首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gelsolin is a Ca(2+)-regulated actin-modulating protein found in a variety of cellular cytoplasm and also in blood plasma. Affinity separation of human plasma gelsolin was successfully accomplished by eluting the protein with a low concentration of nucleoside polyphosphate from immobilized Cibacron Blue F3GA (1, 2). This finding was followed by the demonstration that the protein had one class of ATP binding site with Kd = 2.8 x 10(-7) M, which saturated at an ATP/gelsolin ratio of 0.6 in the absence of Ca2+ (3). To obtain further information on the nucleotide binding properties of gelsolin, binding studies were done in the presence of EGTA with GTP, ADP, and GDP by equilibrium dialysis. Incubation of plasma gelsolin with GTP resulted in binding of 0.6 mol of GTP per mol of protein with a dissociation constant of 1.8 x 10(-6) M, indicating that ATP binds to gelsolin with higher affinity than GTP. Neither ADP nor GDP at up to 100 microM appreciably bound to gelsolin at a physiological salt concentration. Then, the effects of divalent metal ions on the ATP binding to plasma gelsolin were examined. Gelsolin bound to ATP with Kd = 2.4 x 10(-6) M in a solution containing 2 mM MgCl2, whereas micromolar free Ca2+ concentrations inhibited ATP binding. Furthermore, addition of Ca2+ rapidly reversed the preformed nucleotide binding to gelsolin, suggesting that Ca2+ binding to gelsolin leads to a conformational change which disrupts a nucleotide binding fold in the protein molecule.  相似文献   

2.
Neuroglobin, mainly expressed in vertebrate brain and retina, is a recently identified member of the globin superfamily. Augmenting O(2) supply, neuroglobin promotes survival of neurons upon hypoxic injury, potentially limiting brain damage. In the absence of exogenous ligands, neuroglobin displays a hexacoordinated heme. O(2) and CO bind to the heme iron, displacing the endogenous HisE7 heme distal ligand. Hexacoordinated human neuroglobin displays a classical globin fold adapted to host the reversible bis-histidyl heme complex and an elongated protein matrix cavity, held to facilitate O(2) diffusion to the heme. The neuroglobin structure suggests that the classical globin fold is endowed with striking adaptability, indicating that hemoglobin and myoglobin are just two examples within a wide and functionally diversified protein homology superfamily.  相似文献   

3.
A glycoprotein that circulates in human blood, binds to the surface of platelets and white cells and also binds serotonin with high affinity and specificity has previously been purified and partially characterized. This glycoprotein has been called serotonectin. Antibodies raised against serotonectin inhibited the uptake of [3H]serotonin by platelets. We now report on the amino acid and carbohydrate composition of this protein as well as on some of the properties of the protein from which the carbohydrate moiety was removed. Serotonectin (apparent molecular weight 200 000; as judged by SDS-polyacrylamide gel electrophoresis) is an acidic protein that contains about 13% carbohydrate (w/w) consisting of mannose, galactose, glucosamine and sialic acid in a molar ratio of 2:1:4:0.8. Initial characterization suggests that serotonectin is a sialoglycoprotein of complex-type oligosaccharide N-linked to asparagine through N-acetylglucosamine. Treatment of serotonectin with neuraminidase resulted in a quantitative release of sialic acid without loss of antigenicity or binding capacity for [3H]serotonin. Treatment of desialylated serotonectin under non-denaturing conditions with almond glycopeptidase A resulted in 60-80% release of sugar. The protein moiety of the glycopeptidase-digested material showed no change in the capacity to bind [3H]serotonin and exhibited the same antigenic properties as untreated serotonectin. These data show the non-involvement of the carbohydrate moiety of human serotonectin in the mechanism of binding serotonin but the possible contribution of this moiety to a tighter interaction with the serotonectin receptor.  相似文献   

