首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suburbanization negatively impacts aquatic systems by altering hydrology and nutrient loading. These changes interact with climate and aquatic ecosystem processes to alter nutrient flux dynamics. We used a long term data set (1993–2009) to investigate the influence of suburbanization, climate, and in-stream processes on nitrogen and phosphorus export in rivers draining the Ipswich and Parker River watersheds in northeastern MA, USA. During this timeframe population density increased in these watersheds by 14 % while precipitation varied by 46 %. We compared nutrient export patterns from the two larger watersheds with those from two nested headwater catchments collected over a nine year period (2001–2009). The headwater catchments were of contrasting, but stable, land uses that dominate the larger watersheds (suburban and forested). Despite ongoing land use change and an increase in population density in the mainstem watersheds, we did not detect an increase in dissolved inorganic nitrogen (DIN) or PO4 concentration or export over the 16-year time period. Inter-annual climate and associated runoff variability was the major control. Annual DIN and PO4 export increased with greater annual precipitation in the Ipswich and the Parker River watersheds, as well as the forested headwater catchment. In contrast, annual DIN export fluxes from the suburban headwater catchment were less affected by precipitation variability, with inter-annual export fluxes negatively correlated with mean annual temperature. The larger watershed exports diverged from headwater exports, particularly during summer, low-flow periods, suggesting retention of DIN and PO4. Our study shows suburban headwater exports respond to inter-annual variation in runoff and climate differently than forested headwater exports, but the impacts from headwater streams could be buffered by the river network. The net effect is that inter-annual variation and network buffering can mitigate higher nutrient exports from larger suburbanizing watersheds over decadal time periods.  相似文献   

2.
The river–floodplain network plays an important role in the carbon (C) cycle of the Amazon basin, as it transports and processes a significant fraction of the C fixed by terrestrial vegetation, most of which evades as CO2 from rivers and floodplains back to the atmosphere. There is empirical evidence that exceptionally dry or wet years have an impact on the net C balance in the Amazon. While seasonal and interannual variations in hydrology have a direct impact on the amounts of C transferred through the river–floodplain system, it is not known how far the variation of these fluxes affects the overall Amazon C balance. Here, we introduce a new wetland forcing file for the ORCHILEAK model, which improves the representation of floodplain dynamics and allows us to closely reproduce data‐driven estimates of net C exports through the river–floodplain network. Based on this new wetland forcing and two climate forcing datasets, we show that across the Amazon, the percentage of net primary productivity lost to the river–floodplain system is highly variable at the interannual timescale, and wet years fuel aquatic CO2 evasion. However, at the same time overall net ecosystem productivity (NEP) and C sequestration are highest during wet years, partly due to reduced decomposition rates in water‐logged floodplain soils. It is years with the lowest discharge and floodplain inundation, often associated with El Nino events, that have the lowest NEP and the highest total (terrestrial plus aquatic) CO2 emissions back to atmosphere. Furthermore, we find that aquatic C fluxes display greater variation than terrestrial C fluxes, and that this variation significantly dampens the interannual variability in NEP of the Amazon basin. These results call for a more integrative view of the C fluxes through the vegetation‐soil‐river‐floodplain continuum, which directly places aquatic C fluxes into the overall C budget of the Amazon basin.  相似文献   

3.
Dissolved organic and inorganic carbon mass balances in central Ontario lakes   总被引:13,自引:1,他引:12  
Mass balances of dissolved organic carbon (DOC) and dissolvedinorganic carbon (DIC) based on stream and precipitation inputs andoutflows were measured for seven unproductive lakes in central Ontariobetween 1981 and 1989. Net annual CO2 evasion occurred in sixof the seven study lakes with minor net invasion in the seventh. Atmosphericinvasion might have been significant at certain times of the year, particularlyduring the growing season. Net evasion rates were greater than DIC loadingrates, indicating partial mineralization of the terrestrially-derived DOC in thelakes. A steady state mass balance model adequately described the variationin DOC retention between lakes. Net annual carbon accumulation of forestcommunities based on estimates of net ecosystem production may beoverestimated because of significant export of carbon to lakes via streamsand groundwater, particularly in catchments with extensive peatlands.  相似文献   

