首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Type III antifreeze protein, more specifically the recombinant QAE-Sephadex-binding isoform, has been crystallized in 50-55% saturated ammonium sulfate, 0.1 M sodium acetate, pH 4.0-4.5. The resultant crystals belong to the orthorhombic space group P212121 with a = 32.60 A, b = 39.00 A, and c = 46.57 A and diffract to at least 1.7 A. A set of 1.7-A native data has been collected, with completeness 93.4% and Rsym of 0.069. Initial screening for heavy-atom derivatives has yielded a Pt-bound derivative.  相似文献   

2.
We have carried out solution equilibrium binding studies of ICP8, the major single-stranded DNA (ssDNA)-binding protein of herpes simplex virus type I, in order to determine the thermodynamic parameters for its interaction with ssDNA. Fluorescence anisotropy measurements of a 5'-fluorescein-labeled 32-mer oligonucleotide revealed that ICP8 formed a nucleoprotein filament on ssDNA with a binding site size of 10 nucleotides/ICP8 monomer, an association constant at 25 degrees C, K = 0.55 +/- 0.05 x 10(6) M(-1), and a cooperativity parameter, omega = 15 +/- 3. The equilibrium constant was largely independent of salt, deltalog(Komega)/deltalog([NaCl]) = -2.4 +/- 0.4. Comparison of these parameters with other ssDNA-binding proteins showed that ICP8 reacted with an unusual mechanism characterized by low cooperativity and weak binding. In addition, the reaction product was more stable at high salt concentrations, and fluorescence enhancement of etheno-ssDNA by ICP8 was higher than for other ssDNA-binding proteins. These last two characteristics are also found for protein-DNA complexes formed by recombinases in their active conformation. Given the proposed role of ICP8 in promoting strand transfer reactions, they suggest that ICP8 and recombinase proteins may catalyze homologous recombination by a similar mechanism.  相似文献   

3.
The replication of herpes simplex virus type 1 (HSV-1) DNA is associated with a high degree of homologous recombination. While cellular enzymes may take part in mediating this recombination, we present evidence for an HSV-1-encoded recombinase activity. HSV-1 alkaline nuclease, encoded by the UL12 gene, is a 5'-->3' exonuclease that shares homology with Redalpha, commonly known as lambda exonuclease, an exonuclease required for homologous recombination by bacteriophage lambda. The HSV-1 single-stranded DNA binding protein ICP8 is an essential protein for HSV DNA replication and possesses single-stranded DNA annealing activities like the Redbeta synaptase component of the phage lambda recombinase. Here we show that UL12 and ICP8 work together to effect strand exchange much like the Red system of lambda. Purified UL12 protein and ICP8 mediated the complete exchange between a 7.25-kb M13mp18 linear double-stranded DNA molecule and circular single-stranded M13 DNA, forming a gapped circle and a displaced strand as final products. The optimal conditions for strand exchange were 1 mM MgCl(2), 40 mM NaCl, and pH 7.5. Stoichiometric amounts of ICP8 were required, and strand exchange did not depend on the nature of the double-stranded end. Nuclease-defective UL12 could not support this reaction. These data suggest that diverse DNA viruses appear to utilize an evolutionarily conserved recombination mechanism.  相似文献   

4.
ICP8 is the major single-stranded DNA (ssDNA) binding protein of the herpes simplex virus type 1 and is required for the onset and maintenance of viral genomic replication. To identify regions responsible for the cooperative binding to ssDNA, several mutants of ICP8 have been characterized. Total reflection X-ray fluorescence experiments on the constructs confirmed the presence of one zinc atom per molecule. Comparative analysis of the mutants by electrophoretic mobility shift assays was done with oligonucleotides for which the number of bases is approximately that occluded by one protein molecule. The analysis indicated that neither removal of the 60-amino-acid C-terminal region nor Cys254Ser and Cys455Ser mutations qualitatively affect the intrinsic DNA binding ability of ICP8. The C-terminal deletion mutants, however, exhibit a total loss of cooperativity on longer ssDNA stretches. This behavior is only slightly modulated by the two-cysteine substitution. Circular dichroism experiments suggest a role for this C-terminal tail in protein stabilization as well as in intermolecular interactions. The results show that the cooperative nature of the ssDNA binding of ICP8 is localized in the 60-residue C-terminal region. Since the anchoring of a C- or N-terminal arm of one protein onto the adjacent one on the DNA strand has been reported for other ssDNA binding proteins, this appears to be the general structural mechanism responsible for the cooperative ssDNA binding by this class of protein.  相似文献   