4.
Neuroglobin is a highly conserved hemoprotein of uncertain physiological function that evolved from a common ancestor to hemoglobin and myoglobin. It possesses a six-coordinate heme geometry with proximal and distal histidines directly bound to the heme iron, although coordination of the sixth ligand is reversible. We show that deoxygenated human neuroglobin reacts with nitrite to form nitric oxide (NO). This reaction is regulated by redox-sensitive surface thiols, cysteine 55 and 46, which regulate the fraction of the five-coordinated heme, nitrite binding, and NO formation. Replacement of the distal histidine by leucine or glutamine leads to a stable five-coordinated geometry; these neuroglobin mutants reduce nitrite to NO ~2000 times faster than the wild type, whereas mutation of either Cys-55 or Cys-46 to alanine stabilizes the six-coordinate structure and slows the reaction. Using lentivirus expression systems, we show that the nitrite reductase activity of neuroglobin inhibits cellular respiration via NO binding to cytochrome c oxidase and confirm that the six-to-five-coordinate status of neuroglobin regulates intracellular hypoxic NO-signaling pathways. These studies suggest that neuroglobin may function as a physiological oxidative stress sensor and a post-translationally redox-regulated nitrite reductase that generates NO under six-to-five-coordinate heme pocket control. We hypothesize that the six-coordinate heme globin superfamily may subserve a function as primordial hypoxic and redox-regulated NO-signaling proteins.  相似文献   

5.
Hydrogen photoproduction from water by Scenedesmus cells was achieved in the presence of reagents that combine reversibly with oxygen. The oxygen can be subsequently released, and H(2) and O(2) are obtained in the 2:1 ratio expected for H(2)O photolysis. This was accomplished in an experimental design which facilitates rapid transfer of gases and the use of a variety of water-soluble and DMSO-soluble chelates of cobalt which combine reversibly with oxygen.  相似文献   

6.
Neuroglobin (Ngb) is a newly discovered vertebrate globin that is expressed in the brain and that can reversibly bind oxygen. It has been reported that Ngb levels increase in neurons in response to oxygen deprivation, and that it protects neurons from hypoxia. However, the mechanism of this neuroprotection remains unclear. Recently, we found that oxidized human Ngb bound to the alpha-subunits of heterotrimeric G proteins (Galpha) and acted as a guanine nucleotide dissociation inhibitor for Galpha. To identify other Ngb-binding proteins, we herein screened a human brain cDNA library by using a yeast two-hybrid system. Among the plasmids isolated from positive clones, one contained an insert with 100% sequence identity to human flotillin-1. The interaction of Ngb with flotillin-1 was confirmed by glutathione S-transferase pull-down experiments. Since Galpha exists within lipid rafts critical for signal transduction and flotillin-1 recruits signaling proteins to lipid rafts, flotillin-1 might recruit Ngb to lipid rafts as a means of preventing neuronal death.  相似文献   

7.
Bcl-xL regulates apoptosis by maintaining the integrity of the mitochondrial outer membrane by adopting both soluble and membrane-associated forms. The membrane-associated conformation does not require a conserved, C-terminal transmembrane domain and appears to be inserted into the bilayer of synthetic membranes as assessed by membrane permeabilization and critical surface pressure measurements. Membrane association is reversible and is regulated by the cooperative binding of approximately two protons to the protein. Two acidic residues, Glu153 and Asp156, that lie in a conserved hairpin of Bcl-xLDeltaTM appear to be important in this process on the basis of a 16% increase in the level of membrane association of the double mutant E153Q/D156N. Contrary to that for the wild type, membrane permeabilization for the mutant is not correlated with membrane association. Monolayer surface pressure measurements suggest that this effect is primarily due to less membrane penetration. These results suggest that E153 and D156 are important for the Bcl-xLDeltaTM conformational change and that membrane binding can be distinct from membrane permeabilization. Taken together, these studies support a model in which Bcl-xL activity is controlled by reversible insertion of its N-terminal domain into the mitochondrial outer membrane. Future studies with Bcl-xL mutants such as E153Q/D156N should allow determination of the relative contributions of membrane binding, insertion, and permeabilization to the regulation of apoptosis.  相似文献   

8.
Porphyromonas gingivalis possesses a hemoglobin receptor (HbR) protein on the cell surface as one of the major components of the hemoglobin utilization system in this periodontopathogenic bacterium. HbR is intragenically encoded by the genes of an arginine-specific cysteine proteinase (rgpA), lysine-specific cysteine proteinase (kgp), and a hemagglutinin (hagA). Here, we have demonstrated that human lactoferrin as well as hemoglobin have the abilities to bind purified HbR and the cell surface of P. gingivalis through HbR. The interaction of lactoferrin with HbR led to the release of HbR from the cell surface of P. gingivalis. This lactoferrin-mediated HbR release was inhibited by the cysteine proteinase inhibitors effective to the cysteine proteinases of P. gingivalis. P. gingivalis could not utilize lactoferrin for its growth as an iron source and, in contrast, lactoferrin inhibited the growth of the bacterium in a rich medium containing hemoglobin as the sole iron source. Lactoferricin B, a 25-amino acid-long peptide located at the N-lobe of bovine lactoferrin, caused the same effects on P. gingivalis cells as human lactoferrin, indicating that the effects of lactoferrin might be attributable to the lactoferricin region. These results suggest that lactoferrin has a bacteriostatic action on P. gingivalis by binding HbR, removing it from the cell surface, and consequently disrupting the iron uptake system from hemoglobin.  相似文献   