4.
To date the implications of greater intra-annual variability and extremes in precipitation on ecosystem functioning have received little attention. This study presents results on soil and vegetation carbon and water fluxes in the understorey of a Mediterranean oak woodland in response to increasing precipitation variability, with an extension of the dry period between precipitation events from 3 to 6 weeks, without altering total annual precipitation inputs. With prolonged dry periods soil moisture did breach the stress thresholds for ecosystem processes, which led to short-term treatment differences in photosynthesis, but not in system carbon losses, with subsequent short-term decreases in net ecosystem exchange. Independent of treatment, irrigation events rapidly increased carbon and water fluxes. However, contradicting the predictions drawn from the ‘bucket model’, over the course of the growing season no all-over treatment differences were found in system assimilation and respiration, nor in evapotranspiration and ecosystem water use efficiency. This lack of responsiveness is attributed to the ecosystem’s resilience to low soil moisture during the growing season of the herbaceous understorey, with temperature rather than soil moisture controlling key ecosystem processes. Moreover, severe nitrogen limitation of the studied ecosystem may explain the lack of moisture effects on net system carbon dynamics. Thus, although the bucket model predicts changes in soil water dynamics with increasing precipitation variability, ecosystem responses to more extreme precipitation regimes may be influenced by additional factors, such as inter-annual variability in nutrient availability.  相似文献   

5.
Compton  Jana E.  Goodwin  Kara E.  Sobota  Daniel J.  Lin  Jiajia 《Ecosystems》2020,23(1):1-17
Ecosystems - Watershed nutrient balance studies traditionally focus on annual fluxes. In areas with strongly seasonal, Mediterranean-type climate regimes, riverine nutrient export may be greater...  相似文献   

6.
Eddy covariance measurements of net ecosystem exchange (NEE) of carbon dioxide and sensible and latent heat have operated since clear felling of a 50‐year old maritime pine stand in Les Landes, in Southwestern France. Turbulent fluxes from the closed‐path system are computed via different methodologies, including those recommended from EUROFLUX (Adv. Ecol. Res. 30 (2000) 113; Agric. Forest Meteorol. 107 (2001a, b) 43 and 71), and sensitivity analysis demonstrates the merit of post‐processing for accurate flux calculation. Footprint modeling, energy balance closure, and empirical modeling corroborate the eddy flux measurements, indicating best reliability in the daytime. The ecosystem, a net source of atmospheric CO2, is capable of fixing carbon during fair weather during any season due to the abundance of re‐growing species (mostly grass), formerly from the understorey. Annual carbon loss of 200–340 g m?2 depends on the period chosen, with inter‐annual variability evident during the 18‐month measurement period and apparently related to available light. Empirical models, with weekly photosynthetic parameters corresponding to seasonal vegetation and respiration depending on soil temperature, fit the data well and allow partitioning of annual NEE into GPP and TER components. Comparison with a similar nearby mature forest (Agric. Forest Meteorol. 108 (2001) 183) indicates that clear‐cutting reduces GPP by two thirds but TER by only one third, transforming a strong forest sink into a source of CO2. Likewise, the loss of 50% of evapotranspiration (by the trees) leads to increased temperatures and thus reduced net radiation (by one third), and a 50% increase in sensible heat loss by the clear cut.  相似文献   

7.
We combined a mass balance approach with measurements of air–water and sediment–water nitrogen (N) exchange to better understand the mechanisms attenuating N throughputs in a eutrophic coastal lagoon. We were particularly interested in how seasonal shifts in external versus internal N fluxes and the transition from diatom- to cyanobacteria- dominated phytoplankton communities influence N storage and loss to the atmosphere. We found that on an annual basis almost all of the N removed by the lagoon was due to sediment storage following the spring diatom bloom. This period was characterized by high riverine inputs of dissolved inorganic nitrogen, high rates of assimilatory conversion to particulate nitrogen (PN), and net accrual of N in sediments. By contrast, the larger summer bloom was associated with low sediment N storage, which we attribute in part to the presence of positively-buoyant cyanobacteria. Low settling rates during cyanobacteria blooms favored export of PN to the Baltic Sea over sediment accrual in the lagoon. In addition, summer dinitrogen (N2) fixation by cyanobacteria largely offset annual N2 losses via denitrification. These findings show that cyanobacteria blooms diminish N attenuation within the lagoon by altering the balance of N exchange with the atmosphere and by promoting export of particulate N over sediment burial.  相似文献   

