首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An investigation of the self-association behavior of 2'-deoxy[5'-phosphate-guanylyl-(3'-5')-guanosine] (d(pGpG)) in the presence of Na+ and K+ ions has been carried out by 1H and 31P NMR and FTIR spectroscopy. A comparison has been made of the self- association behavior of d(pGpG) with that of the related dinucleotide d(GpG), which has been shown to form extended structures based on stacked G-tetrads. Chemically, d(pGpG) monomer differs from d(GpG) only by the addition of a phosphate at the 5'-OH of the sugar residue. It was found that the addition of the second phosphate interferes with self-association. A suitable counterion is all that is required by d(GpG) to induce the formation of large super structures, but for d(pGpG) a large excess of salt is needed to produce the same effect. However, once self-association occurs, d(pGpG) forms similar structures to d(GpG) and has nearly the same properties. For both compounds, the K+ ion induces a more stable structure than the Na+ ion. The 31P NMR chemical shift ranges of d(pGpG) were consistent with the reported data for a phosphodiester and terminal phosphate. The small change in the chemical shift of the terminal phosphate with increasing temperature suggests that no major change in the terminal phosphate conformation occurred upon self-association. It was concluded that the terminal phosphate did not result in steric hindrance to self-association, but that interference to self-association was due to electrostatic repulsion effects.  相似文献   

2.
The mechanism of luminal solution acidification was studied in Necturus gallbladder by measurement of mucosal solution and intracellular pH with glass electrodes. When the gallbladder was bathed by a Na-Ringer's solution it acidified the luminal side by a Na+-dependent, amiloride- inhibitable process. In the presence of ouabain, acidification was reduced but could be stimulated to a rate greater than that under control conditions by the imposition of an inwardly directed Na+ gradient. These results suggest that luminal acidification results from Na+-H+ exchange at the apical membrane and not by diffusion of metabolic CO2. Li+ can substitute for Na+ but K+, Rb+, Cs+, and tetramethylammonium (TMA+) cannot. The maximal rate of exchange was about five times greater for Na+ than for Li+. Intracellular pH (pHi) was measured with recessed-tip glass microelectrodes; with the tissue bathed in Na-Ringer's solution (pH 7.75), pHi was 7.51 +/- 0.04. After inhibition of Na+-H+ exchange by mucosal perfusion with amiloride (1 mM) or by complete Na+ replacement with TMA+, phi fell reversibly by 0.15 and 0.22 pH units, respectively. These results support the conclusion that Na+-H+ exchange at the apical membrane is the mechanism of luminal acidification and is involved in the maintenance of steady state pHi.  相似文献   

3.
The rate, extent, and efficiency of the energy-dependent contraction of heart mitochondria swollen in Na+ or K+ nitrate are all strongly activated by nigericin, an antibiotic which is known to support cation/H+ exchange in natural and model membranes. In the absence of nigericin, the cation selectivity sequence of energy-dependent contraction (Na+>Li+>K+>choline+) is identical to that of passive swelling in acetate salts, a reaction which is presumed to be dependent on an endogenous cation/H+ exchanger. These results strongly favor an osmotic mechanism for energy-dependent contraction which depends on electrogenic H+ ejection, H+/cation exchange, and electrophoretic anion efflux.  相似文献   

