首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Citric acid production by solid state fermentation using sugarcane bagasse   总被引:2,自引:0,他引:2  
A solid state fermentation (SSF) method was used to produce citric acid by Aspergillus niger DS 1 using sugarcane bagasse as a carrier and sucrose or molasses based medium as a moistening agent. Initially bagasse and wheat bran were compared as carrier. Bagasse was the most suitable carrier, as it did not show agglomeration after moistening with medium, resulting in better heat and mass transfer during fermentation and higher product yield. Different parameters such as moisture content, particle size, sugar level and methanol concentration of the medium were optimised and 75% moisture level, 31.8 g sugar/100 g dry solid, 4% (v/w) methanol and particles of the size between 1.2 and 1.6 mm were found to be optimal. Sucrose and clarified and non-clarified molasses medium were also tested as moistening agents for SSF and under optimised conditions, 20.2, 19.8 and 17.9 g citric acid /100 g of dry solid with yield of 69.6, 64.5 and 62.4% (based on sugar consumed) was obtained in sucrose, clarified and non-clarified molasses medium respectively, after 9 days of fermentation.  相似文献   

2.
Among the organic acids produced industrially, citric acid is the most important in quantitative terms. Solid‐state fermentation (SSF) has been an alternative method for citric acid production using agro‐industrial residues such as cassava bagasse (CB). The use of CB as a substrate can avoid environmental problems caused by its disposal into the environment. This study was developed to verify the influence of the treated bagasse amount, and consequently, the influence of the gelatinization degree of CB starch on citric acid production by SSF in Erlenmeyer flasks, horizontal drums, and trays. The best results were obtained in a horizontal drum bioreactor using 100 % of treated CB. However, trays showed advantages and good perspectives for large‐scale citric acid production due to economic reasons such as energy costs. A kinetic study was also carried out in order to compare citric acid production in glass columns (laboratory scale) and horizontal drum bioreactors (semi‐pilot scale). This study was accomplished in order to follow the influence of aeration on citric acid accumulation. In addition, the production of CO2 was evaluated as an indirect method of biomass estimation. Citric acid production was higher in glass columns (309.70 g/kg of dry CB) than in HD bioreactors (268.94 g/kg of dry CB). Finally, it was possible to show that citric acid production was favored by a limited biomass production, which occurred with low aeration rates. Biomass production is related to CO2 production and as a result, a respirometry analysis could be used for biomass estimation.  相似文献   

3.
The effect of dissolved oxygen on citric acid production and oxygen uptake by Candida lipolytica Y 1095 was evaluated in cell recycle and fed-batch fermentation systems. The maximum observed volumetric productivity, which occurred at a dilution rate of 0.06 h(-1), a dissolved oxygen concentration of 80%, and a biomass concentration of 5% w/v, in the cell recycle system, was 1.32 g citric acid/L . h. At these same conditions, the citric acid yield was 0.65 g/g and the specific citric acid productivity was 24.9 mg citric acid/g cell . h. In the cell recycle system, citric acid yields ranged from 0.45 to 0.72 g/g. Both the volumetric and specific citric acid productivities were dependent on the dilution rate and the concentration of dissolved oxygen in the fermentor. Similar productivities (1.29 g citric acid/L . h) were obtained in the fed-batch system operated at a cycle time of 36 h, a dissolved oxygen concentration of 80%, and 60 g total biomass. Citric acid yields in the fed-batch fermentor were consistently lower than those obtained in the cell recycle system and ranged from 0.40 to 0.59 g/g. Although citric acid yields in the fed-batch fermentor were lower than those obtained in the cell recycle system, higher citric:isocitric acid ratios were obtained in the fed-batch fermentor. As in the cell recycle system, both the volumetric and specific citric acid productivities in the fed-batch fermentor were dependent on the cycle time and dissolved oxygen concentration. (c) 1995 John Wiley & Sons, Inc.  相似文献   