5.
Herpes simplex virus type-1 origin-binding protein (UL9 protein) initiates viral replication by unwinding the origins. It possesses sequence-specific DNA-binding activity, single-stranded DNA-binding activity, DNA helicase activity, and ATPase activity that is strongly stimulated by single-stranded DNA. We have examined the role of cysteines in its action as a DNA helicase. The DNA helicase and DNA-dependent ATPase activities of UL9 protein were stimulated by reducing agent and specifically inactivated by the sulfhydryl-specific reagent N-ethylmaleimide. To identify the cysteine responsible for this phenomenon, a conserved cysteine in the vicinity of the ATP-binding site (cysteine 111) was mutagenized to alanine. UL9C111A protein exhibits defects in its DNA helicase and DNA-dependent ATPase activities and was unable to support origin-specific DNA replication in vivo. A kinetic analysis indicates that these defects are due to the inability of single-stranded DNA to induce high affinity ATP binding in UL9C111A protein. The DNA-dependent ATPase activity of UL9C111A protein is resistant to N-ethylmaleimide, while its DNA helicase activity remains sensitive. Accordingly, sensitivity of UL9 protein to N-ethylmaleimide is due to at least two cysteines. Cysteine 111 is involved in coupling single-stranded DNA binding to ATP-binding and subsequent hydrolysis, while a second cysteine is involved in coupling ATP hydrolysis to DNA unwinding.  相似文献   

6.
The overexpression and purification of the second enzyme in Escherichia coli peptidoglycan biosynthesis, UDP-N-acetylenolpyruvylglucosamine reductase (MurB), provided sufficient protein to undertake crystallization and X-ray crystallographic studies of the enzyme. MurB crystallizes in 14-20% PEG 8000, 100 mM sodium cacodylate, pH 8.0, and 200 mM calcium acetate in the presence of its substrate UDP-N-acetylglucosamine enolpyruvate. Crystals of MurB belong to the tetragonal space group P4(1)2(1)2 with a = b = 49.6 A, c = 263.2 A, and alpha = beta = gamma = 90 degrees at -160 degrees C and diffract to at least 2.5 A. Screening for heavy atom derivatives has yielded a single site that is reactive with both methylmercury nitrate and Thimerosal.  相似文献   

7.
The herpes simplex virus 1 origin binding protein: a DNA helicase.   总被引:31,自引:0,他引:31  
A recombinant herpes simplex 1 origin binding protein, the product of the herpes UL9 gene, has been overexpressed in mammalian cells and purified to near homogeneity. The origin binding protein shows DNA-dependent nucleoside 5'-triphosphatase and DNA helicase activities in addition to its origin binding activity. The ability to hydrolyze nucleoside 5'-triphosphates is influenced strongly by the structure and sequence of the DNA cofactor. The properties of the recombinant origin binding protein are identical to those of the protein synthesized in herpes simplex 1-infected mammalian cells.  相似文献   

8.
All organisms including animal viruses use specific proteins to bind single-stranded DNA rapidly in a non-sequence-specific, flexible, and cooperative manner during the DNA replication process. The crystal structure of a 60-residue C-terminal deletion construct of ICP8, the major single-stranded DNA-binding protein from herpes simplex virus-1, was determined at 3.0 A resolution. The structure reveals a novel fold, consisting of a large N-terminal domain (residues 9-1038) and a small C-terminal domain (residues 1049-1129). On the basis of the structure and the nearest neighbor interactions in the crystal, we have presented a model describing the site of single-stranded DNA binding and explaining the basis for cooperative binding. This model agrees with the beaded morphology observed in electron micrographs.  相似文献   

9.
Human placental annexin IV, a member of the annexin family of calcium and phospholipid-binding proteins, has been crystallized by the vapour diffusion method in the presence of calcium, using polyethylene glycol 8000. The crystals are orthorhombic, space C222(1), cell dimensions a = 105.4 A, b = 115.7 A, c = 80.7 A and diffract to at least 2.5 A resolution on a synchrotron source.  相似文献   