4.
The interactions of the monovalent ions Li+, Na+, K+, NH4+, Rb+ and Cs+ with adenosine-5'-monophosphoric acid (H2-AMP), guanosine-5'-monophosphoric acid (H2-GMP) and deoxyguanosine-5'-monophosphoric acid (H2-dGMP) were investigated in aqueous solution at physiological pH. The crystalline salts M2-nucleotide.nH2O, where M = Li+, Na+, K+ NH4+, Rb+ and Cs+, nucleotide = AMP, GMP and dGMP anions and n = 2-4 were isolated and characterized by Fourier Transform infrared (FTIR) and 1H-NMR spectroscopy. Spectroscopic evidence showed that these ions are in the form of M(H2O)n+ with no direct metal-nucleotide interaction, in aqueous solution. In the solid state, Li+ ions bind to the base N-7 site and the phosphate group (inner-sphere), while the NH4+ cations are in the vicinity of the N-7 position and the phosphate group, through hydrogen bonding systems. The Na-nucleotides and K-nucleotides are structurally similar. The Na+ ions bind to the phosphate group of the AMP through metal hydration shell (outer-sphere), whereas in the Na2-GMP, the hydrated metal ions bind to the base N-7 or the ribose hydroxyl groups (inner-sphere). The Na2-dGMP contains hydrated metal-carbonyl and metal-phosphate bindings (inner-sphere). The Rb+ and Cs+ ions are directly bonded to the phosphate groups and indirectly to the base moieties (via H2O). The ribose moiety shows C2'-endo/anti conformation for the free AMP acid and its alkali metal ion salts. In the free GMP acid, the ribose ring exhibits C3'-endo/anti conformer, while a C2'-endo/anti sugar pucker was found in the Na2-GMP and K2-GMP salts and a C3'-endo/anti conformation for the Li+, NH4+, Rb+ and Cs+ salts. The deoxyribose has C3'-endo/anti conformation in the free dGMP acid and O4'-endo/anti in the Na2-dGMP, K2-dGMP and a C3'-endo/anti for the Li+, NH4+, Rb+ and Cs+ salts. An equilibrium mixture of the C2'-endo/anti and C3'-endo/anti sugar puckers was found for these metal-nucleotide salts in aqueous solution.  相似文献   

5.
The basolateral Na-H antiporter of the turtle colon exhibits both conductive and electroneutral Na+ transport (Post and Dawson. 1992. American Journal of Physiology. 262:C1089-C1094). To explore the mechanism of antiporter-mediated current flow, we compared the conditions necessary to evoke conduction and exchange, and determined the kinetics of activation for both processes. Outward (cell to extracellular fluid) but not inward (extracellular fluid to cell) Na+ or Li+ gradients promoted antiporter-mediated Na+ or Li+ currents, whereas an outwardly directed proton gradient drove inward Na+ or Li+ currents. Proton gradient-driven, "counterflow" current is strong evidence for an exchange stoichiometry of > 1 Na+ or Li+ per proton. Consistent with this notion, outward Na+ and Li+ currents generated by outward Na+ or Li+ gradients displayed sigmoidal activation kinetics. Antiporter-mediated proton currents were never observed, suggesting that only a single proton was transported per turnover of the antiporter. In contrast to Na+ conduction, Na+ exchange was driven by either outwardly or inwardly directed Na+, Li+, or H+ gradients, and the activation of Na+/Na+ exchange was consistent with Michaelis-Menten kinetics (K1/2 = 5 mM). Raising the extracellular fluid Na+ or Li+ concentration, but not extracellular fluid proton concentration, inhibited antiporter-mediated conduction and activated Na+ exchange. These results are consistent with a model for the Na-H antiporter in which the binding of Na+ or Li+ to a high-affinity site gives rise to one-for-one cation exchange, but the binding of Na+ or Li+ ions to other, lower-affinity sites can give rise to a nonunity, cation exchange stoichiometry and, hence, the net translocation of charge. The relative proportion of conductive and nonconductive events is determined by the magnitude and orientation of the substrate gradient and by the serosal concentration of Na+ or Li+.  相似文献   

6.
It has been shown that the intracellular concentrations of Na+, K+, and Cl- ions in Desulfonatronum thiodismutans depend on the extracellular concentration of Na' ions. An increase in the extracellular concentration of Na+ results in the accumulation of K+ ions in cells, which points to the possibility that these ions perform an osmoprotective function. When the concentration of the NaCI added to the medium was increased to 4%, the concentration gradient of Cl- ions changed insignificantly. It was found that D. thiodismutans contains two forms of hydrogenase--periplasmic and cytoplasmic. Both enzymes are capable of functioning in solutions with high ionic force; however they exhibit different sensitivities to Na+, K+, and Li+ salts and pH. The enzymes were found to be resistant to high concentrations of Na+ and K+ chlorides and Na+ bicarbonate. The cytoplasmic hydrogenase differed significantly from the periplasmic one in having much higher salt tolerance and lower pH optimum. The activity of these enzymes depended on the nature of both the cationic and anionic components of the salts. For instance, the inhibitory effect of NaCl was less pronounced than that of LiCl, whereas Na+ and Li+ sulfates inhibited the activity of both hydrogenase types to an equal degree. The highest activity of these enzymes was observed at low Na+ concentrations, close to those typical of cells growing at optimal salt concentrations.  相似文献   