9.
The crystal structures of cyanide and azide-bound forms of the truncated hemoglobin from Synechocystis are presented at 1.8 angstroms resolution. A comparison with the structure of the endogenously liganded protein reveals a conformational shift unprecedented in hemoglobins, and provides the first picture of a hexacoordinate hemoglobin in both the bis-histidyl and the exogenously coordinated states. The structural changes between the different conformations are confined to two regions of the protein; the B helix, and the E helix, including the EF loop. A molecular "hinge" controlling movement of the E helix is observed in the EF loop, which is composed of three principal structural elements: Arg64, the heme-d-propionate, and a three-residue extension of the F helix. Additional features of the structural transition between the two protein conformations are discussed as they relate to the complex ligand-binding behavior observed in hexacoordinate hemoglobins, and the potential physiological function of this class of proteins.  相似文献   

10.
Hemoglobin function can be modulated by the red cell membrane but some mechanistic details are incomplete. For example, the 43-kDa chymotryptic fragment of the cytoplasmic portion of red cell membrane Band 3 protein and its corresponding N-terminal 11-residue synthetic peptide lower the oxygen affinity of hemoglobin but effects on cooperativity are unclear. Using highly purified preparations, we also find a lowered Hill coefficient (n values <2) at subequivalent ratios of Band 3 fragment or of synthetic peptide to Hb, resulting in an oxygen affinity that is moderately decreased and a partially hyperbolic shape for the O2 binding curve. Both normal HbA and sickle HbS display this property. Thus, the determinant responsible for the Hb cooperativity decreases by the 43-kDa fragment resides within its first 11 N-terminal residues. This effect is observed in the absence of chloride and is reversed by its addition. As effector to Hb ratios approach equivalence or with saturating chloride normal cooperativity is restored, and oxygen affinity is further lowered because the shape of the oxygen binding curve becomes completely sigmoidal. The relative efficiencies of 2,3-diphosphoglycerate (DPG), the 43-kDa Band 3 fragment, and the 11-residue synthetic peptide in lowering cooperativity are very similar. The findings are explained based on the stereochemical mechanism of cooperativity because of two populations of T-state hemoglobin tetramers, one with bound effector and the other with free (Perutz, M. F. (1989) Q. Rev. Biophys. 22, 139-237). As a result of this property, hemoglobin at the membrane inner surface in contact with the N-terminal region of Band 3 could preferentially bind O2 at low oxygen tension and then release it upon saturation with 2,3-diphosphoglycerate in the interior of the red cell. Membrane modulation of hemoglobin oxygen affinity has particularly interesting implications for the polymerization of hemoglobin S in the sickle red cell.  相似文献   

11.
Bleomycin hydrolase (BH) is a cysteine proteinase that inactivates the anticancer drug bleomycin. Yeast BH forms a homohexameric structure that resembles a 20S proteasome and binds to single-stranded RNA and DNA. We now demonstrate that human BH (hBH) interacts and colocalizes with ribosomal proteins. Using a yeast two-hybrid system, we found hBH bound to human homologues of rat ribosomal proteins L11 and L29. The N-terminus of hBH (amino acids 14-175), which contains a catalytic Cys93, was critical for the binding to L11 in the two-hybrid environment. hBH precipitated 35S-labeled L11 and L29 in vitro, and hBH colocalized with L11 and L29 as determined by immunofluorescence. In addition to cytosolic bleomycin hydrolase, we found abundant bleomycin hydrolase activity associated with the ribosomal subcellular fraction by differential centrifugation. hBH was also detected by Western immunoblotting in a high-speed particulate fraction, where the majority of L11 and L29 were found. In vitro experiments showed recombinant hBH binds to Chinese hamster ovary cell microsomes. Thus, our data strongly suggest that hBH exists as both a free cytosolic and ribosome-associated protein.  相似文献   

