (ICM) cell numbers were analyzed by differential labelling of the nuclei with polynucleotide-specific fluorochromes. The TE nuclei were labelled with one fluorochrome during immunosurgical lysis, before fixing the embryo and labelling both sets of nuclei with a second fluorochrome (Handyside and Hunter, 1984, 1986). Newly expanded normally fertilized blastocysts on day 5 had a total of 58.3 +/- 8.1 cells, which increased to 84.4 +/- 5.7 and 125.5 +/- 19 on days 6 and 7, respectively. The numbers of TE cells were similar on days 5 and 6 (37.9 +/- 6.0 and 40.3 +/- 5.0, respectively) and then doubled on day 7 (80.6 +/- 15.2). In contrast, ICM cell numbers doubled between days 5 and 6 (20.4 +/- 4.0 and 41.9 +/- 5.0, respectively) and remained virtually unchanged on day 7 (45.6 +/- 10.2). There was widespread cell death in both the TE and ICM as evidenced by fragmenting nuclei, which increased substantially by day 7. These results are compared with the numbers of cells in morphologically abnormal blastocysts and blastocysts derived from abnormally fertilized embryos. The nuclei of arrested embryos were also examined. The number of TE and ICM cells allocated in normally fertilized blastocysts appears to be similar to the numbers allocated in the mouse. Unlike the mouse, however, the proportion of ICM cells remains higher, despite cell death in both lineages.  相似文献   

15.
Human oviductal cells stimulate embryo development in vitro partly by the production of embryotrophic glycoproteins. The identity of these glycoproteins is not yet known mainly because oviductal samples are limited and that the cultured parental oviductal cells cannot produce sufficient amount of embryotrophic factors for characterization. In this study, human oviductal epithelial cells (OE) were immortalized by HPV 16 E6/E7 open reading frame (ORF) by retroviral expression. The characteristics of this immortalized cell line (OE-E6/E7) were compared to the parental OE. HPV 16 E6/E7 DNA was found only in OE-E6/E7 but not in OE. Human oviduct-specific glycoprotein, estrogen receptors, and cytokeratin were found in both cell types. Both OE and OE-E6/E7 possessed telomerase activities but the former had much lower activity. OE-E6/E7 also produced glycoproteins with chromatographic behavior similar to the embryotrophic glycoproteins derived from OE. These results showed that OE-E6/E7 retained a number of characteristics of OE. The development of preimplantation mouse embryo was significantly better after coculture with OE-E6/E7 when compared to medium alone culture in term of blastulation rates (52% vs. 32%) and blastocyst diameter (113.0 +/- 2.07 microm vs. 83.9 +/- 5.23 microm). This immortalized cell line can be used as a continuous and stable in vitro system for the study of the oviductal embryotrophic activity. Mol. Reprod. Dev. 59: 400-409, 2001.  相似文献   

16.
Porcine embryos (1-, 2- and 4-cell) were cultured in a basal medium consisting of Krebs-Ringer bicarbonate buffer supplemented with oviductal fluid and several growth factors and observed for further development. Oviducts were flushed at either 48 h (Experiment 1) or 96 h (Experiment 2) after the onset of estrus. Observations were made every 48 h (Experiment 1) or 12 h (Experiment 2) until failure of the embryos to develop for 2 consecutive observations. Embryos were scored 0 = no development, 1 = cleavage, 2 = morula, 3 = blastocyst, or 4 = hatched blastocyst. In the first experiment, development of 1-, 2- and 4-cell embryos (n=282) in the basal medium supplemented with oviductal fluid (4:1) or 3 sets of growth factors, was less or equal to one cleavage stage. Those embryos cultured in the basal medium supplemented with bovine serum albumin (fatty acid free) (BSA) advanced to the blastocyst stage. In the second experiment, 96 h aged embryos (n=142) were cultured in the basal medium supplemented with IGF-1 and - 2 and EGF, or with BSA alone or with BSA and the three growth factors. In the treatments without BSA, the embryonic development was less than one cleavage, whereas in those treatments with BSA, embryos advanced beyond hatching and began to expand. We conclude that for culture of porcine embryos, supplementation with several growth factors or with oviductal fluid, in the concentration used in this study, was of little benefit at this stage of development. However, the type of BSA significantly affected development. More than 90% of the embryos reached the morula and blastocyst stages in medium than included BSA (fatty acid free).  相似文献   