10.
The B-subunit of verotoxin-1, which is believed to form a pentamer (monomer Mr = 7691), has been crystallized by vapor diffusion over a wide range of conditions. The best crystals, obtained with polyethylene glycol 8000 as the precipitant, belong to the orthorhombic space group P2(1)2(1)2(1), with cell dimensions a = 59.2 A, b = 102.7 A, c = 56.3 A. The cell dimensions are consistent with one B-subunit pentamer per asymmetric unit, and the crystals diffract to at least 2.0 A resolution. Data collected using synchrotron radiation at a wavelength of 2.070 A may allow the structure to be solved using the anomalous signal from three sulfur atoms in the monomer, combined with averaging over the non-crystallographic symmetry.  相似文献   

11.
12.
Mirabilis antiviral protein is a single-chain ribosome-inactivating protein purified from the tuberous root of Mirabilis jalapa L. We obtained several forms of crystals of the protein by the hanging drop vapor diffusion method, but most of these crystals were not suitable for X-ray crystallography. After refining the growth conditions, crystals of crystallographic quality were grown in 20-microliters droplets of an equi-volume mixture of 1.5% (w/v) protein solution and a reservoir solution containing 49 to 50% (w/v) ammonium sulfate and 50 mM-ammonium citrate (pH 5.4) at room temperature. Addition of 2 mM-adenine sulfate reduced twinning and "crystal shower". The resulting trigonal crystals diffract beyond 2.5 A resolution using a rotating anode X-ray generator. The space group was determined to be P3(1)21 or P3(2)21 (a = b = 103.9.A, c = 134.6 A, alpha = beta = 90 degrees, gamma = 120 degrees) based on their precession photography of h0l and hk0 zones. There seems to be three monomers in an asymmetric unit for VM = 2.51 A3/Da.  相似文献   

13.
The herpes virus-encoded DNA replication protein, infected cell protein 8 (ICP8), binds specifically to single-stranded DNA with a stoichiometry of one ICP8 molecule/12 nucleotides. In the absence of single-stranded DNA, it assembles into long filamentous structures. Binding of ICP8 inhibits DNA synthesis by the herpes-induced DNA polymerase on singly primed single-stranded DNA circles. In contrast, ICP8 greatly stimulates replication of circular duplex DNA by the polymerase. Stimulation occurs only in the presence of a nuclear extract from herpes-infected cells. Appearance of the stimulatory activity in nuclear extracts coincides closely with the time of appearance of herpes-induced DNA replication proteins including ICP8 and DNA polymerase. A viral factor(s) may therefore be required to mediate ICP8 function in DNA replication.  相似文献   

14.
Properties of the major DNA-binding protein found in herpes simplex virus-infected cells were investigated by using a filter binding assay and electron microscopy. Filter binding indicated that the stoichiometry of binding of the protein with single-stranded DNA is approximately 40 nucleotides per protein molecule at saturation. Strong clustering of the protein in DNA-protein complexes, indicative of cooperative binding, was seen with the electron microscope. Measurements of single-stranded fd DNA molecules saturated with protein and spread for electron microscopy by using both the aqueous and formamide spreading techniques indicated that the DNA is held in an extended configuration with a base spacing of approximately 0.13 nm per base.  相似文献   

15.
The herpes simplex virus type 1 (HSV-1) origin binding protein (OBP), the product of the UL9 gene, is one of seven HSV-encoded proteins required for viral DNA replication. OBP performs multiple functions characteristic of a DNA replication initiator protein, including origin-specific DNA binding and ATPase and helicase activities, as well as the ability to interact with viral and cellular proteins involved in DNA replication. Replication initiator proteins in other systems, including those of other DNA viruses, are known to be regulated by phosphorylation; however, the role of phosphorylation in OBP function has been difficult to assess due to the low level of OBP expression in HSV-infected cells. Using a metabolic labeling and immunoprecipitation approach, we obtained evidence that OBP is phosphorylated during HSV-1 infection. Kinetic analysis of metabolically labeled cells indicated that the levels of OBP expression and phosphorylation increased at approximately 4 h postinfection. Notably, when expressed from a transfected plasmid, a recombinant baculovirus, or a recombinant adenovirus (AdOBP), OBP was phosphorylated minimally, if at all. In contrast, superinfection of AdOBP-infected cells with an OBP-null mutant virus increased the level of OBP phosphorylation approximately threefold, suggesting that HSV-encoded viral or HSV-induced cellular factors enhance the level of OBP phosphorylation. Using HSV mutants inhibited at sequential stages of the viral life cycle, we demonstrated that this increase in OBP phosphorylation is dependent on early protein synthesis and is independent of viral DNA replication. Based on gel mobility shift assays, phosphorylation does not appear to affect the ability of OBP to bind to the HSV origins.  相似文献   