8.
Reconciling Carbon-cycle Concepts, Terminology, and Methods   总被引:5,自引:1,他引:4  
Recent projections of climatic change have focused a great deal of scientific and public attention on patterns of carbon (C) cycling as well as its controls, particularly the factors that determine whether an ecosystem is a net source or sink of atmospheric carbon dioxide (CO2). Net ecosystem production (NEP), a central concept in C-cycling research, has been used by scientists to represent two different concepts. We propose that NEP be restricted to just one of its two original definitions—the imbalance between gross primary production (GPP) and ecosystem respiration (ER). We further propose that a new term—net ecosystem carbon balance (NECB)—be applied to the net rate of C accumulation in (or loss from [negative sign]) ecosystems. Net ecosystem carbon balance differs from NEP when C fluxes other than C fixation and respiration occur, or when inorganic C enters or leaves in dissolved form. These fluxes include the leaching loss or lateral transfer of C from the ecosystem; the emission of volatile organic C, methane, and carbon monoxide; and the release of soot and CO2 from fire. Carbon fluxes in addition to NEP are particularly important determinants of NECB over long time scales. However, even over short time scales, they are important in ecosystems such as streams, estuaries, wetlands, and cities. Recent technological advances have led to a diversity of approaches to the measurement of C fluxes at different temporal and spatial scales. These approaches frequently capture different components of NEP or NECB and can therefore be compared across scales only by carefully specifying the fluxes included in the measurements. By explicitly identifying the fluxes that comprise NECB and other components of the C cycle, such as net ecosystem exchange (NEE) and net biome production (NBP), we can provide a less ambiguous framework for understanding and communicating recent changes in the global C cycle.  相似文献   

9.
Global climate models predict significant changes to the rainfall regimes of the grassland biome, where C cycling is particularly sensitive to the amount and timing of precipitation. We explored the effects of both natural interannual rainfall variability and experimental rainfall additions on net C storage and loss in annual grasslands. Soil respiration and net primary productivity (NPP) were measured in treatment and control plots over four growing seasons (water years, or WYs) that varied in wet‐season length and the quantity of rainfall. In treatment plots, we increased total rainfall by 50% above ambient levels and simulated one early‐ and one late‐season storm. The early‐ and late‐season rain events significantly increased soil respiration for 2–4 weeks after wetting, while augmentation of wet‐season rainfall had no significant effect. Interannual variability in precipitation had large and significant effects on C cycling. We observed a significant positive relationship between annual rainfall and aboveground NPP across the study (P=0.01, r2=0.69). Changes in the seasonal timing of rainfall significantly affected soil respiration. Abundant rainfall late in the wet season in WY 2004, a year with average total rainfall, led to greater net ecosystem C losses due to a ~50% increase in soil respiration relative to other years. Our results suggest that C cycling in annual grasslands will be less sensitive to changes in rainfall quantity and more affected by altered seasonal timing of rainfall, with a longer or later wet season resulting in significant C losses from annual grasslands.  相似文献   

10.
We present 9 years of eddy covariance measurements made over an evergreen Mediterranean forest in southern France. The goal of this study was to quantify the different components of the carbon (C) cycle, gross primary production (GPP) and ecosystem respiration (Reco), and to assess the effects of climatic variables on these fluxes and on the net ecosystem exchange of carbon dioxide. The Puéchabon forest acted as a net C sink of ?254 g C m?2 yr?1, with a GPP of 1275 g C m?2 yr?1 and a Reco of 1021 g C m?2 yr?1. On average, 83% of the net annual C sink occurred between March and June. The effects of exceptional events such the insect‐induced partial canopy defoliation that occurred in spring 2005, and the spring droughts of 2005 and 2006 are discussed. A high interannual variability of ecosystem C fluxes during summer and autumn was observed but the resulting effect on the annual net C budget was moderate. Increased severity and/or duration of summer drought under climate change do not appear to have the potential to negatively impact the average C budget of this ecosystem. On the contrary, factors affecting ecosystem functioning (drought and/or defoliation) during March–June period may reduce dramatically the annual C balance of evergreen Mediterranean forests.  相似文献   