7.
The fluorescence of internalized fluorescein isothiocyanate dextran has been used to monitor the intravesicular pH of submitochondrial particles (SMP). Respiring SMP maintain a steady-state delta pH (interior acid) that results from the inwardly directed H+ flux of respiration and an opposing passive H+ leak. Addition of K+, Na+, or Li+ to SMP results in a shift to a more alkaline interior pH (pHi) in both respiring and nonrespiring SMP. The K+-dependent change in pHi, like the K+/H+ antiport in intact mitochondria, is inhibited by quinine and by dicyclohexylcarbodiimide. The Na+-dependent reaction is only partially inhibited by these reagents. Both the Na+- and the K+-dependent pH changes are sensitive to amiloride derivatives. The Km for both Na+ and K+ is near 20 mM whereas that for Li+ is closer to 10 mM. The K+/H+ exchange reaction is only slightly inhibited by added Mg2+, but abolished when A23187 is added with Mg2+. The passive exchange is optimal at pHi 6.5 with either Na+ or K+, and cannot be detected above pHi of 7.2. Both the Na+/H+ and the K+/H+ exchange reactions are optimal at an external pH of 7.8 in respiring SMP (pHi 7.1). Valinomycin stimulates the K+-dependent pH change in nonrespiring SMP, as does nigericin. It is concluded that SMP show K+/H+ antiport activity with properties distinct from those of Na+/H+ antiport. However, the properties of the K+/H+ exchange do not correspond in all respects to those of the antiport in intact mitochondria. Donnan equilibria and parallel uniport pathways for H+ and cations appear to contribute to cation-dependent pH changes in SMP.  相似文献   

8.
1. Frog skin epithelium has basolateral K+ channels that normally define the basolateral membrane potential between 80 and 100 mV. 2. The membrane mentioned also has almost silent chloride channels and a [Na+, K+, 2Cl-] cotransport, the latter probably maintains the high Cl- in the capital (also called syncytium) cells. 3. If the K+ channels are blocked by Ba2+ (or Li+) it is possible to demonstrate potential gating of the chloride channels of the basolateral membrane. 4. When the normal K+ channels are blocked, a potential-dependent K+ conductance slowly emerges. 5. If Li+ is substituted for outside Na+ the skin shows potential oscillations of about 40 mV at a frequency of about six per hour. 6. The anion channel inhibitor Indacrinone stops these oscillations. 7. The role of Cl- and K+ channels in these oscillations is discussed. 8. The transepithelial inward transport of Li+ requires the presence of Na+ and seems to be due to exchange of cellular Li+ against inside Na+ via the basolateral Na+/H+ exchanger.  相似文献   

9.
In bovine cardiac sarcolemmal vesicles, an outward H+ gradient stimulated the initial rate of amiloride-sensitive uptake of 22Na+, 42K+, or 86Rb+. Release of H+ from the vesicles was stimulated by extravesicular Na+, K+, Rb+, or Li+ but not by choline or N-methylglucamine. Uptakes of Na+ and Rb+ were half-saturated at 3 mM Na+ and 3 mM Rb+, but the maximal velocity of Na+ uptake was 1.5 times that of Rb+ uptake. Na+ uptake was inhibited by extravesicular K+, Rb+, or Li+, and Rb+ uptake was inhibited by extravesicular Na+ or Li+. Amiloride-sensitive uptake of Na+ or Rb+ increased with increase in extravesicular pH and decrease in intravesicular pH. In the absence of pH gradient, there were stimulations of Na+ uptake by intravesicular Na+ and K+ and of Rb+ uptake by intravesicular Rb+ and Na+. Similarly, there were trans stimulations of Na+ and Rb+ efflux by extravesicular alkali cations. The data suggest the existence of a nonselective antiporter catalyzing either alkali cation/H+ exchange or alkali cation/alkali cation exchange. Since increasing Na+ caused complete inhibition of Rb+/H+ exchange, but saturating K+ caused partial inhibitions of Na+/H+ exchange and Na+/Na+ exchange, the presence of a Na(+)-selective antiporter is also indicated. Although both antiporters may be involved in pH homeostasis, a role of the nonselective antiporter may be in the control of Na+/K+ exchange across the cardiac sarcolemma.  相似文献   

