首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural killer (NK) cells are active in host defence against tumors. In order to determine if NK cells have the capacity to lyse human lung cancer cells, we evaluated blood NK cell activity against human lung carcinoma lines representing each of the commonest histological types of lung cancer, NCI-H157 (large cell), LICM107 and NCI-H146 (small cell), NCI-H226 (squamous cell), and LICM26 (adeno), and compared the results to their activity against a standard NK-sensitive target, K562, using a 16-hr 51Cr-release assay. At effector to target (E:T) ratios up to 50:1, NK activity was very low against each of the lung cancer cell lines compared to the K562 cells (NCI-H157 10 +/- 2%, LICM107 12 +/- 2%, NCI-H146 14 +/- 5%, NCI-H226 8 +/- 5%, and LICM26 7 +/- 3%, compared to K562 60 +/- 3%, P less than 0.001, for each compared to K562 cells). Recombinant interleukin 2 (IL-2) produced a dose-dependent augmentation of NK activity against each of the lung cancer cell lines, with doses as low as 0.25 U/ml being effective. The highest level of boosting was seen against NCI-H157 cells where NK activity (E:T, 50:1, IL-2, 250 U/ml) increased from 9 +/- 2 to 56 +/- 7%, P less than 0.001). Only brief exposure to IL-2 was necessary for augmentation to occur, with as little as 5 min being required for activation, although increased exposure times produced increased levels of augmentation. NK cells appeared to be the IL-2-responsive lytic cell population in these experiments as Leu 11b-depleted lymphocytes expressed little IL-2-mediated augmentation of activity against these target cells, and most of this IL-2-mediated augmentation of activity was located in the large granular lymphocyte-enriched fraction of the lymphocyte population. We conclude that normal blood NK cell activity against human lung cancer cell lines is low but that this activity can be markedly augmented by brief exposure of NK cells to low doses of recombinant IL-2, suggesting a potential role for IL-2 in the immunotherapy of human lung cancer.  相似文献   

2.
Peritoneal resident cells of mice normally contain small populations of NK cells and NK1.1(+) alphabetaT cells. These populations increased after either 3LL or EL4 tumor inoculations into the peritoneal cavity. In vivo depletion of NK cell alone by anti-asialo GM1 (ASGM1) Ab significantly decreased survival time of tumor-injected mice, while depletion of both NK cells and NK1.1(+) T cells by anti-NK 1.1 Ab greatly shortened mouse survival time. NK1. 1(+) T cells in peritoneal cavity consist of a larger proportion of double-negative T cells and smaller populations of CD4(+) T cells and Vbeta8(+) T cells compared with liver NK1.1(+) T cells and normally lack Vbeta2(+) T cells. Tumor inoculation induced rapid IL-12 and IFN-gamma mRNA in tumor-infiltrating mononuclear cells (TIM). Although anti-NK1 Ab pretreatment in vivo abrogated IFN-gamma mRNA expression and IFN-gamma production of TIM, NK cell depletion alone by anti-ASGM1 Ab pretreatment retained IFN-gamma mRNA expression and partly inhibited IFN-gamma production of TIM. Peritoneal NK cells as well as NK1.1(+) T cells but not NK1.1(-) T cells of 3LL cell- or EL4 cell-injected mice showed cytotoxicities against the same tumor cells. Further, either anti-IL-12 Ab or anti-IFN-gamma Ab ip injection significantly shortened EL4 cell-inoculated mouse survival time. Our findings suggest that peritoneal macrophages activated by tumors produce IL-12 which activates NK cells and NK1.1(+) T cells to produce IFN-gamma and both NK cells and NK1.1(+) T cells are important in suppressing the growth of the intraperitoneal tumors.  相似文献   

