首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A DNA fragment containing the RP4 mob function, as well as the gentamicin and spectinomycin resistance genes, was inserted by gene replacement onto the megaplasmid 2 (pM2) of Rhizobium meliloti 0540 (Inf EPS), resulting in PG101 (Inf EPS). The self-transfer of pM2 and the mobilization of pM2 by plasmid RP4-4 were investigated during conjugation between PG101 and R. meliloti 2526 (Nod). In filter conjugations, pM2 was readily mobilized by RP4-4. In addition to this, the self-transfer of one megaplasmid (pM) was detected at a frequency of 3 × 10−7. Bacteria isolated from the nodules of alfalfa and coinoculated with strains PG101 and 2526 showed that pM2 was mobilized at a frequency of approximately 7 × 10−5. Bacterial cell numbers were too low in the nodules for detection of the self-transfer of pM2 to occur. No pM2 transfer was detected in the inoculum. A comparison of the transfer frequencies for the various conjugation conditions revealed that pM2 transfer occurred as frequently in the nodules as in filter conjugations. These results indicate that the nodule creates conditions for gene transfer that are comparable to optimal laboratory conditions.  相似文献   

2.
3.
Plasmid pIJ1008, which carries determinants for uptake hydrogenase (Hup) activity, was transferred from Rhizobium leguminosarum to Rhizobium meliloti without impairing the capacity of the latter species to form root nodules on alfalfa. The plasmid was still present in rhizobia reisolated from the root nodules of 12 different alfalfa cultivars, but only low levels of Hup activity were detected in alfalfa.  相似文献   

4.
The infectiveness of different strains of Rhizobium meliloti was tested with a technique that uses the addition of tetracycline to the root medium. To stop the infection, the antibiotic was added some time after the inoculation of Medicago sativa plants. A coefficient of infectivity for each strain was calculated according to the number of nodules that appeared with and without the addition of the antibiotic. This method seems useful in infectivity studies and is simpler and easier to perform than the test of competence between strains.  相似文献   

5.
Plasmid profiles of two strains of a newly classified rhizobial species- Rhizobium galegae -were compared with the profiles of several strains of another fast-growing Rhizobium species- Rhizobium meliloti .
The existence of a plasmid DNA band with a lower electrophoretic mobility than the R. meliloti megaplasmid band was demonstrated in the two R. galegae strains by a modified horizontal Eckhardt method. Thus R. galegae species contain giant plasmid(s) larger than the R. meliloti 1000 MD megaplasmids, previously considered to be the largest plasmids in the Rhizobiaceae family.
In one of the R. galegae strains an additional middle-size plasmid only a little smaller than 140 MD pRme41a of R. meliloti 41 was observed.  相似文献   

6.
Rhodococcus equi is a facultative intracellular, Gram-positive, soilborne actinomycete which can cause severe pyogranulomatous pneumonia with abscessation in young horses (foals) and in immunocompromised people, such as persons with AIDS. All strains of R. equi isolated from foals and approximately a third isolated from humans contain a large, ∼81-kb plasmid which is essential for the intramacrophage growth of the organism and for virulence in foals and murine in vivo model systems. We found that the entire virulence plasmid could be transferred from plasmid-containing strains of R. equi (donor) to plasmid-free R. equi strains (recipient) at a high frequency and that plasmid transmission reestablished the capacity for intracellular growth in macrophages. Plasmid transfer required living cells and cell-to-cell contact and was unaffected by the presence of DNase, factors pointing to conjugation as the major means of genetic transfer. Deletion of a putative relaxase-encoding gene, traA, located in the proposed conjugative region of the plasmid, abolished plasmid transfer. Reversion of the traA mutation restored plasmid transmissibility. Finally, plasmid transmission to other Rhodococcus species and some additional related organisms was demonstrated. This is the first study showing a virulence plasmid transfer in R. equi, and it establishes a mechanism by which the virulence plasmid can move among bacteria in the soil.  相似文献   

7.
Abstract: Rhizobium meliloti strain GR4 is a highly infective and competitive bacteria which was isolated in 1975 from a field site in Granada (Spain) and which has a high potential as an inoculant. R. meliloti isolates from alfalfa plants grown in this field site were characterized using polymerase chain reaction. Characterization was based on primers derived from insertion sequence elements (IS Rm3 and IS Rm4 ), plasmid origin of replication (pRmeGR4a repC locus) and plasmid pRmeGR4b specific DNA sequences. Soil isolates harbouring plasmid type pRmeGR4b represented the major infective population in this field site. A direct correlation between the presence of pRmeGR4b-like plasmid and the competitiveness of the strains was found. In addition, four different R. meliloti field populations isolated from Spanish soils were analyzed for the presence of pRmeGR4b related plasmids. Our results indicate that this plasmid type is widespread among R. meliloti field populations and that its frequency within the infective isolates depends on the host plant.  相似文献   