4.
The present study describes citric acid fermentation by Aspergillus niger GCB-47 in a 15-1 stainless steel stirred fermentor. Among the alcohols tested as stimulating agents, 1.0% (v/v) methanol was found to give maximum amount of anhydrous citric acid (90.02 +/- 2.2 g/l), 24 h after inoculation. This yield of citric acid was 1.96 fold higher than the control. Methanol has a direct effect on mycelial morphology and it promotes pellet formation. It also increases the cell membrane permeability to provoke more citric acid excretion from the mycelial cells. The sugar consumed and % citric acid was 108 +/- 3.8 g/l and 80.39 +/- 4.5%, respectively. The desirable mycelial morphology was in the form of small round pellets having dry cell mass 14.5 +/- 0.8 g/l. Addition of ethanol, however, did not found to enhance citric acid production, significantly. The maximum value of Yp/x (i.e., 5.825 +/- 0.25 g/g) was observed when methanol was used as a stimulating agent. The best results of anhydrous citric acid were observed, 6 days after inoculation when the initial pH of fermentation medium was kept at 6.0.  相似文献   

5.
Summary Solid state fermentation system was used to cultivate Brevibacterium sp. on sugar cane bagasse impregnated with a medium containing glucose, urea, mineral salts and vitamins for producing L-glutamic acid. Maximum yields (80 mg glutamic acid per g dry bagasse with biomass and substrate - mg/gds) were obtained when bagasse of mixed particle size was moistened at 85–90 % mositure level with the medium containing 10 % glucose. This is the first report on the cultivation of Brevibacterium sp. in solid cultures for production of glutamic acid.  相似文献   

6.
A natural isolate, Candida tropicalis was tested for xylitol production from corn fiber and sugarcane bagasse hydrolysates. Fermentation of corn fiber and sugarcane bagasse hydrolysate showed xylose uptake and xylitol production, though these were very low, even after hydrolysate neutralization and treatments with activated charcoal and ion exchange resins. Initial xylitol production was found to be 0.43 g/g and 0.45 g/g of xylose utilised with corn fiber and sugarcane bagasse hydrolysate respectively. One of the critical factors for low xylitol production was the presence of inhibitors in these hydrolysates. To simulate influence of hemicellulosic sugar composition on xylitol yield, three different combinations of mixed sugar control experiments, without the presence of any inhibitors, have been performed and the strain produced 0.63 g/g, 0.68 g/g and 0.72 g/g of xylose respectively. To improve yeast growth and xylitol production with these hydrolysates, which contain inhibitors, the cells were adapted by sub culturing in the hydrolysate containing medium for 25 cycles. After adaptation the organism produced more xylitol 0.58 g/g and 0.65 g/g of xylose with corn fiber hydrolysate and sugarcane bagasse hydrolysate respectively.  相似文献   

7.
旨在研究化学改性的甘蔗渣作为固定化载体对丙酮丁醇梭菌Clostridium acetobutylicum XY16发酵制备生物丁醇的影响。首先利用不同浓度的聚乙烯亚胺(PEI)和1 g/L戊二醛(GA)对甘蔗渣表面进行化学改性,增强甘蔗渣对Clostridium acetobutylicum XY16的附载能力。经4 g/L聚乙烯亚胺和1 g/L戊二醛改性的甘蔗渣(添加量10 g/L)应用到固定化批次发酵中,发酵36 h后丁醇和总溶剂浓度最高,分别达到了12.24 g/L和21.67 g/L,同时溶剂的生产速率达到0.60 g/(L·h),生产速率比游离细胞和未改性甘蔗渣固定化细胞分批发酵分别提高了130.8%和66.7%。在此基础上对改性甘蔗渣固定化的细胞进行6次重复批次发酵,丁醇和总溶剂的产量稳定,溶剂生产速率逐渐提高至0.83 g/(L·h),同时转化率也提高至0.42 g/g。  相似文献   

8.
A 2(2) full factorial design was employed to evaluate the effects of sulfuric acid loading and residence time on the composition of sugarcane bagasse hydrolysate obtained in a 250-L reactor. The acid loading and the residence time were varied from 70 to 130 mg acid per gram of dry bagasse and from 10 to 30 min, respectively, while the temperature (121 degrees C) and the bagasse loading (10%) were kept constant. Both the sulfuric acid loading and the residence time influenced the concentrations of xylose and inhibitors in the hydrolysate. The highest xylose concentration (22.71 g/L) was achieved when using an acid loading of 130 mg/g and a residence time of 30 min. These conditions also led to increased concentrations of inhibiting byproducts in the hydrolysate. All of the hydrolysates were vacuum-concentrated to increase the xylose concentration, detoxified by pH alteration and adsorption into activated charcoal, and used for xylitol bioproduction in a stirred tank reactor. Neither the least (70 mg/g, 10 min) nor the most severe (130 mg/g, 30 min) hydrolysis conditions led to the best xylitol production (37.5 g/L), productivity (0.85 g/L h), and yield (0.78 g/g).  相似文献   