3.
Granulated metrial gland (GMG) cells, a population of morphologically distinct, bone marrow-derived cells in murine decidua that react with mAb 4H12, are shown in this report to express NK-specific Ag and to become cytolytic to the NK cell target YAC-1 when cultured in the lymphokine IL-2. When 1-mm3 explants of 8-day decidual tissue were cultured with IL-2, large numbers of 4H12+ GMG cells migrated out of the tissue. Migration was dependent on the amount of IL-2 used. This explant technique was used to isolate a pure population of GMG cells. The migratory activated GMG cells were phenotypically 4H12+, NK1.1+, LGL-1+/-, CD3-, and MAC-1-. Furthermore, the IL-2-activated GMG cells killed YAC-1 but not P815 cells in a 4-h 51Cr-release cytotoxicity assay. 4H12+ GMG cells from collagenase-digested decidual tissue also were analyzed for the presence of NK lineage Ag by flow cytometry and shown to coexpress the NK-associated Ag NK1.1 and ASGM1 but not the T cell Ag CD3 or macrophage Ag MAC-1 or F4/80. GMG cells isolated by collagenase digestion did not express LGL-1, an Ag associated with lytic NK cells. Our results demonstrate that GMG cells express Ag and functions characteristic of NK cells, and thus GMG cells can be assigned to the NK lineage. The possible relevance of NK cells at implantation sites is discussed.  相似文献   

4.
Our laboratory has recently identified a novel Ag, LGL-1, that is expressed on a major population of mouse NK cells. Two color immunofluorescence analysis has demonstrated that spleen cells consist of two major subsets of NK cells. We have identified an NK-1.1+/LGL-1+ subset that consists of 50% of the total NK cells and an NK-1.1+/LGL-1- subset comprising the remaining 50%. Because numerous reports have identified NK cells as the major cell type mediating lymphokine-activated killing (LAK), the NK-1.1+/LGL-1+ and NK-1.1+/LGL-1- subsets were examined for their contribution toward LAK generation, as defined by their ability to lyse P815 tumor targets. Antibody plus C depletion experiments with the use of anti-LGL-1 indicated that LGL-1+ cells were not found on LAK precursor or effector cells. Two-color cell sorting experiments were also performed to separate freshly isolated NK-1.1+/LGL-1+ spleen cells from the NK-1.1+/LGL-1- subset. It was found that the vast majority of LAK activity (greater than 95%) is derived from the NK-1.1+/LGL-1- cells. Cell sorting of LAK effectors also demonstrated that the NK-1.1+/LGL-1- cells mediated the vast majority of lysis against P815 targets. Similar results were obtained when NK cell subsets were analyzed for their contribution toward ADCC. These findings may prove important in understanding and further elucidating the contribution of NK cells to the LAK phenomenon. Our data also indicates that subsets of NK cells exist that may function differently in response to stimulation by various lymphokines and cytokines.  相似文献   

5.
In this study four murine IL-12 naked DNA expression plasmids (pIL-12), containing both the p35 and p40 subunits, were shown to induce systemic biological effects in vivo after intradermal injection. Three of the four IL-12 expression vectors augmented NK activity and induced expression of the IFN-gamma and IFN-gamma-inducible Mig genes. Both IL-12 p70 heterodimer and IFN-gamma proteins were documented in the serum within 24 h after intradermal injection of the pIL-12o- plasmid, which also induced the highest level of NK activity in the spleen and liver among the IL-12 constructs. Interestingly, both p40 mRNA expression at the injection site and serum protein levels followed a biphasic pattern of expression, with peaks on days 1 and 5. Subsequent studies revealed that the ability of intradermally injected pIL-12o- to augment NK lytic activity was prevented by administration of a neutralizing anti-IL-12 mAb. Finally, injection of the pIL-12o- into BALB/c IL-12 p40-/- mice also resulted in a biphasic pattern of IL-12 p70 appearance in the serum, and induced IFN-gamma protein and activated NK lytic activity in liver and spleen. These results demonstrate that injection of delivered naked DNA encoding the IL-12 gene mediates the biphasic systemic production of IL-12-inducible genes and augments the cytotoxic function of NK cells in lymphoid and parenchymal organs as a direct result of transgene expression. The results also suggest that these naked DNA plasmids may be useful adjuvants for vaccines against infectious and neoplastic diseases.  相似文献   