8.
Conjugal transfer of the small plasmid pUB110 betweenBacillus subtilis strains was studied under conditions of microcosms with sterile and nonsterile soil. Plasmid transfer proved to be possible after soil inoculation with vegetative partner cells or with their spores. Plasmid transfer occurred at temperatures of 30 and 22–23°C.  相似文献   

9.
A mathematical model was developed and used to simulate the long-term dynamics of growth and plasmid transfer in nutrient-limited soil microcosms of Streptomyces lividans TK24 carrying chromosomal resistance to streptomycin, S. lividans 1326; and S. violaceolatus ISP5438. Donor, recipient, and transconjugant survival was modelled by an extension to the Verhulst logistic equation which takes account of nutrient limitation, and plasmid transfer was modelled by a mass action model. Rate parameters were derived from experimental data on the early stages of the development of sterile systems. The model predicted donor, recipient, and transconjugant populations in 2.4-h (0.1-day) steps and was tested against the long-term behavior of the experimental sterile systems and independent experimental data on nonsterile systems. Bacteria were periodically enumerated onto selective media over a 20-day period. The effects of long-term nutrient-moisture depletion were correctly predicted.  相似文献   

10.
Twenty four strains of Rhizobium meliloti considered to have potential for inoculant production were grouped in pairs and tested for their ability to compete for nodulation on Medicago sativa, Medicago truncatula, and Medicago littoralis. At the outset, each pair of strains, which consisted of a wild type and a selected streptomycin-resistant mutant of another strain, was tested in an autoclaved soil. Six strain pairs, each consisting of a good and a poor competitor, reacted consistently when tested in each of five other autoclaved soils; eight pairs consisting of strains with comparable competitive abilities varied in their reactions in some of the soils, or even in the same soil when retested. An effect of soil pH on competitive ability was observed with some of these strains. Not all of the strains identified as good competitors on one or more of the Medicago spp. in the autoclaved soils were able to nodulate these plants satisfactorily in a field soil containing an established population of R. meliloti. Strain RF24, which seemed to be the best competitor on each of the three Medicago spp., grouped among the less effective strains on two of the legumes. Two strains of R. meliloti frequently used for inoculant production differed markedly with regard to competitive ability; this places some doubt on the relevancy of singling out competitive ability for special attention when selecting a strain for inoculant production.  相似文献   

11.
Transfer of an IncP plasmid carrying the Rhizobium meliloti nodFE, nodG, and nodH genes to Rhizobium trifolii enabled R. trifolii to nodulate alfalfa (Medicago sativa), the normal host of R. meliloti. Using transposon Tn5-linked mutations and in vitro-constructed deletions of the R. meliloti nodFE, nodG, and nodH genes, we showed that R. meliloti nodH was required for R. trifolii to elicit both root hair curling and nodule initiation on alfalfa and that nodH, nodFE, and nodG were required for R. trifolii to elicit infection threads in alfalfa root hairs. Interestingly, the transfer of the R. meliloti nodFE, nodG, and nodH genes to R. trifolii prevented R. trifolii from infecting and nodulating its normal host, white clover (Trifolium repens). Experiments with the mutated R. meliloti nodH, nodF, nodE, and nodG genes demonstrated that nodH, nodF, nodE, and possibly nodG have an additive effect in blocking infection and nodulation of clover.  相似文献   

12.
13.
14.
15.
16.
Several wild-type strains of Rhizobium meliloti isolated from alfalfa nodules exhibited different plasmid profiles, yet did not differ in growth rate in yeast-mannitol medium, utilization of 43 different carbon sources, intrinsic resistance to 14 antibiotics, or detection of 16 enzyme activities. In contrast, three measures of effectiveness in symbiotic nitrogen fixation with alfalfa (shoot length, dry weight, and nitrogen content) indicated that R. meliloti SAF22, whose plasmid profile differs from those of the other strains tested, is significantly less effective than other wild-type strains in symbiotic nitrogen fixation. Light microscopy of nodules infected with strain SAF22 showed an abnormal center of nitrogen fixation zone III, with bacteria occupying a smaller portion of the infected host cells and vacuoles occupying a significantly larger portion of adjacent uninfected host cells. In contrast, the effective nodules infected with other wild types or plasmid pRmSAF22c-cured segregants of SAF22 did not display this cytological abnormality.  相似文献   