11.
The Mediterranean climate, with its characteristic of dry summers and wet winters, influences the hydrologic and microbial processes that control carbon (C) and nitrogen (N) biogeochemical processes in chaparral ecosystems. These biogeochemical processes in turn determine N cycling under chronic N deposition. In order to examine connections between climate and N dynamics, we quantified decadal-scale water, C and N states and fluxes at annual, monthly and daily time steps for a California chaparral ecosystem in the Sierra Nevada using the DAYCENT model. The daily output simulations of net mineralization, stream flow and stream nitrate (NO3) export were developed for DAYCENT in order to simulate the N dynamics most appropriate for the abrupt rewetting events characteristic of Mediterranean chaparral ecosystems. Overall, the magnitude of annual modeled net N mineralization, soil and plant biomass C and N, nitrate export and gaseous N emission agreed with those of observations. Gaseous N emission was a major N loss pathway in chaparral ecosystems, in which nitric oxide (NO) is the dominant species. The modeled C and N fluxes of net primary production (NPP), N uptake and N mineralization, NO3 export and gaseous N emission showed both high inter-annual and intra-annual variability. Our simulations also showed dramatic fire effects on NPP, N uptake, N mineralization and gaseous N emission for three years of postfire. The decease in simulated soil organic C and N storages was not dramatic, but lasted a longer time. For the seasonal pattern, the predicted C and N fluxes were greatest during December to March, and lowest in the summer. The model predictions suggested that an increase in the N deposition rate would increase N losses through gaseous N emission and stream N export in the chaparral ecosystems of the Sierra Nevada due to changes in N saturation status. The model predictions could not capture stream NO3 export during most rewetting events suggesting that a dry-rewetting mechanism representing the increase in N mineralization following soil wetting needs to be incorporated into biogeochemical models of semi-arid ecosystems.  相似文献   

12.
We have investigated global teleconnections of climate to regional satellite‐driven observations for prediction of Amazon ecosystem production, in the form of monthly estimates of net carbon exchange over the period 1982–1998 from the NASA–CASA (Carnegie–Ames–Stanford) biosphere model. This model is driven by observed surface climate and monthly estimates of vegetation leaf area index (LAI) and fraction of absorbed PAR (fraction of photosynthetically active radiation, FPAR) generated from the NOAA satellite advanced very high‐resolution radiometer (AVHRR) and similar sensors. Land surface AVHRR data processing using modified moderate‐resolution imaging spectroradiometer radiative transfer algorithms includes improved calibration for intra‐ and intersensor variations, partial atmospheric correction for gaseous absorption and scattering, and correction for stratospheric aerosol effects associated with volcanic eruptions. Results from our analysis suggest that anomalies of net primary production and net ecosystem production predicted from the NASA–CASA model over large areas of the Amazon region east of 60°W longitude are strongly correlated with the Southern Oscillation index. Extensive areas of the south‐central Amazon show strong linkages of the FPAR and the NASA–CASA anomaly record to the Arctic Oscillation index, which help confirm a strong relation to southern Atlantic climate anomalies, with associated impacts on Amazon rainfall patterns. Processes are investigated for these teleconnections of global climate to Amazon ecosystem carbon fluxes and regional land surface climate.  相似文献   