6.
The effects of various recombinant cytokines i.e. IL-1 alpha, IL-3, IL-4, IL-6, IFN-gamma, TNF-alpha and GM-CSF used either alone or in combination with IL-2, were investigated in this study. First, their capacity to induce killer cells from human PBL was examined by evaluating the degree of killing of human NK-sensitive K562 or NK-resistant Daudi cells. Second the effects of these cytokines, LAK cells (at 1/1, 2/1, 4/1 ratio LAK effectors/bone marrow cell targets) and of the supernatants from washed killer cell cultures, were examined on the colony forming ability of human bone marrow for GM-CFU in vitro. Various degrees of NK activity against K562 was observed in PBL stimulated with the cytokines, whereas LAK activity was found only with IL-2 alone. Culture of PBL with IL-2 + IL-1 alpha or IL-2 + IL-6 or IL-2 + GM-CSF resulted in the highest LAK killing. However, addition of TNF-alpha, or IFN-gamma to IL-2 in cultures resulted in a significant suppression of LAK cell activity. Addition of IL-1 alpha, IL-2, IL-3, and IL-4 to BM cultures had little or no effect on day 14 GM-CFU, whereas addition of IL-6 and GM-CSF resulted in a stimulatory effect. LAK cells induced with IL-2 alone had no significant suppressive effects on GM-CFU.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A subset of T cells in human peripheral blood expresses CD161 (NKR-P1A) receptors that are primarily associated with NK cells. In the current study we isolated blood T cell subsets according to the expression of CD161 and examined their contents of naive, central memory, and effector memory cells and their capacities for proliferation, cytokine secretion, and natural cytolysis. We found that CD4+CD161- and CD8+CD161- subsets contained predominantly naive T cells that secreted high levels of IL-2 after in vitro stimulation, and CD4+CD161int and CD8+CD161int subsets contained predominantly effector and central memory T cells that secreted high levels of IFN-gamma and TNF-alpha. All of these subsets showed vigorous proliferation after stimulation in vitro, but none had NK lytic activity. Unexpectedly, the CD8+CD161+ cells contained an anergic CD8alpha+CD8betalow/-CD161high T cell subset that failed to proliferate, secrete cytokines, or mediate NK lytic activity.  相似文献   

8.
NK cell populations were derived from murine splenocytes stimulated by IL-2, IL-15, or the combination of IL-12 and IL-18. Whereas NK cells derived with the latter cytokines consisted of an homogeneous population of NK cells (DX5+CD3-), those derived with IL-2 or IL-15 belonged to two different populations, namely NK cells (DX5+CD3-) and T-NK cells (DX5+CD3+). Among NK cells, only those derived with IL-12/IL-18 produced detectable levels of cytokines, namely IFN-gamma, IL-10, and IL-13 (with the exception of IL-13 production by NK cells derived with IL-2). As for T-NK cells, IL-2-stimulated cells produced a wide range of cytokines, including IL-4, IL-5, IL-9, IL-10, and IL-13, but no IFN-gamma, whereas IL-15-derived T-NK cells failed to produce any cytokine. Switch-culture experiments indicated that T-NK cells derived in IL-2 and further stimulated with IL-12/IL-18 produced IFN-gamma and higher IL-13 levels. Next, we observed that NK/T-NK cell populations exerted distinct effects on Ig production by autologous splenocytes according to the cytokines with which they were derived. Thus, addition of NK cells derived in IL-12/IL-18 inhibited Ig production and induced strong cytotoxicity against splenocytes, whereas addition of NK or T-NK cells grown in IL-2 or IL-15 did not. Experiments performed in IFN-gammaR knockout mice demonstrated that IFN-gamma was not involved in the killer activity of IL-12/IL-18-derived NK cells. The hypothesis that their cytotoxic activity was related to the induction of target apoptosis was confirmed on murine A20 lymphoma cells. Experiments performed in MRL/lpr mice indicated that IL-12/IL-18-derived NK cells displayed their distinct killer activity through a Fas-independent pathway. Finally, perforin was much more expressed in IL-12/IL-18-derived NK cells as compared with IL-2- or IL-15-derived NK cells, an observation that might explain their unique cytotoxicity.  相似文献   

9.
Neither lytic NK cells nor IL-2-responsive NK precursors were produced in myeloid (Dexter) long-term bone marrow cultures (LTBMC). However, when myeloid LTBMC were switched to lymphoid (Whitlock-Witte) conditions and reseeded ("recharged") with fresh bone marrow cells (BMC), nonadherent cells with NK lytic activity and NK 1.1+ phenotype were produced within 1-2 weeks without the addition of exogenous IL-2 to the cultures. NK- and T cell-depleted BMC proliferated extensively in switched cultures and in 2 weeks generated cells that lysed the NK target YAC-1 but not the LAK target P815. The presence of NK precursors in the cultures was confirmed by reculturing nonadherent cells harvested from recharged LTBMC in fresh medium containing 50 U rIL-2/ml. High levels of NK lytic activity were generated. Sequential expression of NK 1.1 and IL-2 responsiveness followed by lytic activity was demonstrated by harvesting cells early after recharge, prior to the appearance of lytic cells. Elimination of NK 1.1+ cells depleted the ability to respond to IL-2 in secondary culture. Our studies demonstrate that myeloid-to-lymphoid switched LTBMC support the proliferation and differentiation of NK lineage cells from their NK 1.1-, nonlytic progenitors in the absence of an exogenous source of growth factors.  相似文献   