10.
The tetramethylammonium salt of guanylyl-(3'-5')-guanosine has been prepared by a cation-exchange technique and it has been found that the tetramethylammonium ion drastically reduces the self-association of GpG in solution. This has allowed the characterization of GpG by FTIR and 1-D and 2-D NMR spectroscopy. A complete, well-resolved 1H NMR spectrum in D2O has been obtained and all resonances have been assigned. A weak, essentially non-cooperative intermolecular association is observed in solution (15-20 mM) below 40 degrees C. The association occurs via base stacking and base-base hydrogen bonding.  相似文献   

11.
The effects of Li+ on Na-Ca exchange in bovine cardiac sarcolemmal vesicles were examined. The initial rate of Na(+)-dependent Ca2+ uptake and efflux was inhibited by Li+ in a dose dependent manner. The initial rate of Na(+)-dependent Ca2+ uptake was inhibited 49.8 +/- 2.9% (S.E.) (n = 6) in the presence of Li+ compared to activity in external K+ or choline+. Kinetic analysis indicated that Li+ increased the Km for Ca2+ (96.3 microM) compared to K+ and choline+ (25.5 and 22.9 microM respectively) while Vmax (1.4, 1.2 and 1.1 nmol Ca2+/mg protein/sec respectively) remained unchanged. Li+ did not alter the experimentally derived stoichiometry of the exchange reaction of 3 Na+ for 1 Ca2+.  相似文献   

12.
U937 cell possess two mechanisms that allow them to recover from an intracellular acidification. The first mechanism is the amiloride-sensitive Na+/H+ exchange system. The second system involves bicarbonate ions. Its properties have been defined from intracellular pH (pHi) recovery experiments, 22Na+ uptake experiments, 36Cl- influx and efflux experiments. Bicarbonate induced pHi recovery of the cells after a cellular acidification to pHi = 6.3 provided that Na+ ions were present in the assay medium. Li+ or K+ could not substitute for Na+. The system seemed to be electroneutral. 22Na+ uptake experiments showed the presence of a bicarbonate-stimulated uptake pathway for Na+ which was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonate. The bicarbonate-dependent 22Na+ uptake component was reduced by depleting cells of their internal Cl- and increased by removal of external Cl-. 36Cl- efflux experiments showed that the presence of both external Na+ and bicarbonate stimulated the efflux of 36Cl- at a cell pHi of 6.3. Finally a 36Cl- uptake pathway was documented. It was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonate (K0.5 = 10 microM) and bicarbonate (K0.5 = 2 mM). These results are consistent with the presence in U937 cells of a coupled exchange of Na+ and bicarbonate against chloride. It operates to raise the intracellular pH. Its pHi and external Na+ dependences were defined. No evidence for a Na+-independent Cl-/HCO3- exchange system could be found. The Na+-dependent Cl-/HCO3- exchange system was relatively insensitive to (aryloxy)alkanoic acids which are potent inhibitors of bicarbonate-induced swelling of astroglia and of the Li(Na)CO3-/Cl- exchange system of human erythrocytes. It is concluded that different anionic exchangers exist in different cell types that can be distinguished both by their biochemical properties and by their pharmacological properties.  相似文献   