13.
Above forest canopies, eddy covariance (EC) measurements of mass (CO2, H2O vapor) and energy exchange, assumed to represent ecosystem fluxes, are commonly made at one point in the roughness sublayer (RSL). A spatial variability experiment, in which EC measurements were made from six towers within the RSL in a uniform pine plantation, quantified large and dynamic spatial variation in fluxes. The spatial coefficient of variation (CV) of the scalar fluxes decreased with increasing integration time, stabilizing at a minimum that was independent of further lengthening the averaging period (hereafter a ‘stable minimum’). For all three fluxes, the stable minimum (CV=9–11%) was reached at averaging times (τp) of 6–7 h during daytime, but higher stable minima (CV=46–158%) were reached at longer τp (>12 h) during nighttime. To the extent that decreasing CV of EC fluxes reflects reduction in micrometeorological sampling errors, half of the observed variability at τp=30 min is attributed to sampling errors. The remaining half (indicated by the stable minimum CV) is attributed to underlying variability in ecosystem structural properties, as determined by leaf area index, and perhaps associated ecosystem activity attributes. We further assessed the spatial variability estimates in the context of uncertainty in annual net ecosystem exchange (NEE). First, we adjusted annual NEE values obtained at our long‐term observation tower to account for the difference between this tower and the mean of all towers from this experiment; this increased NEE by up to 55 g C m?2 yr?1. Second, we combined uncertainty from gap filling and instrument error with uncertainty because of spatial variability, producing an estimate of variability in annual NEE ranging from 79 to 127 g C m?2 yr?1. This analysis demonstrated that even in such a uniform pine plantation, in some years spatial variability can contribute ~50% of the uncertainty in annual NEE estimates.  相似文献   

14.
Northern peatlands contain up to 25% of the world's soil carbon (C) and have an estimated annual exchange of CO2‐C with the atmosphere of 0.1–0.5 Pg yr−1 and of CH4‐C of 10–25 Tg yr−1. Despite this overall importance to the global C cycle, there have been few, if any, complete multiyear annual C balances for these ecosystems. We report a 6‐year balance computed from continuous net ecosystem CO2 exchange (NEE), regular instantaneous measurements of methane (CH4) emissions, and export of dissolved organic C (DOC) from a northern ombrotrophic bog. From these observations, we have constructed complete seasonal and annual C balances, examined their seasonal and interannual variability, and compared the mean 6‐year contemporary C exchange with the apparent C accumulation for the last 3000 years obtained from C density and age‐depth profiles from two peat cores. The 6‐year mean NEE‐C and CH4‐C exchange, and net DOC loss are −40.2±40.5 (±1 SD), 3.7±0.5, and 14.9±3.1 g m−2 yr−1, giving a 6‐year mean balance of −21.5±39.0 g m−2 yr−1 (where positive exchange is a loss of C from the ecosystem). NEE had the largest magnitude and variability of the components of the C balance, but DOC and CH4 had similar proportional variabilities and their inclusion is essential to resolve the C balance. There are large interseasonal and interannual ranges to the exchanges due to variations in climatic conditions. We estimate from the largest and smallest seasonal exchanges, quasi‐maximum limits of the annual C balance between 50 and −105 g m−2 yr−1. The net C accumulation rate obtained from the two peatland cores for the interval 400–3000 bp (samples from the anoxic layer only) were 21.9±2.8 and 14.0±37.6 g m−2 yr−1, which are not significantly different from the 6‐year mean contemporary exchange.  相似文献   

15.
We studied the seasonal variation in carbon dioxide, water vapour and energy fluxes in a broad‐leafed semi‐arid savanna in Southern Africa using the eddy covariance technique. The open woodland studied consisted of an overstorey dominated by Colophospermum mopane with a sparse understorey of grasses and herbs. Measurements presented here cover a 19‐month period from the end of the rainy season in March 1999 to the end of the dry season September 2000. During the wet season, sensible and latent heat fluxes showed a linear dependence on incoming solar radiation (I) with a Bowen ratio (β) typically just below unity. Although β was typically around 1 at low incoming solar radiation (150 W m?2) during the dry season, it increased dramatically with I, typically being as high as 4 or 5 around solar noon. Thus, under these water‐limited conditions, almost all available energy was dissipated as sensible, rather than latent heat. Marked spikes of CO2 release occurred at the onset of the rainfall season after isolated rainfall events and respiration dominated the balance well into the rainfall season. During this time, the ecosystem was a constant source of CO2 with an average flux of 3–5 μmol m?2 s?1 to the atmosphere during both day and night. But later in the wet season, for example, in March 2000 under optimal soil moisture conditions, with maximum leaf canopy development (leaf area index 0.9–1.3), the peak ecosystem CO2 influx was as much as 10 μmol m?2 s?1. The net ecosystem maximum photosynthesis at this time was estimated at 14 μmol m?2 s?1, with the woodland ecosystem a significant sink for CO2. During the dry season, just before leaf fall in August, maximum day‐ and night‐time net ecosystem fluxes were typically ?3 μmol m?2 s?1 and 1–2 μmol m?2 s?1, respectively, with the ecosystem still being a marginal sink. Over the course of 12 months (March 1999–March 2000), the woodland was more or less carbon neutral, with a net uptake estimated at only about 1 mol C m?2 yr?1. The annual net photosynthesis (gross primary production) was estimated at 32.2 mol m?2 yr?1.  相似文献   