10.
We have studied natural killer (NK) activity, lymphoproliferative response, the release of several cytokines (IL-2, TNF alpha and IL-1 beta) and the ROS production in peritoneal leukocytes obtained 0, 2, 4, 12 and 24 h after lipopolysaccharide (LPS) injection. Lethal septic shock (100 % mortality occurred at 30 h after LPS administration) was caused in female BALB/c mice by intraperitoneal injection of 100 mg/kg of E. coli LPS. Cytotoxicity and lymphoproliferation assay were preformed together with the measurement of IL-1 beta, IL-2 and TNF alpha production, and quantification of ROS. Natural killer activity, spontaneous lymphoproliferative response, IL-2, TNF alpha, IL-beta release and ROS production were increased after LPS injection. In conclusions, ROS and proinflammatory mediators produced by immune cells in response to LPS are involved in the oxidative stress of endotoxic shock. This oxidative state alters some functional characteristics of leukocytes (proliferation and NK activity).  相似文献   

11.
The cytokine IL-12 manifests its biological activity via interaction with a heterodimeric receptor (IL-12R) present on activated T and NK cells. The cDNAs for two IL-12R subunits have been cloned from human and mouse and designated IL-12Rbeta1 and IL-12Rbeta2. The expression of IL-12Rbeta2 on T cells is influenced by cytokines, particularly IL-4, IL-12, and IFN-gamma; however, little is known regarding regulation of IL-12R expression on NK cells. In this study we show that murine NK cells differentiate into IL-12Rbeta2(low) and IL-12Rbeta2(high) subsets after in vitro stimulation with IL-2 in the absence of exogenous polarizing cytokines. Subset development occurs gradually as NK cells expand in vitro and is generally complete by 8-12 days of culture. Once established, IL-12Rbeta2(low) and IL-12Rbeta2(high) subsets are highly stable in vitro and can be maintained for at least 20 days after FACS sorting. Formation of these NK subsets appears to be strain independent. Flow cytometric analyses demonstrate that both subsets express a number of NK-associated markers, including NK1.1, DX-5, Ly-49A, and Ly-49C, but that the Ly-49G2 class I inhibitory receptor is expressed predominantly on the IL-12Rbeta2(high) population. Both IL-12Rbeta2(low) and IL-12Rbeta2(high) NK cells respond to exogenous IL-12 by rapid production of high levels of IFN-gamma and increased lytic activity against NK-sensitive YAC-1 target cells. Analyses of cytokine gene expression by RNase protection assay indicated that similar to the recently described human NK1 subset, both IL-12Rbeta2(high) and IL-12Rbeta2(low) murine NK subsets expressed high levels of IFN-gamma, whereas neither subset expressed mRNA for the NK2-associated cytokines IL-5 and IL-13.  相似文献   

12.
NK cells express an activating FcR (FcgammaRIIIa) that mediates Ab-dependent cellular cytotoxicity and the production of immune modulatory cytokines in response to Ab-coated targets. IL-21 has antitumor activity in murine models that depends in part on its ability to promote NK cell cytotoxicity and IFN-gamma secretion. We hypothesized that the NK cell response to FcR stimulation would be enhanced by the administration of IL-21. Human NK cells cultured with IL-21 and immobilized IgG or human breast cancer cells coated with a therapeutic mAb (trastuzumab) secreted large amounts of IFN-gamma. Increased secretion of TNF-alpha and the chemokines IL-8, MIP-1alpha, and RANTES was also observed under these conditions. NK cell IFN-gamma production was dependent on distinct signals mediated by the IL-21R and the FcR and was abrogated in STAT1-deficient NK cells. Supernatants derived from NK cells that had been stimulated with IL-21 and mAb-coated breast cancer cells were able to drive the migration of naive and activated T cells in an in vitro chemotaxis assay. IL-21 also enhanced NK cell lytic activity against Ab-coated tumor cells. Coadministration of IL-21 and Ab-coated tumor cells to immunocompetent mice led to synergistic production of IFN-gamma by NK cells. Furthermore, the administration of IL-21 augmented the effects of an anti-HER2/neu mAb in a murine tumor model, an effect that required IFN-gamma. These findings demonstrate that IL-21 significantly enhances the NK cell response to Ab-coated targets and suggest that IL-21 would be an effective adjuvant to administer in combination with therapeutic mAbs.  相似文献   

