首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Inhibition of the RelA(p65) NF-kappaB subunit by Egr-1   总被引:9,自引:0,他引:9  
  相似文献   

5.
6.
7.
The work of Reddy et al. (S. A. Reddy, J. A. Huang, and W. S. Liao, J. Biol. Chem. 272:29167-29173, 1997) reveals that phosphatidylinositol 3-kinase (PI3K) plays a role in transducing a signal from the occupied interleukin-1 (IL-1) receptor to nuclear factor kappaB (NF-kappaB), but the underlying mechanism remains to be determined. We have found that IL-1 stimulates interaction of the IL-1 receptor accessory protein with the p85 regulatory subunit of PI3K, leading to the activation of the p110 catalytic subunit. Specific PI3K inhibitors strongly inhibit both PI3K activation and NF-kappaB-dependent gene expression but have no effect on the IL-1-stimulated degradation of IkappaBalpha, the nuclear translocation of NF-kappaB, or the ability of NF-kappaB to bind to DNA. In contrast, PI3K inhibitors block the IL-1-stimulated phosphorylation of NF-kappaB itself, especially the p65/RelA subunit. Furthermore, by using a fusion protein containing the p65/RelA transactivation domain, we found that overexpression of the p110 catalytic subunit of PI3K induces p65/RelA-mediated transactivation and that the specific PI3K inhibitor LY294,002 represses this process. Additionally, the expression of a constitutively activated form of either p110 or the PI3K-activated protein kinase Akt also induces p65/RelA-mediated transactivation. Therefore, IL-1 stimulates the PI3K-dependent phosphorylation and transactivation of NF-kappaB, a process quite distinct from the liberation of NF-kappaB from its cytoplasmic inhibitor IkappaB.  相似文献   

8.
9.
The induction of the monocyte chemoattractant protein 1 gene (MCP-1) by TNF occurs through an NF-kappaB-dependent distal regulatory region and an Sp1-dependent proximal regulatory region that are separated by 2.2 kb of sequence. To investigate how these regions coordinate activation of MCP-1 in response to TNF, experiments were performed to examine the role of coactivators, changes in local chromatin structure, and the acetylation of histones at the MCP-1 regulatory regions. An E1a-sensitive coactivator was found to be required for expression. In vivo nuclease sensitivity assays identified changes in response to TNF at both the proximal and distal regions that were dependent on the p65 subunit of NF-kappaB and Sp1. Chromatin immunoprecipitations used to analyze factor assembly and histone acetylation at the distal and proximal regions showed that Sp1 binding to and histone acetylation of the proximal region was dependent on NF-kappaB p65. Conversely, Sp1 assembly at the proximal region was required for p65 binding to and acetylation of the distal region, suggesting communication between the two regions during gene activation. These data and the NF-kappaB p65-dependent histone acetylation of a middle region sequence suggest a potential order for the assembly, acetylation and accessibility of the MCP-1 regulatory regions in response to TNF.  相似文献   

10.
11.
12.
Expression of cell adhesion molecule in endothelial cells upon activation by human immunodeficiency virus (HIV) infection is associated with the development of atherosclerotic vasculopathy. We postulated that induction of vascular cell adhesion molecule-1 (VCAM-1) by HIV-1 Tat protein in endothelial cells might represent an early event that could culminate in inflammatory cell recruitment and vascular injury. We determined the role of HIV-1 Tat protein in VCAM-1 expression in human pulmonary artery endothelial cells (HPAEC). HIV-1 Tat protein treatment significantly increased cell-surface expression of VCAM-1 in HPAEC. Consistently, mRNA expression of VCAM-1 was also increased by HIV-1 Tat protein as measured by RT-PCR. HIV-1 Tat protein-induced VCAM-1 expression was abolished by the NF-kappaB inhibitor pyrrolidine dithiocarbamate (PDTC) and the p38 MAPK inhibitor SB-203580. Furthermore, HIV-1 Tat protein enhanced DNA binding activity of NF-kappaB, facilitated nuclear translocation of NF-kappaB subunit p65, and increased production of reactive oxygen species (ROS). Similarly to VCAM-1 expression, HIV-1 Tat protein-induced NF-kappaB activation and ROS generation were abrogated by PDTC and SB-203580. These data indicate that HIV-1 Tat protein is able to induce VCAM-1 expression in HPAEC, which may represent a pivotal early molecular event in HIV-induced vascular/pulmonary injury. These data also suggest that the molecular mechanism underlying the HIV-1 Tat protein-induced VCAM-1 expression may involve ROS generation, p38 MAPK activation, and NF-kappaB translocation, which are the characteristics of pulmonary endothelial cell activation.  相似文献   

13.
14.
15.
16.
17.
Negative regulation of NF-kappaB signaling by PIAS1   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

18.
19.
20.
CEM lymphoid cells expressing high levels of HIV-1 nef protein displayed a significant decrease in basal phosphatidyl-inositol 3-kinase (PI3-kinase) activity associated with immunoprecipitates with anti-p85 regulatory subunit. In contrast, chronically infected U937 monocytic cells displayed a significant increase in basal P13-kinase activity in cells infected with HIV-1 nef compared to those infected with isogenic HIV-1 nef+. These findings suggest that HIV-1-nef expression is accompanied by a decrease in basal intracellular phosphatidyl-inositol 3-kinase activity and suggest that PI3-kinase could be important for HIV-1 replication. Moreover, wortmannin, a potent in-vitro phosphatidyl-inositol 3-kinase inhibitor, can inhibit HIV-1 replication in U937 chronically infected cells. Together these results suggest a correlation between PI3-kinase activity and HIV-1 replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号