9.
This study reports on the effects of fermentor agitation and fed-batch mode of operation on citric acid production from Candida lipolytica using n-paraffin as the carbon source. An optimum range of agitation speeds in the 800-1000 rpm range corresponding to Reynolds numbers of 50000-63000 (based on initial batch conditions) seemed to give the best balance between substrate utilization for biomass growth and citric acid production. Application of multiple fed-batch feedings can be used to extend the batch fermentation and increase final citric acid concentrations and product yield. The three-cycle fed-batch system increased overall citric acid yields to 0.8-1.0 g citricacid/g n-paraffin, approximately a 100% improvement in product yield from those observed in the single cycle fed-batch system and a 200% improvement over normal batch operation. The three-cycle fed-batch mode of operation also increased the final citric acid concentration to 42 g/l from about 12 and 6g/l for single fed-batch cycle and normal batch modes of operation, respectively. Increased citric acid concentrations in three-cycle fed-batch mode was achieved at longer fermentation times.  相似文献   

10.
The production of citric and gluconic acids from fig by Aspergillus niger ATCC 10577 in solid-state fermentation was investigated. The maximal citric and gluconic acids concentration (64 and 490 g/kg dry figs, respectively), citric acid yield (8%), and gluconic acid yield (63%) were obtained at a moisture level of 75%, initial pH 7.0, temperature 30°C, and fermentation time in 15 days. However, the highest biomass dry weight (40 g/kg wet substrate) and sugar utilization (90%) were obtained in cultures grown at 35°C. The addition of 6% (w/w) methanol into substrate increased the concentration of citric and gluconic acid from 64 and 490 to 96 and 685 g/kg dry fig, respectively. Journal of Industrial Microbiology & Biotechnology (2000) 25, 298–304. Received 15 April 2000/ Accepted in revised form 11 August 2000  相似文献   

11.
Hexose and pentose sugars from phosphoric acid pretreated sugarcane bagasse were co-fermented to ethanol in a single vessel (SScF), eliminating process steps for solid-liquid separation and sugar cleanup. An initial liquefaction step (L) with cellulase was included to improve mixing and saccharification (L + SScF), analogous to a corn ethanol process. Fermentation was enabled by the development of a hydrolysate-resistant mutant of Escherichia coli LY180, designated MM160. Strain MM160 was more resistant than the parent to inhibitors (furfural, 5-hydroxymethylfurfural, and acetate) formed during pretreatment. Bagasse slurries containing 10% and 14% dry weight (fiber plus solubles) were tested using pretreatment temperatures of 160-190 °C (1% phosphoric acid, 10 min). Enzymatic saccharification and inhibitor production both increased with pretreatment temperature. The highest titer (30 g/L ethanol) and yield (0.21 g ethanol/g bagasse dry weight) were obtained after incubation for 122 h using 14% dry weight slurries of pretreated bagasse (180 °C).  相似文献   

12.
Aspergillus niger NRRL 567 was grown in an inert support material for citric acid production. Optimization of the medium components, including ethanol, methanol, phytate, olive oil and surfactant was carried out using "one-factor-at-a-time" and central composite design (CCD) methods. Optimization using "one-factor-at-a-time" was performed and the supplement of ethanol and methanol between 15 and 30 g/kg dry peat moss (DPM) enhanced citric acid production while higher levels than 30 g/kg DPM had an inhibitory effect on citric acid production at 48 and 72 h of incubation. Based on the results of "one-factor-at-a-time" optimization, phytate, olive oil and methanol were the selected additives to test the effect on citric acid production using CCD. The three variables were identified to have significant effects on citric acid production and the maximum citric acid production of 354.8 g/kg DPM was resulted from the combination of 19 g phytate/kg DPM, 49 g olive oil/kg DPM and 37 g methanol/kg DPM at 120 h. Maximum citric acid production in optimized condition by CCD represented about a 2.7-fold increase compared to that obtained from control before optimization.  相似文献   