13.
Summary The cytotoxic activities of the PEC after an i.p. injection of agrimoniin, a tannin contained in Agrimonia pilosa Ledeb. were studied. The plastic nonadherent PEC had significantly higher NK cell activity than the untreated control, and the adherent PEC were cytostatic toward MM2 and MH134 cells. The adherent PEC did not cause tumor cell lysis by themselves, but were cytolytic against MM2 cells in the presence of anti-MM2 sera. In the course of these effects of PEC after the i.p. injection of agrimoniin, the augmentation of NK cell activity was the earliest reaction, reaching a peak at 2 days after the injection; then, cytostatic activity increased. The induction of antibody-dependent cell lytic activity was a later reaction, which reached a peak at 6 days after the injection. Abbreviations used: PEC, peritoneal exudate cells; NK cell, natural killer cell; ADCC, antibody-dependent cell-mediated cytotoxicity; PMN, polymorphonuclear leukocytes  相似文献   

14.
Both IL-3 and IL-4 have multi-CSF activity on early marrow progenitors. We have examined the effect of IL-3 and IL-4 on the differentiation of NK cells from their marrow-derived precursors and have further examined the interactions of these cytokines with IL-2 and IL-1. We tested marrow which had been depleted of mature cells and of E rosette-positive cells (including NK cells) by treatment with soybean lectin and SRBC (SBA-E-BM). The cytolytic activities of the SBA-E-BM samples were tested in 51Cr-release assays after 7 days of liquid culture. K562 targets were used as a measure of NK activity and NK-resistant Daudi targets were used to measure lymphokine-activated killer (LAK) cell activity. Neither NK nor LAK activity was detectable in marrow cultured in medium without cytokines, or in medium containing IL-3, or IL-4 alone. Both of these cytokines were shown to be inhibitory to the IL-2-induced generation of NK and LAK activity from SBA-E-BM at concentrations as low as 1 U/ml. The inhibitory activity of both IL-3 and IL-4 was found to occur early in the marrow cultures, with little or no inhibitory effects seen if added 48 h after IL-2. IL-3 appeared to be specifically inhibitory to NK cell precursors since addition of IL-3 to cultures of PBMC did not inhibit IL-2-induced lytic activities. In contrast, IL-4 was equally inhibitory to the activation of marrow and peripheral blood NK cells by IL-2. Mixing experiments demonstrated that the reduced lytic activity in IL-3 or IL-4 containing marrow cultures were not due to suppression of the NK effectors, nor could marrow cultured in IL-3 or IL-4 serve as targets for IL-2-activated NK cells. Phenotype analysis of the lymphoid cells in marrow cultures containing IL-2 combined with IL-3 or IL-4 revealed fewer cells expressing Leu-11 (CD16), or Leu-19 (CD56) and fewer CD16, CD56 coexpressing cells compared with marrow cultured in medium containing IL-2 alone. The inhibitory activity of IL-4, but not IL-3, could be partially reversed if IL-1 was added to the cultures, suggesting that IL-1 and IL-4 have opposing activities on NK cells responsiveness to IL-2. These interactions between cytokines might be important in the regulation of NK cell differentiation and on the functional activity of mature NK cells.  相似文献   

15.
Distinct requirements for IFNs and STAT1 in NK cell function   总被引:9,自引:0,他引:9  
NK cell functions were examined in mice with a targeted mutation of the STAT1 gene, an essential mediator of IFN signaling. Mice deficient in STAT1 displayed impaired basal NK cytolytic activity in vitro and were unable to reject transplanted tumors in vivo, despite the presence of normal numbers of NK cells. IL-12 enhanced NK-mediated cytolysis, but poly(I:C) did not, and a similar phenotype occurred in mice lacking IFNalpha receptors. Molecules involved in activation and lytic function of NK cells (granzyme A, granzyme B, perforin, DAP10, and DAP12) were expressed at comparable levels in both wild-type and STAT1(-/-) mice, and serine esterase activity necessary for CTL function was normal, showing that the lytic machinery was intact. NK cells with normal cytolytic activity could be derived from STAT1(-/-) bone marrow progenitors in response to IL-15 in vitro, and enhanced NK lytic activity and normal levels of IFN-gamma were produced in response to IL-12 treatment in vivo. Despite these normal responses to cytokines, STAT1(-/-) mice could not reject the NK-sensitive tumor RMA-S, even following IL-12 treatment in vivo. Whereas in vitro NK cytolysis was also reduced in mice lacking both type I and type II IFN receptors, these mice resisted tumor challenge. These results demonstrate that both IFN-alpha and IFN-gamma are required to maintain NK cell function and define a STAT1-dependent but partially IFN-independent pathway required for NK-mediated antitumor activity.  相似文献   