13.
We studied the interactions of Na+, Li+, and amiloride on the Na+/H+ antiporter in brush-border membrane vesicles from rabbit renal cortex. Cation-mediated collapse of an outwardly directed proton gradient (pHin = 6.0; pHout = 7.5) was monitored with the fluorescent amine, acridine orange. Proton efflux resulting from external addition of Na+ or Li+ exhibited simple saturation kinetics with Hill coefficients of 1.0. However, kinetic parameters for Na+ and Li+ differed (Km for Li+ = 1.2 +/- 0.1 mM; Km for Na+ = 14.3 +/- 0.8 mM; Vmax for Li+ = 2.40 +/- 0.07 fluorescence units/s/mg of protein; Vmax for Na+ = 7.10 +/- 0.24 fluorescence units/s/mg of protein). Inhibition of Na+/H+ exchange by Li+ and amiloride was also studied. Li+ inhibited the Na+/H+ antiporter by two mechanisms. Na+ and Li+ competed with each other at the cation transport site. However, when [Na+] was markedly higher than [Li+], [( Na+] = 90 mM; [Li+] less than 1 mM), we observed noncompetitive inhibition (Vmax for Na+/H+ exchange reduced by 25%). The apparent Ki for this noncompetitive inhibition was congruent to 50 microM. In addition, 2-30 mM intravesicular Li+, but not Na+, resulted in trans inhibition of Na+/H+ exchange. Amiloride was a mixed inhibitor of Na+/H+ exchange (Ki = 30 microM, Ki' = 90 microM) but was only a simple competitive inhibitor of Li+/H+ exchange (Ki = 10 microM). At [Li] = 1 mM and [amiloride] less than 100 microM, inhibition of Na+/H+ exchange by a combination of the two inhibitors was always less than additive. These results suggest the presence of a cation-binding site (separate from the cation-transport site) which could be a modifier site of the Na+/H+ antiporter.  相似文献   

14.
Measurements of the equivalent conductivity of aqueous solutions of alkalimetal salts of a number of ionic polysaccharides at 25 degrees C are reported. The polysaccharides studied are: (1) three carboxymethylcelluloses of various degrees of substitution (Li+, Na+, Cs+ salts) in the concentration range 4 X 10(-4) - 6 X 10(-2) equivalents alkali ion per liter, (2) Polypectate (Li+, Na+, K+, Cs+ salts) in the range 1.5 X 10(-4) - 2 X 10(-2) equivalent alkali ion per liter, and (3) Dextransulfate (Li+, Na+, K+ salts) in the range 3 X 10(-4) - 10(-1) equivalent alkali ion per liter. The results are compared to some earlier data and to a limiting law for conductance of rod-like polyions derived by Manning. It is concluded that although qualitative agreement is obtained between observed data and the limiting law when various polyions of different charge densities are compared at a given concentration, the concentration dependence predicted by the limiting law is in agreement with the observed curves only for polyions of a relatively low charge density. At higher charge densities appreciable deviations occur, and dextransulfate which does not have the rod-like polyion structure required by theory does not conform to the predicted concentration dependence at all.  相似文献   

15.
Abstract

An investigation of the self-association behavior of 2′-deoxy[5′-phosphate-guanylyl-(3′-5′)-guanosine] (d(pGpG)) in the presence of Na+ and K+ ions has been carried out by 1H and 31PNMR and FTIR spectroscopy. A comparison has been made of the self-association behavior of d(pGpG) with that of the related dinucleotide d(GpG), which has been shown to form extended structures based on stacked G-tetrads. Chemically, d(pGpG) monomer differs from d(GpG) only by the addition of a phosphate at the 5′-OH of the sugar residue. It was found that the addition of the second phosphate interferes with self-association. A suitable counterion is all that is required by d(GpG) to induce the formation of large super structures, but for d(pGpG) a large excess of salt is needed to produce the same effect. However, once self-association occurs, d(pGpG) forms similar structures to d(GpG) and has nearly the same properties. For both compounds, the K+ ion induces a more stable structure than the Na+ ion. The 31P NMR chemical shift ranges of d(pGpG) were consistent with the reported data for a phosphodiester and terminal phosphate. The small change in the chemical shift of the terminal phosphate with increasing temperature suggests that no major change in the terminal phosphate conformation occurred upon self-association. It was concluded that the terminal phosphate did not result in steric hindrance to self-association, but that interference to self-association was due to electrostatic repulsion effects.  相似文献   