13.
Citric acid (CA) is one of the most important products of fermentation in the world. A great variety of agro-industrial residues can be used in solid state fermentation. Aspergillus niger parental strain (CCT 7716) and two strains obtained by mutagenesis (CCT 7717 and CCT 7718) were evaluated in Erlenmeyer flasks and glass columns using citric pulp (CP) as substrate/support, sugarcane molasses and methanol. Best results using glass columns (forced aeration) were found in the fourth day of fermentation: 278.4, 294.9 and 261.1 g CA/kg of dry CP with CCT 7716, CCT 7718 and CCT 7717, respectively. In Erlenmeyer flasks (aeration by diffusion) CA reached 410.7, 446.8 and 492.7 g CA/kg of dry CP with CCT 7716, CCT 7718 and CCT 7717, respectively. The aeration by diffusion improved CA production by the three strains. A data acquisition system specially developed for biotechnological processes analysis was used to perform the respirometric parameters measurement.  相似文献   

14.
Synthesis of amylase by Aspergillus niger strain UO-01 under solid-state fermentation with sugarcane bagasse was optimized by using response surface methodology and empirical modelling. The process parameters tested were particle size of sugarcane bagasse, incubation temperature and pH, moisture level of solid support material and the concentrations of inoculum, total sugars, nitrogen and phosphorous. The optimum conditions for high amylase production (457.82 EU/g of dry support) were particle size of bagasse in the range of 6–8 mm, incubation temperature and pH: 30.2°C and 6.0, moisture content of bagasse: 75.3%, inoculum concentration: 1 × 107 spores/g of dry support and concentrations of starch, yeast extract and KH2PO4: 70.5, 11.59 and 9.83 mg/g of dry support, respectively. After optimization, enzyme production was assayed at the optimized conditions. The results obtained corroborate the effectiveness and reliability of the empirical models obtained.  相似文献   

15.
Sugarcane is one of the major agricultural crops cultivated in tropical climate regions of the world. Each tonne of raw cane production is associated with the generation of 130 kg dry weight of bagasse after juice extraction and 250 kg dry weight of cane leaf residue postharvest. The annual world production of sugarcane is ~1.6 billion tones, generating 279 MMT tones of biomass residues (bagasse and cane leaf matter) that would be available for cellulosic ethanol production. Here, we investigated the production of cellulosic ethanol from sugar cane bagasse and sugar cane leaf residue using an alkaline pretreatment: ammonia fiber expansion (AFEX). The AFEX pretreatment improved the accessibility of cellulose and hemicelluloses to enzymes during hydrolysis by breaking down the ester linkages and other lignin carbohydrate complex (LCC) bonds and the sugar produced by this process is found to be highly fermentable. The maximum glucan conversion of AFEX pretreated bagasse and cane leaf residue by cellulases was ~85%. Supplementation with hemicellulases during enzymatic hydrolysis improved the xylan conversion up to 95–98%. Xylanase supplementation also contributed to a marginal improvement in the glucan conversion. AFEX‐treated cane leaf residue was found to have a greater enzymatic digestibility compared to AFEX‐treated bagasse. Co‐fermentation of glucose and xylose, produced from high solid loading (6% glucan) hydrolysis of AFEX‐treated bagasse and cane leaf residue, using the recombinant Saccharomyces cerevisiae (424A LNH‐ST) produced 34–36 g/L of ethanol with 92% theoretical yield. These results demonstrate that AFEX pretreatment is a viable process for conversion of bagasse and cane leaf residue into cellulosic ethanol. Biotechnol. Bioeng. 2010;107: 441–450. © 2010 Wiley Periodicals, Inc.  相似文献   