16.
Mice that received a sublethal, intraperitoneal dose of viable Listeria monocytogenes, virulent strain 10403, exhibited a systemic increase in natural killer (NK) activity. The kinetics of the response differed with respect to the various effector cell populations analyzed. Resident peritoneal cells and peripheral blood leukocytes demonstrated high NK activity on Days 3, 7, and 10. Peak spleen and bone marrow NK activity was observed on Day 3, returning to normal levels by Day 7. In contrast, peritoneal exudate cells, elicited with proteose peptone, expressed enhanced NK activity for 60 days following infection with viable Listeria. Augmented NK activity was detected with all cell types as early as 12 hr after infection. The intraperitoneal injection of nonviable antigenic preparations derived from L. monocytogenes, strain 10403, resulted in the enhancement of peritoneal and splenic NK activity. In contrast, mice that received an intraperitoneal injection of avirulent Listeria, strain 19113, failed to express enhanced levels of NK activity. The genetic trait of anti-listerial resistance which is associated with non-H-2 linked genes was of no importance with respect to enhanced NK activity. Listeria-resistant C57BL/6J and Listeria-susceptible DBA/2J mice both produced systemic augmentation of NK activity following infection. NK activity was not abrogated by macrophage depletion or by treatment with anti-Thy 1.2 serum plus complement. These results confirm the potent immunostimulatory capacity of virulent Listeria for NK activity and provide further insight into the kinetics of this response in various lymphoid compartments. The protracted augmentation of NK activity of elicited peritoneal exudate cells as compared to nonelicited peritoneal cells in Listeria-primed mice suggests that the influx of inflammatory cells may provide NK-enriched and/or accessory populations for immunopotentiation of NK activity in inflammatory sites.  相似文献   

17.
NK function can be augmented by a variety of agents, including the cytokines IL-2 and IFN. The mechanisms associated with IL-2- and IFN-mediated augmentation of NK function are largely unknown. In order to learn more about the regulation of NK activity, we have studied changes in gene expression that occur upon treatment of a cloned line of NK cells (NK 3.3) with rIL-2 and rIFN-beta. Both IL-2 and IFN-beta induced rapid augmentation of lysis mediated by NK 3.3, which was significant within 1 h, peaked at 6 h of treatment, and declined by 12 h. This enhancement of lytic function was independent of proliferation and associated with a corresponding increase in steady state levels of RNA coding for both the nuclear proto-oncogene c-myb and for the IL-2R. These changes were specific in that RNA levels of another nuclear proto-oncogene, c-myc, were increased by IL-2 but not by IFN-beta, whereas HLA class I RNA levels were relatively unchanged by either IL-2 or IFN-beta treatment. Treatment of NK 3.3 with the combination of IL-2 and IFN enhanced both lysis and c-myb expression in an additive fashion. These findings suggest that c-myb may play a regulatory role in the cytolytic activity of NK cells.  相似文献   