17.
Noninvasive measurements of bovine embryo quality, such as timing of cleavage, morula morphology, blastocyst formation, and hatching ability, were linked with the number of inner cell mass (ICM) cells and trophectoderm (TE) cells of the resulting embryos. First, it was confirmed that fast-cleaving embryos proved to have significantly higher chances to reach advanced developmental stages vs. intermediate and slow cleavers (P = 0.01). They also showed significantly less fragmentation at the morula stage, implying the presence of more excellent morulae among fast-cleaving embryos (P < 0.05). Second, the quality of hatched blastocysts, resulting from morulae of different morphological grades, was examined by differential staining. The total cell and ICM cell numbers were significantly lower for hatched blastocysts developed from poor morulae compared to hatched blastocysts developed from excellent, good, or fair morulae. However, hatched blastocysts with <10 ICM cells were seen in embryos belonging to all four morphological scores. Finally, it was found that timing of first cleavage was not significantly correlated with timing of blastocyst formation or with cell number of blastocysts. Timing of blastocyst formation, however, was significantly correlated with cell number: day 8 blastocysts had significantly lower total cell and ICM cell numbers than day 6 and day 7 blastocysts (P < 0.001). These results suggest that the quality of in vitro-produced bovine embryos is very variable and cannot be linked with a single criterion such as embryo morphology and/or hatching ability. Timing of blastocyst formation was the most valuable criterion with regard to embryonic differentiation. Mol. Reprod. Dev. 47:47–56, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
DNA fragmentation and its relationship with dead cells were examined in bovine blastocysts produced in vitro and stored at 4 degrees C for 1-5 days. Survival and development to the hatching and hatched blastocyst stage decreased with increasing storage time. Both were significantly lower at 72 hr than at 48 hr. None of the embryos stored for 120 hr developed to the hatching or hatched blastocyst stage. The proportion of dead cells per embryo increased progressively as the time of storage increased, until 69% of embryonic cells were dead after 120 hr of storage. There was no significant difference between the proportions of DNA fragmentation per embryo stored for 0 and 24 hr (12% vs 16%). However, the proportion of DNA fragmentation in embryos stored for longer than 48 hr was significantly greater than that in embryos stored for less than 24 hr. There were no significant differences among those stored for longer than 48 hr (28-33%). These results suggest that the reduced developmental competence of bovine embryos stored at 4 degrees C is characterized by necrotic change rather than apoptotic change.  相似文献   

19.
This study was conducted to compare in vitro development of bovine morulae in Ham's F-10 and Dulbecco's phosphate buffered saline (D-PBS) media supplemented with 10% (v/v) normal steer serum. Fifty-three excellent and good embryos were obtained by superovulating 15 non-lactating Holstein cows. Embryos were placed randomly in culture with Ham's F-10 or D-PBS media and development was recorded at 12-h intervals for the duration of culture. All embryos reached early blastocyst, blastocyst and expanded blastocyst stage. Nineteen of 27 embryos (70.1%) cultured in Ham's F-10 developed to hatched blastocyst stage in contrast to three out of 26 in D-PBS (11.5%). The mean developmental scores at 24, 48, 72, 96 and 120 h of culture were significantly (P<0.001) higher for embryos cultured in Ham's F-10. Also, the mean times to reach early blastocyst (25.84 +/- 6.65 vs 46.67 +/- 9.99 h), blastocyst (44.57 +/- 11.45 vs 61.89 +/- 16.62 h) and expanded blastocyst stage (65.00 +/- 13.20 vs 73.41 +/- 15.80 h) were significantly (P<0.001) shorter for embryos cultured in Ham's F-10. No difference was observed in the mean time to reach hatching (90.00 +/- 10.85 vs 84.00 +/- 16.97 h) and hatched blastocyst stage (97.26 +/- 18.71 vs 96.00 +/- 0.00 h). The results obtained support the concept that Ham's F-10 and normal steer serum provide for optimal bovine embryo development and suggest that 10% normal steer serum could be used as a protein supplement with D-PBS for short term storage and culture of bovine embryos.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号