16.
Large-scale changes in land use are occurring in many tropical regions, with significant impacts on nitrogen and phosphorus biogeochemistry. In this study we examine the relationships between land use, anthropogenic nutrient inputs, and riverine nutrient exports in a major agricultural watershed of the Pacific coast of South America, the Guayas River basin of Ecuador. We present comprehensive nutrient budgets for nitrogen (N) and phosphorous (P) for the Guayas River basin and 10 sub-watersheds. We quantify the four major anthropogenic nutrient fluxes into and out of the region: N and P fertilizer application, N fixation by leguminous crops, net import/export of N and P in agricultural products (food and feed), and atmospheric deposition. We also estimate inputs of N from biological N fixation in forests and of P from weathering sources in soils and bedrock. The sum of these sources represents net inputs of N and P to each watershed region. Overall, synthetic fertilizers are the largest input to the Guayas Basin for N (53%) and P (57%), and the largest outputs are N and P in crops. Losses of N and P in river export account for 14–38% of total N and P inputs, and there is significant accumulation of N and P, or unmeasured forms of N and P export, in most of the sub-basins. Nutrient balances are indicative of the sustainability of land use practices in a region, where a negative balance of N or P indicates nutrient depletion and subsequent loss of soil fertility, yield, and economic viability. Although the nutrient balance of the entire Guayas Basin is positive, there are negative or near zero balances in two sub-watersheds with extensive banana, coffee and permanent crops. In these basins, degradation of soil quality may be occurring due to these net nutrient losses. Our data show that nutrients are leaving the basin primarily as export crops, with riverine losses of nutrients smaller than crop exports. Nonetheless, there is a direct relationship between nutrient inputs and river outputs, suggesting that agricultural management practices in the basin may have direct impacts on N and P delivery to the highly productive Guayas estuary.  相似文献   

17.
Understanding the response of soil respiration to climate variability is critical to formulate realistic predictions of future carbon (C) fluxes under different climate change scenarios. There is growing evidence that the influence of long-term climate variability in C fluxes from terrestrial ecosystems is modulated by adjustments in the aboveground–belowground links. Here, we studied the inter-annual variability in soil respiration from a wet shrubland going through successional change in North Wales (UK) during 13 years. We hypothesised that the decline in plant productivity observed over a decade would result in a decrease in the apparent sensitivity of soil respiration to soil temperature, and that rainfall variability would explain a significant fraction of the inter-annual variability in plant productivity, and consequently, in soil respiration, due to excess-water constraining nutrient availability for plants. As hypothesised, there were parallel decreases between plant productivity and annual and summer CO2 emissions over the 13-year period. Soil temperatures did not follow a similar trend, which resulted in a decline in the apparent sensitivity of soil respiration to soil temperature (apparent Q10 values decreased from 9.4 to 2.8). Contrary to our second hypothesis, summer maximum air temperature rather than rainfall was the climate variable with the greatest influence on aboveground biomass and annual cumulative respiration. Since summer air temperature and rainfall were positively associated, the greatest annual respiration values were recorded during years of high rainfall. The results suggest that adjustments in plant productivity might have a critical role in determining the long-term-sensitivity of soil respiration to changing climate conditions.  相似文献   