17.
M J Soto  A Zorzano  J Olivares  N Toro 《Gene》1992,120(1):125-126
ISRm4, an IS-like sequence structurally similar to Pseudomonas cepacia insertion element IS402, was identified by sequence analysis. This 933-bp element carries 17-bp putative terminal inverted repeats with five mismatches and a putative direct target duplication of 3 bp.  相似文献   

18.
The effects of different nitrogen and carbon sources on cell growth, pH, and exopolysaccharide (EPS) and poly-(beta)-hydroxybutyrate (PHB) production by two strains of Rhizobium meliloti (M5N1 and Su47) are reported. Differences in the behavior of glucose- and fructose-grown cells were shown, in particular with the M5N1 strain. Growth in a glucose-containing medium was accompanied by acidification of the culture medium, which leads to cell death. On fructose, acidification was detected only in the medium with a mineral nitrogen supply. A lag phase in EPS production was observed with cells grown with glucose, probably related to an initial extracellular conversion of the carbohydrate into an acid. No lag phase was observed in EPS production from fructose or in PHB synthesis whatever the carbon source. A decrease in PHB content was noticed for both strains under conditions where acidification of media occurred. The extent of production, emphasized by the use of a coproduction index, indicates that the M5N1 strain is a more promising organism than is the Su47 strain for polymer production. Such a strain, put in rich medium (containing yeast extract) supplemented with fructose, accumulated PHB up to 85% of dry cell weight and excreted about 1.5 g of EPS per liter in the medium. Regulation of the coproduction of EPS and PHB by these cells is suggested.  相似文献   

19.
A simple approach was used to identify Rhizobium meliloti DNA regions with the ability to convert a nontransmissible vector into a mobilizable plasmid, i.e., to contain origins of conjugative transfer (oriT, mob). RecA-defective R. meliloti merodiploid populations, where each individual contained a hybrid cosmid from an R. meliloti GR4 gene library, were used as donors en masse in conjugation with another R. meliloti recipient strain, selecting transconjugants for vector-encoded antibiotic resistance. Restriction analysis of cosmids isolated from individual transconjugants resulted in the identification of 11 nonoverlapping DNA regions containing potential oriTs. Individual hybrid cosmids were confirmed to be mobilized from the original recA donors at frequencies ranging from 10−2 to 10−5 per recipient cell. DNA hybridization experiments showed that seven mob DNA regions correspond to plasmid replicons: four on symbiotic megaplasmid 1 (pSym1), one on pSym2, and another two on each of the two cryptic plasmids harbored by R. meliloti GR4. Another three mob clones could not be located to any plasmid and were therefore preliminarily assigned to the chromosome. With this strategy, we were able to characterize the oriT of the conjugative plasmid pRmeGR4a, which confirmed the reliability of the approach to select for oriTs. Moreover, transfer of the 11 mob cosmids from R. meliloti into Escherichia coli occurred at frequencies as high as 10−1, demonstrating the R. meliloti gene transfer capacity is not limited to the family Rhizobiaceae. Our results show that the R. meliloti genome contains multiple oriTs that allow efficient DNA mobilization to rhizobia as well as to phylogenetically distant gram-negative bacteria.  相似文献   

20.
Streptococcus cremoris C3 was found to transfer lactose-fermenting ability to LM2301, a Streptococcus lactis C2 lactose-negative streptomycin-resistant (Lac Strr) derivative which is devoid of plasmid deoxyribonucleic acid (DNA); to LM3302, a Lac erythromycin-resistant (Eryr) derivative of S. lactis ML3; and to BC102, an S. cremoris B1 Lac Eryr derivative which is devoid of plasmid DNA. S. cremoris strains R1, EB7, and Z8 were able to transfer lactose-fermenting ability to LM3302 in solid-surface matings. Transduction and transformation were ruled out as mechanisms of genetic transfer. Chloroform treatment of donor cells prevented the appearance of recombinant clones, indicating that viable cell-to-cell contact was responsible for genetic transfer. Transfer of plasmid DNA was confirmed by agarose gel electrophoresis. Transconjugants recovered from EB7 and Z8 matings with LM3302 exhibited plasmid sizes not observed in the donor strains. Transconjugants recovered from R1, EB7, and Z8 matings with LM3302 were able to donate lactose-fermenting ability at a high frequency to LM2301. In S. cremoris R1, EB7, and Z8 matings with LM2301, streptomycin resistance was transferred from LM2301 to the S. cremoris strains. The results confirm genetic transfer resembling conjugation between S. cremoris and S. lactis strains and present presumptive evidence for plasmid linkage of lactose metabolism in S. cremoris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号