16.
In this study, the production of sugar monomers from sugarcane bagasse (SCB) by sono-assisted acid hydrolysis was performed. The SCB was subjected to sono-assisted alkaline pretreatment. The cellulose and hemicellulose recovery observed in the solid content was 99% and 78.95%, respectively and lignin removal observed during the pretreatment was about 75.44%. The solid content obtained was subjected to sono-assisted acid hydrolysis. Under optimized conditions, the maximum hexose and pentose yield observed was 69.06% and 81.35% of theoretical yield, respectively. The hydrolysate obtained was found to contain very less inhibitors, which improved the bioethanol production and the ethanol yield observed was 0.17 g/g of pretreated SCB.  相似文献   

17.
A thermotolerant yeast capable of fermenting xylose to xylitol at 40°C was isolated and identified as a strain of Debaryomyces hansenii by ITS sequencing. This paper reports the production of xylitol from D-xylose and sugarcane bagasse hemicellulose by free and Ca-alginate immobilized cells of D. hansenii. The efficiency of free and immobilized cells were compared for xylitol production from D-xylose and hemicellulose in batch culture at 40°C. The maximum xylitol produced by free cells was 68.6 g/L from 100 g/L of xylose, with a yield of 0.76 g/g and volumetric productivity 0.44 g/L/h. The yield of xylitol and volumetric productivity were 0.69 g/g and 0.28 g/L/h respectively from hemicellulosic hydrolysate of sugarcane bagasse after detoxification with activated charcoal and ion exchange resins. The Ca-alginate immobilized D. hansenii cells produced 73.8 g of xylitol from 100 g/L of xylose with a yield of 0.82 g/g and volumetric productivity of 0.46 g/L/h and were reused for five batches with steady bioconversion rates and yields.  相似文献   

18.
This experimental study reports about production selectivity in the fermentation of glucose to citric acid by Yarrowia lipolytica as a function of substrate concentration. Batch runs featuring biomass growth and one or two citric acid production phases were carried out in a 15-l stirred tank fermentor. The presented results demonstrate that working at high initial substrate concentration in the production phase is beneficial both in terms of a higher production rate of citric acid, the desired metabolite (reaching 0.077 h(-1)) and of a higher utilization degree of the employed carbon source (yield up to 0.384 g(c.a.)/g(glucose)). The production rate of isocitric acid, the major undesired metabolite, was found to be practically constant over the tested initial substrate concentration range.  相似文献   

19.
Immense interest has been devoted to the production of bulk chemicals from lignocellulose biomass. Diluted sulfuric acid treatment is currently one of the main pretreatment methods. However, the low total sugar concentration obtained via such pretreatment limits industrial fermentation systems that use lignocellulosic hydrolysate. Sugarcane bagasse hemicellulose hydrolysate is used as the carbon and nitrogen sources to achieve a green and economical production of succinic acid in this study. Sugarcane bagasse was ultrasonically pretreated for 40 min, with 43.9 g/L total sugar obtained after dilute acid hydrolysis. The total sugar concentration increased by 29.5 %. In a 3-L fermentor, using 30 g/L non-detoxified total sugar as the carbon source, succinic acid production increased to 23.7 g/L with a succinic acid yield of 79.0 % and a productivity of 0.99 g/L/h, and 60 % yeast extract in the medium could be reduced. Compared with the detoxified sugar preparation method, succinic acid production and yield were improved by 20.9 and 20.2 %, respectively.  相似文献   

20.
An alternative route for bio-ethanol production from sugarcane stalks (juice and bagasse) featuring a previously reported low temperature alkali pretreatment method was evaluated. Test-tube scale pretreatment-saccharification experiments were carried out to determine optimal LTA pretreatment conditions for sugarcane bagasse with regard to the efficiency of enzymatic hydrolysis of the cellulose. Free fermentable sugars and bagasse recovered from 2 kg of sugarcane stalks were jointly converted into ethanol via separate enzymatic hydrolysis and fermentation (SHF). Results showed that 98% of the cellulose present in the optimally pretreated bagasse was hydrolyzed into glucose after 72-h enzymatic saccharification using commercially available cellulase and β-glucosidase preparations at relatively low enzyme loading. The fermentable sugars in the mixture of the sugar juice and the bagasse hydrolysate were readily converted into 193.5 mL of ethanol by Saccharomyces cerevisiae within 12h, achieving 88% of the theoretical yield from the sugars and cellulose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号