16.
Proton pathways in rat renal brush-border and basolateral membranes   总被引:7,自引:0,他引:7  
The quenching of acridine orange fluorescence was used to monitor the formation and dissipation of pH gradients in brush-border and basolateral membrane vesicles isolated from rat kidney cortex. The fluorescence changes of acridine orange were shown to be sensitive exclusively to transmembrane delta pH and not to membrane potential difference. In brush-border membrane vesicles, an Na+ (Li+)-H+ exchange was confirmed. At physiological Na+ concentrations, 40-70% of Na+-H+ exchange was mediated by the electroneutral Na+-H+ antiporter; the remainder consisted of Na+ and H+ movements through parallel conductive pathways. Both modes of Na+-H+ exchange were saturable, with half-maximal rates at about 13 and 24 mM Na+, respectively. Besides a Na+ gradient, a K+ gradient was also able to produce an intravesicular acidification, demonstrating conductance pathways for H+ and K+ in brush-border membranes. Experiments with Cl- or SO2-4 gradients failed to demonstrate measurable Cl--OH- or SO2-4-OH- exchange by an electroneutral antiporter in brush-border membrane vesicles; only Cl- conductance was found. In basolateral membrane vesicles, neither Na+(Li+)-H+ exchange nor Na+ or K+ conductances were found. However, in the presence of valinomycin-induced K+ diffusion potential, H+ conductance of basolateral membranes was demonstrated, which was unaffected by ethoxzolamide and 4,4'-diisothiocyanostilbene-2,2-disulfonic acid. A Cl- conductance of the membranes was also found, but antiporter-mediated electroneutral Cl--OH- or SO2-4-OH- exchange could not be detected by the dye method. The restriction of the electroneutral Na+-H+ exchanger to the luminal membrane can explain net secretion of protons in the mammalian proximal tubule which leads to the reabsorption of bicarbonate.  相似文献   

17.
The cation specificity and possible exchange modes of the Na+:CO3(2-):HCO3- cotransporter were evaluated by use of basolateral membrane vesicles isolated from rabbit renal cortex. External Li+ inhibited HCO3- gradient-stimulated 22Na uptake, indicating that Li+ interacts with the Na+:CO3(2-):HCO3- cotransporter. No interaction with K+, choline, Rb+, Cs+, or NH4+ could be similarly detected. Imposing an outward Li+ gradient caused quenching of acridine orange fluorescence in the presence but not in the absence of HCO3-, suggesting that Li+:base cotransport takes place via the Na+:CO3(2-):HCO3- cotransporter. Imposing an outward gradient of unlabeled Na+ stimulated the initial rate of 22Na uptake and induced its transient uphill accumulation, indicating Na(+)-Na+ exchange. Na(+)-Na+ exchange was observed in the presence but not in the absence of HCO3- and was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), suggesting that it occurs via the Na+:CO3(2-):HCO3- cotransporter. Similarly, an outward Li+ gradient stimulated uphill 22Na accumulation, indicating Na(+)-Li+ exchange. Na(+)-Li+ exchange was observed in the presence but not in the absence of HCO3-, and was inhibited by DIDS, suggesting that it also occurs via the Na+:CO3(2-):HCO3- cotransporter. Both Na(+)-Na+ and Li(+)-Na+ exchange modes were sensitive to inhibition by harmaline but not by amiloride. We conclude that Li+ is an alternative substrate for the renal Na+:CO3(2-):HCO3- cotransporter. Transport modes of the system include cation:base cotransport and HCO3-dependent cation-cation exchange.  相似文献   