12.
A 120 bp homeotic response element that is regulated specifically by Deformed in Drosophila embryos contains a single binding site for Deformed protein. However, a 24 bp sub-element containing this site does not constitute a Deformed response element. Specific activation requires a second region in the 120 bp element, which presumably contains one or more binding sites for Deformed cofactors. We have isolated a novel protein from Drosophila nuclear extracts which binds specifically to a site in this second region. This protein, which we call DEAF-1 (Deformed epidermal autoregulatory factor-1), contains three conserved domains. One of these includes a cysteine repeat motif that is similar to a motif found in Drosophila Nervy and the human MTG8 proto-oncoprotein, and another matches a region of Drosophila Trithorax. Mutations in the response element designed to improve binding to DEAF-1 in vitro resulted in increased embryonic expression. Conversely, small mutations designed to diminish binding to DEAF-1 resulted in reduced expression of the element. Thus, DEAF-1 is likely to contribute to the functional activity, and perhaps to the homeotic specificity, of this response element. Consistent with this hypothesis, we have discovered DEAF-1 binding sites in other Deformed response elements.  相似文献   

13.
Antibody affinity is critically important in therapeutic applications, as well as steady state diagnostic assays. Picomolar affinity antibodies, approaching the association limit of protein-protein interactions, have been discovered for highly potent antigens, but even such high-affinity binders have off-rates sufficient to negate therapeutic efficacy. To cross this affinity threshold, antibodies that tether their targets in a manner other than reversible non-covalent interaction will be required. Here we report the design and construction of an antibody that forms an irreversible complex with a protein antigen in a metal-dependent reaction. The complex resists thermal and chemical denaturation, as well as attempts to remove the coordinating metal ion. Such irreversibly binding antibodies could facilitate the development of next generation "reactive antibody" therapeutics and diagnostics.  相似文献   

14.
Heat-inducible human factor that binds to a human hsp70 promoter.   总被引:21,自引:33,他引:21       下载免费PDF全文
A factor found in nuclear extracts of human cells bound to the heat shock element of a human heat shock protein 70 gene. The level of this factor was significantly increased after heat shock. This induction was rapid and was not blocked by cycloheximide, suggesting that an initial event in the response of a human cell to heat is the activation of a preexisting regulatory factor.  相似文献   

15.
Kin17 is a 45 kDa protein encoded by the KIN17 gene located on mouse chromosome 2, band A. The kin17 amino acid sequence predicts two domains, which were shown to be functional: (i) a bipartite nuclear localization signal (NLS) that can drive the protein to the cell nucleus, (ii) a bona fide zinc finger of the C2H2 type. The zinc finger is involved in kin17 binding to double-stranded DNA since a mutant deleted of the zinc finger, kin17 delta 1, showed reduced binding. Single-stranded DNA was bound poorly by kin17. Interestingly, we found that kin17 protein showed preferential binding to curved DNA from either pBR322 or synthetic oligonucleotides. Binding of kin17 to a non-curved DNA segment increased after we had inserted into it a short curved synthetic oligonucleotide. Kin17 delta 2, a mutant deleted of 110 amino acids at the C-terminal end, still exhibited preferential binding to curved DNA and so did kin17 delta 1, suggesting that a domain recognizing curved DNA is located in the protein core.  相似文献   

16.
Peanut agglutinin, purified by affinity chromatography, agglutinates lymphocytes from mouse, rat, guinea pig, and man only after their treatment with neuraminidase. However, it stimulates only neuraminidase-treated rat and human cells. A similar number cell surface receptors for peanut agglutinin was found on neuraminidase-treated rat and mouse lymphocytes although the latter cells were not stimulated by the lectin. Galactose specifically inhibited the agglutination and stimulation of lymphocytes by peanut agglutinin. Sequential treatment of lymphocytes with neuraminidase and beta-galactosidase markedly reduced the response of the cells to stimulation by peanut agglutinin, soybean agglutinin, and galactose oxidase. It is suggested that the same galactosyl residue may be the target for the initial step in triggering lymphocytes by the above mentioned mitogens.  相似文献   