16.
We report the purification and crystallization of phosphoglycerate kinase from Thermus caldophilus (Tca). The enzyme crystallizes in the P2(1)2(1)2(1) space group (cell dimensions a = 65.1, b = 71.3, c = 80.2 A), with one molecule in the asymmetric unit. A complete set of diffraction data was collected from an orthorhombic crystal up to 1.8 A resolution.  相似文献   

17.
Rusticyanin is a 16.5 kDa type I blue copper protein isolated from Thiobacillus ferrooxidans. This organism can grow on Fe2+ as its sole energy source. Rusticyanin is thought to be a principal component in the iron respiratory electron transport chain of T. ferrooxidans. As a component of the periplasmic space of an acidophilic bacterium, rusticyanin is remarkably stable at acidic pH. It is redox-active down to pH 0.2. Crystals of rusticyanin have been grown from solutions of PEG 8000 by the hanging-drop vapor diffusion method. The crystals are orthorhombic, space group P2(1)2(1)2(1), with unit cell dimensions a = 32.36 A, b = 60.37 A, c = 74.60 A. The crystals diffract to 2.0 A resolution and they are stable in the X-ray beam for at least two days.  相似文献   

18.
MutM protein, which removes the oxidatively damaged DNA base product, 8-oxoguanine (GO), has been crystallized by means of a hanging-drop vapor-diffusion procedure using polyethyleneglycol monomethylether 2000 as a precipitant in 2-(cyclohexylamino) ethanesulfonic acid (CHES) buffer, pH 9.8. The diffraction data derived from oscillation photographs indicate that the crystals belong to the monoclinic system and space group P2(1). The crystals have unit-cell dimensions of a = 45.4 A, b = 62.0 A, c = 99.7 A, and beta = 90.8 degrees. Assuming that the asymmetric unit contains two molecules, the Vm value was calculated to be 2.35 A(3).Da(-1). The crystals diffracted X-rays to at least 2.1 A resolution and were suitable for high-resolution X-ray crystal structure determination.  相似文献   

19.
Cytochrome bc1 complex (ubiquinol:ferricytochrome c oxidoreductase, EC. 1.10.2.2) from bovine heart mitochondria was crystallized by a batchwise method from protein solution containing sucrose monolaurate using polyethylene glycol-4000 as a precipitant. The red parallelepiped crystals grew to a size of approximately 1 mm x 1 mm x 1 mm. The crystalline protein showed enzymic activity catalyzing electron transfer from ubiquinol-2 to cytochrome c. The subunit composition and absorption spectrum of the crystalline enzyme were identical to those reported previously for the enzyme in solution. The crystal diffracted X-rays to 7.5 A resolution. The diffraction pattern indicated a monoclinic form, space group P2(1), and unit-cell constants of a = 196 A, b = 179 A, c = 253 A and beta = 97 degrees. Most probably four functional units are present in an asymmetric unit.  相似文献   

20.
Histone macroH2A has a novel hybrid structure consisting of a large nonhistone region and a region that closely resembles a full-length histone H2A. One key to understanding macroH2A function is determining the structure and function of its nonhistone region. The nonhistone region of one of the two known macroH2A subtypes was expressed in Escherichia coli and purified using affinity and molecular sieve chromatography. Crystals of the protein suitable for structural studies were grown from polyethylene glycol solutions by vapor equilibration techniques. The crystals belong to the hexagonal space group P64 (or its enantiomorph P62) with unit cell parameters: a = b = 106.2 Å, c = 125.9 Å, α = β = 90°, and γ = 120°. There are four molecules in the asymmetric unit. Self-rotation function studies revealed three twofold noncrystallographic rotation axes related approximately by 222 symmetry. These crystals have 47% solvent content and diffract to 3.8 Å resolution. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号