18.
武夷山甜槠生态系统的养分平衡研究(英文)   总被引:1,自引:1,他引:0       下载免费PDF全文
本文通过比较大气降水的养分输入与由地表径流和地下渗流的养分输出,对武夷山甜槠林生态系统的养分平衡进行了研究。结果表明:在1993年4月至1994年4月期间,通过大气降水进入甜槠林的养分元素以N最高,为34.207kg·hm-2,其余依次为Ca(22.99kg·hm-2)、S(12.722kg·hm-2)、Na(6.679kg·hm-2)、K(3.558kg·hm-2)和Mg(2.057kg·hm-2),以P的输入最低,仅1.779kg·hm-2;由地表径流和地下渗流的养分输出总量N、P、K、Ca、Mg、S、Na分别为5.68、1.016、7.345、3.430、0.620、0.534、0.576kg·hm-2,以K的输出量最高,S的输出最少。其中,通过地下渗流的养分损失占输出总量的85.97%~96.38%,而地表径流的养分输出仅占总输出的3.62%~14.03%;在该系统中,N、Ca和S有大量的积累(分别为28.527、19.560和12.188kg·hm-2),Mg和Na有少量积累(分别为 1.437和6.103kg·hm-2),P基本上处于平衡状态(0.763kg·hm-2),而K则为净的输出损失(-3.787kg·hm-2)。岩石风化对于该生态系统K的补偿可能起重要作用,而其他养分元素仅通过降水输入即可得到补充。  相似文献   

19.
The terrestrial water cycle links the soil and atmosphere moisture reservoirs through four fluxes: precipitation, evaporation, runoff, and atmospheric moisture convergence (net import of water vapor to balance runoff). Each of these processes is essential for sustaining human and ecosystem well-being. Predicting how the water cycle responds to changes in vegetation cover remains a challenge. Recently, changes in plant transpiration across the Amazon basin were shown to be associated disproportionately with changes in rainfall, suggesting that even small declines in transpiration (e.g., from deforestation) would lead to much larger declines in rainfall. Here, constraining these findings by the law of mass conservation, we show that in a sufficiently wet atmosphere, forest transpiration can control atmospheric moisture convergence such that increased transpiration enhances atmospheric moisture import and results in water yield. Conversely, in a sufficiently dry atmosphere increased transpiration reduces atmospheric moisture convergence and water yield. This previously unrecognized dichotomy can explain the otherwise mixed observations of how water yield responds to re-greening, as we illustrate with examples from China's Loess Plateau. Our analysis indicates that any additional precipitation recycling due to additional vegetation increases precipitation but decreases local water yield and steady-state runoff. Therefore, in the drier regions/periods and early stages of ecological restoration, the role of vegetation can be confined to precipitation recycling, while once a wetter stage is achieved, additional vegetation enhances atmospheric moisture convergence and water yield. Recent analyses indicate that the latter regime dominates the global response of the terrestrial water cycle to re-greening. Evaluating the transition between regimes, and recognizing the potential of vegetation for enhancing moisture convergence, are crucial for characterizing the consequences of deforestation as well as for motivating and guiding ecological restoration.  相似文献   

20.
Primary tropical rainforests are generally considered to be relatively nitrogen (N) rich, with characteristically large hydrologic and gaseous losses of inorganic N. However, emerging evidence suggests that some tropical ecosystems can exhibit tight N cycling, with low biologically available losses. In this study, we combined isotopic data with a well-characterized watershed N mass balance to close the N budget and characterize gaseous N losses at the ecosystem scale in a lowland tropical rainforest on the Osa Peninsula in southwestern Costa Rica. We measured δ15N and δ18O of nitrate (NO3 ?) in precipitation, surface, shallow and deep soil lysimeters and stream water biweekly for 1 year. Enrichment of both isotopes indicates that denitrification occurs predominantly as NO3 ? moves from surface soil down to 15 cm depth or laterally to stream water, with little further processing in deeper soil. Two different isotopic modeling approaches suggested that the gaseous fraction comprises 14 or 32% of total N loss (2.7 or 7.5 kg N ha?1 y?1), though estimates are sensitive to selection of isotopic fractionation values. Gas loss estimates using the mass balance approach (3.2 kg N ha?1 y?1) fall within this range and include N2O losses of 0.9 kg N ha?1 y?1. Overall, gaseous and soluble hydrologic N losses comprise a modest proportion (~ 25%) of the total N inputs to this ecosystem. By contrast, relatively large, episodic hydrologic losses of non-biologically available particulate N balance the majority of N inputs and may contribute to maintaining conservative N cycling in this lowland tropical forest. Similar patterns of N cycling may occur in other tropical forests with similar state factor combinations—high rainfall, steep topography, relatively fertile soils—such as the western arc of the Amazon Basin and much of IndoMalaysia, but this hypothesis remains untested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号