18.
Two Ca2+ transport systems were investigated in plasma membrane vesicles isolated from sheep brain cortex synaptosomes by hypotonic lysis and partial purification. Synaptic plasma membrane vesicles loaded with Na+ (Na+i) accumulate Ca2+ in exchange for Na+, provided that a Na+ gradient (in leads to out) is present. Agents that dissipate the Na+ gradient (monensin) prevent the Na+/Ca2+ exchange completely. Ca2+ accumulated by Na+/Ca2+ exchange can be released by A 23187, indicating that Ca2+ is accumulated intravesicularly. In the absence of any Na+ gradient (K+i-loaded vesicles), the membrane vesicles also accumulate Ca2+ owing to ATP hydrolysis. Monovalent cations stimulate Na+/Ca2+ exchange as well as the ATP-dependent Ca2+ uptake activity. Taking the value for Na+/Ca2+ exchange in the presence of choline chloride (external cation) as reference, other monovalent cations in the external media have the following effects: K+ or NH4+ stimulates Na+/Ca2+ exchange; Li+ or Cs+ inhibits Na+/Ca2+ exchange. The ATP-dependent Ca2+ transport system is stimulated by increasing K+ concentrations in the external medium (Km for K+ is 15 mM). Replacing K+ by Na+ in the external medium inhibits the ATP-dependent Ca2+ uptake, and this effect is due more to the reduction of K+ than to the elevation of Na+. The results suggest that synaptic membrane vesicles isolated from sheep brain cortex synaptosomes possess mechanisms for Na+/Ca2+ exchange and ATP-dependent Ca2+ uptake, whose activity may be regulated by monovalent cations, specifically K+, at physiological concentrations.  相似文献   

19.
The modulation of the intrasynaptosomal concentration of Ca2+, [Ca2+]i, by Na+/Ca2+ exchange was studied using Indo-1 fluorescence. The electrochemical gradient of Na+ was manipulated by substituting Li+ or choline for Na+ in the external medium and, then, the influx of 45Ca2+ and the [Ca2+]i were measured. It was found that the increase in [Ca2+]i induced by K+ depolarization is lower if the value of [Ca2+]i has been previously raised by Na+/Ca2+ exchange, suggesting that Ca2+ entering by Na+/Ca2+ exchange reduces the Ca2+ entering by voltage-dependent calcium channels. Our results show that a value of [Ca2+]i of about 650 nM induced by Na+/Ca2+ exchange reduces by 50% the Ca2+ entering due to K+ depolarization and no Ca2+ enters through the channels if the [Ca2+]i is previously raised above about 800 nM. Furthermore, predepolarization of the synaptosomes in a Ca-free medium also inhibits by at least 40% the [Ca2+]i rise through Ca2+ channels. Thus, the results suggest that both predepolarization and [Ca2+]i rise due to Na+/Ca2+ exchange decrease the Ca2+ entering by voltage-sensitive Ca2+ channels. The Ca2+ entering by Na+/Ca2+ exchange might contribute to the regulation of neurotransmitter release. Our results also show that the presence of Li+ in the external medium decreases the buffering capacity of synaptosomes, probably by releasing Ca2+ from mitochondria by Li+/Ca2+ exchange.  相似文献   

20.
In the absence of Na+ in the medium, the membrane potential of obligately alkalophilic Bacillus cells was found to be decreased by the addition of K+ to the medium, whereas K+ addition in the presence of Na+ had no effect. Rb+ showed essentially the same effect as K+. The decreased membrane potential was quickly restored by lowering the K+ concentration in the medium or by adding Na+ or Li+ to the medium. Thus, in the absence of Na+, the membrane potential of alkalophilic Bacillus seems to be affected by the concentration difference of K+ between inside and outside of the cell, and Na+ or Li+ in the medium suppresses the K+ effect. An exchange between extracellular Rb+ and intracellular K+ was observed in the absence of Na+. However, the exchange was greatly suppressed by the addition of Na+ or Li+ to the medium, indicating that Na+ in the medium modulates the K+ permeability of the alkalophilic Bacillus cell membrane. The K+-induced decrease in the membrane potential of alkalophilic Bacillus in the absence of Na+ is accounted for by the increased K+-permeability of the cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号