17.
We have purified TnsB, a transposition protein encoded by the bacterial transposon Tn7. The purification procedure involves three chromatographic steps (DNA-cellulose, norleucine-Sepharose, and phosphocellulose) and yields milligram quantities of highly purified protein. The apparent molecular mass of denatured TnsB protein is approximately 85 kDa. Gel filtration chromatography and sucrose gradient sedimentation studies indicate that in solution, native TnsB is a monomer of nonspherical shape. Using DNase I protection analysis, we established that TnsB is a sequence-specific DNA-binding protein that recognizes multiple sites in both ends of the transposon. The TnsB binding sites, three in the left end of Tn7 and four in the right end, are highly related in nucleotide sequence and are located in DNA segments that we have previously shown contain cis-acting sequences important for Tn7 transposition. Our results also show that one of the TnsB binding sites overlaps a proposed promoter for the transposition genes of Tn7. These studies suggest that the specific binding of TnsB to the ends of Tn7 mediates recombination and may also regulate the expression of Tn7-encoded transposition genes.  相似文献   

18.
19.
In a search for monocyte-specific nuclear factors, we analyzed in human cells the promoter of the chicken myelomonocytic growth factor, a gene that, in the chicken, is expressed in myeloid and myelomonocytic cells. Reporter gene constructs were active in monocytic Mono Mac 6 cells and in monoblastic THP-1 cells but not in the hematopoietic stem cell line K562. When a region with homology to the sequence recognized by CAAT enhancer-binding proteins (C/EBP) was inactivated by site-directed mutagenesis, the reporter activity was reduced by a factor of 10. Multimers of this region, termed F, in front of a heterologous promoter were active in Mono Mac 6 and THP-1 cells but not in K562 cells, WIL2 B cells, BT20 mammary carcinoma cells, MelJuso melanoma cells, or SK-Hep-1 hepatoma cells. Gel shift analysis with the F oligonucleotide identified DNA-binding activity in monocytic Mono Mac 6, monoblastic THP-1, and myelomonocytic HL60 cells. No binding was detected in myelomonocytic RC2A cells, in myeloid KG-1 cells, or in the hematopoietic stem cell line K562. Furthermore, a panel of solid tumor cell lines, representing various tissues, were also negative. Stimulation by PMA could not induce this binding factor in any of the negative cell lines. Analysis of primary cells (granulocytes, T cells, monocytes, and alveolar macrophages) revealed binding activity only in monocytes and macrophages. This DNA-binding factor, termed NF-M, was found to consist of two molecules, of 50 and 72 kDa, as determined by affinity cross-linking. Binding of NF-M was competed by the region F oligonucleotide and by the C/EBP motif from the albumin enhancer but not by an AP-2 motif. These data suggest that NF-M is a member of the C/EBP family of nuclear factors. The monocyte-restricted activity of NF-M suggests that this nuclear factor may be involved in regulation of monocyte-specific genes.  相似文献   

20.
Human cells express two kinases that are related to the yeast mitotic checkpoint kinase BUB1. hBUB1 and hBUBR1 bind to kinetochores where they are postulated to be components of the mitotic checkpoint that monitors kinetochore activities to determine if chromosomes have achieved alignment at the spindle equator (Jablonski, S.A., G.K.T. Chan, C.A. Cooke, W.C. Earnshaw, and T.J. Yen. 1998. Chromosoma. 107:386-396). In support of this, hBUB1 and the homologous mouse BUB1 have been shown to be important for the mitotic checkpoint (Cahill, D.P., C. Lengauer, J. Yu, G.J. Riggins, J.K. Willson, S.D. Markowitz, K.W. Kinzler, and B. Vogelstein. 1998. Nature. 392:300-303; Taylor, S.S., and F. McKeon. 1997. Cell. 89:727-735). We now demonstrate that hBUBR1 is also an essential component of the mitotic checkpoint. hBUBR1 is required by cells that are exposed to microtubule inhibitors to arrest in mitosis. Additionally, hBUBR1 is essential for normal mitotic progression as it prevents cells from prematurely entering anaphase. We establish that one of hBUBR1's checkpoint functions is to monitor kinetochore activities that depend on the kinetochore motor CENP-E. hBUBR1 is expressed throughout the cell cycle, but its kinase activity is detected after cells have entered mitosis. hBUBR1 kinase activity was rapidly stimulated when the spindle was disrupted in mitotic cells. Finally, hBUBR1 was associated with the cyclosome/anaphase-promoting complex (APC) in mitotically arrested cells but not in interphase cells. The combined data indicate that hBUBR1 can potentially provide two checkpoint functions by monitoring CENP-E-dependent activities at the kinetochore and regulating cyclosome/APC activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号