18.
Peritumoral injection of human IL-2-activated natural killer cells into nude mice consistently induced regression of xenografts of human squamous cell carcinoma of the head and neck (SCCHN). To determine the mechanisms responsible for the tumor regression, the lymphoid cells infiltrating the tumor stroma at 24 to 48 h after adoptive immunotherapy were examined by in situ hybridization for the presence of mRNA for cytokines or IL-2R. Numerous lymphoid cells expressing cytokine or IL-2R genes were observed in these tumors, whereas the cultured IL-2-activated NK cells used for therapy were negative. Thus, it appeared that the transferred NK cells became activated in situ after coming into proximity with the tumor cells. To analyze this phenomenon, fresh or cultured human NK cells were coincubated in vitro with irradiated human SCCHN cell line, PCI-1, with or without the presence of IL-2. Expression of mRNA for IL-2R, perforin, and various cytokines was observed within 5 h. Contact with the tumor cells stimulated NK cells to proliferate, secrete IFN-gamma, TNF-alpha, and soluble IL-2R, up-regulate cell surface expression of IL2R p55 and p75 as well as CD16 Ag, and mediate higher levels of antitumor activity in 51Cr-release assays. In addition, supernatants of in vitro-activated NK cells significantly inhibited proliferation of SCCHN cell lines. By examining the effects of neutralizing mAb to various cytokines, this inhibitory activity was shown to be partially attributable to IFN-gamma. To determine the possible in vivo role of soluble factors produced by activated human NK cells, the supernatants (0.2 ml) or rIFN-gamma (10(5) U) were injected perilesionally each day for 2 wk into 3-day SCCHN established in immunosuppressed nude mice. These treatments caused significant (p less than 0.02) inhibition of tumor growth. The results of our studies indicate that human NK cells are strongly activated by SCCHN cells and that the consequent release of cytokines contribute to the regression of SCCHN growing in nude mice.  相似文献   

19.
After oral administration of an organic germanium compound, Ge-132 (300 mg/kg), a significant level of interferon (IFN) activity was detected in the sera of mice at 20 hr and it reached a maximum of 320 U/ml at 24 hr. This IFN activity was lost after heat- or acid-treatment, suggesting that the induced IFN is of gamma-nature. The molecular weight of this IFN was estimated to be 50,000 daltons by gel filtration. The NK activity of spleen cells was increased 24 hr after the oral administration of Ge-132, and cytotoxic macrophages were induced in the peritoneal cavity by 48 hr. In the mice receiving an intraperitoneal (ip) injection of trypan blue or carrageenan 2 days before oral administration of Ge-132, neither induction of IFN nor augmentation of NK activity occurred, and X-ray irradiation of mice also rendered the mice incapable of producing IFN, all indicating that both macrophages and lymphocytes are required for this IFN induction. Both NK and cytotoxic macrophages appeared 18 hr after ip administration of the induced IFN with a titer as low as 20 U/ml. These facts suggest that both the augmentation of NK activity and activation of macrophages in mice after oral administration of Ge-132 are mediated by the induced IFN.  相似文献   

20.
The i.p. injection of mice with highly purified recombinant human rIL-1 alpha or beta resulted in the rapid influx of a large number of polymorphonuclear neutrophils (PMN) into the peritoneal cavity. Significant increases in the number of PMN were induced by doses of IL-1 which ranged from 0.005 to 5 ng/injection. Interestingly the dose response for PMN influx was bell-shaped because 50 ng of IL-1 did not result in a significant increase in peritoneal PMN. IL-1 induced PMN infiltration was detectable by 1 h with peak levels of PMN obtained by about 2 h, followed by a subsequent decline by 24 h. Other cytokines, IL-2, IFN-gamma, IFN alpha beta, granulocyte-CSF, granulocyte-macrophage-CSF, IL-3, TNF-alpha, and TNF-beta were compared to IL-1 for their ability to induce a PMN influx into the peritoneum. Only TNF-alpha or TNF-beta (lymphotoxin) were able to induce a significant influx of PMN within 2 h. However, based on total protein administered, about 100 times more TNF than IL-1 was required to produce a comparable PMN infiltration. Intraperitoneal injection of inhibitors of the cyclooxygenase or lipoxygenase pathways did not inhibit the IL-1-induced influx of PMN. Also, neither IL-1 nor TNF triggered an increase in PG or leukotriene release from peritoneal cells in vitro. Furthermore, direct peritoneal injection of leukotriene B4, a potent PMN chemoattractant in vitro, did not induce any significant increase in PMN in the peritoneal cavity indicating that chemotactic activity alone is insufficient for inducing peritoneal infiltration. These results suggest that the local production of very low levels of IL-1 in vivo would be sufficient to initiate a sequence of events that results in a rapid accumulation of PMN. Because IL-1 was not chemotactic for PMN in vitro, our data suggest that IL-1 induces production of factors that are chemotactic for PMN. Alternatively, IL-1 may act on other stages of the complex sequence of events that regulates the emigration of PMN into tissue sites in vivo. The synergy apparent in PMN influx when suboptimal concentrations of IL-1 and TNF were injected suggests that the local production of very low concentrations of these cytokines in situ could play a critical role in the emigration of PMN during infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号