首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Life-history theory predicts that older females will increase reproductive effort through increased fecundity. Unless offspring survival is density dependent or female size constrains offspring size, theory does not predict variation in offspring size. However, empirical data suggest that females of differing age or condition produce offspring of different sizes. We used a dynamic state-variable model to determine when variable offspring sizes can be explained by an interaction between female age, female state and survival costs of reproduction. We found that when costs depend on fecundity, young females with surplus state increase offspring size and reduce number to minimize fitness penalties. When costs depend on total reproductive effort, only older females increase offspring size. Young females produce small offspring, because decreasing offspring size is less expensive than number, as fitness from offspring investment is nonlinear. Finally, allocation patterns are relatively stable when older females are better at acquiring food and are therefore in better condition. Our approach revealed an interaction between female state, age and survival costs, providing a novel explanation for observed variation in reproductive traits.  相似文献   

2.
In sexual reproduction one sex can increase its reproductive success at the cost of the other, a situation known as intersexual conflict. In the marine isopod Idotea baltica, males guard females before copulation. The guarding phase is preceded by struggles as females resist males’ attempts to initiate guarding. We determined whether the struggle and/or mate‐guarding result in fitness costs in the form of decreasing fecundity and lower levels of the energy storage compounds, glycogen and lipids. Females that underwent the period of struggles with males had decreased glycogen levels compared with females maintained alone. No such cost was found for males. Females guarded by a male also had smaller eggs than females that were not guarded. Thus the intersexual conflict, imposed by the fitness maximization strategy of the males, gave rise to both a fecundity cost and an energetic cost for females. The fecundity cost confirms the existence of intersexual conflict in I. baltica. This cost is shared by males, suggesting that the intersexual conflict restrains the reproductive output of both sexes.  相似文献   

3.
Life history theory suggests that the optimal evolved level of reproductive effort (RE) for an organism depends upon the degree to which additional current reproductive investment reduces future reproductive output. Future reproduction can be decreased in two ways, through (i) decreases in the organism's survival rate, and/or (ii) decreases in the organism's growth (and hence subsequent fecundity). The latter tradeoff–that is, the “potential fecundity cost”—should affect the evolution of RE only in species with relatively high survival rate, a relatively high rate of fecundity increase with body size, or a relatively high reproductive frequency per annum. Unless these conditions are met, the probable benefit in future fecundity obtained from decreasing present reproductive output is too low for natural selection to favor any reduction in RE below the maximum physiologically possible. Published data on survival rate, reproductive frequency and relative clutch mass (RCM) suggest that many lizard species fall well below the level at which natural selection can be expected to influence RE through such “potential fecundity” tradeoffs. Hence, the relative allocation of resources between growth and reproduction is unlikely to be directly optimized by natural selection in these animals. Instead, energy allocation should influence the evolution of RE only indirectly, via effects on an organism's probability of survival during reproduction. Survival costs of reproduction may be the most important evolutionary determinants of RE in many reptiles, and information on the nature and extent of such costs is needed before valid measures of reptilian RE can be constructed.  相似文献   

4.
The predator-prey relationship between California ground squirrels (Spermophilus beecheyi) and northern Pacific rattlesnakes (Crotalus riridis oreganus) is a useful system in which to explore risk assessment and management. Rattlesnakes are major predators of ground-squirrel pups, but pose only a sublethal threat to adult squirrels. Adults approach, harass, and even attack rattlesnakes when confronted with them. A rattlesnake's response to such harassment can include rattling and striking. Not all rattlesnakes pose the same risk to an adult squirrel. Larger, warmer rattlesnakes strike in ways that may be more effective at overwhelming the defensive leaps of squirrels, and larger snakes can inject more venom if they are successful in landing a bite. It would therefore benefit squirrels to assess and respond appropriately to rattlesnakes of different body size and temperature. We looked for cues in rattling upon which such assessments might be based. We recorded and digitally analyzed the rattling sounds of snakes of different sizes, each tested at four different body temperatures — 10, 18, 27, and 35°C. Results indicate that warmer snakes rattle with faster click rates, higher amplitudes, and shorter latencies. Similarly, larger snakes produce rattling sounds of higher amplitude and lower dominant frequencies. Thus, rattling provides reliable cues about rattlesnake dangerousness. Nevertheless, this highly ‘informative’ characteristic of rattling has its origins in physical and physiological constraints, not in specialization for communication. Ground squirrels appear to probe for the information extractable from rattling, for example by pushing loose substrate at the snake and thus inducing it to rattle. Future reports will discuss the degree to which ground squirrels actually exploit these cues.  相似文献   

5.
Xu J 《Genetics》2005,171(4):1597-1604
The widespread occurrence of sexual organisms despite the high costs of sex has long intrigued biologists. The best-known costs are the twofold cost of producing males and the cost associated with producing traits to attract mates and to interact with mating partners, such as exaggerated sexual behaviors and morphological modifications. These costs have been inferred from studies of plants and animals but are thought to be absent in facultative sexual microbes. Here, using the facultative sexual fungus Cryptococcus neoformans, I provide experimental evidence showing that: (i) interactions with active sexual partners can be costly for vegetative fitness in a facultative sexual microbe; (ii) this cost is positively correlated to mating ability; (iii) this cost is composed of at least two distinct components, the cost of producing mating signals that exert effects on mating partners and that associated with responding to active mating partners; and (iv) extended asexual reproduction can reduce both components of the cost. This cost must have been compensated for by the production of zygotes and sexual spores to allow the initial evolution and spread of sexual reproduction in eukaryotes.  相似文献   

6.
Although the rattling of rattlesnakes (Crotalus and Sistrurus) is widely accepted as being aposematic, the hypothesis that rattling deters approach from the snake's potentially dangerous adversaries has not been well tested. In a controlled study using rattling recorded from captive rattlesnakes (C. oreganus helleri) and a variety of comparison sounds or no-sound controls, domestic dogs (Canis familiaris) showed no hesitation to approach camouflaged speakers projecting the recorded rattles. The dogs were equally likely to approach speakers projecting rattling as they were to approach speakers playing control sounds, or speakers that were silent. Furthermore, the dogs spent no less time in front of the speakers projecting the rattles than they did in front of speakers projecting control sounds or no sound. The dogs' reactions may not be representative of other species with whom rattlesnakes come into contact, but the data suggest a need for some circumspection about the role of rattling in the rattlesnake's defensive repertoire. Our results also suggest that dogs may be vulnerable to envenomation because they fail to react to the sound of rattling with avoidance.  相似文献   

7.
Reproduction is energetically financed using strategies that fall along a continuum from animals that rely on stored energy acquired prior to reproduction (i.e., capital breeders) to those that rely on energy acquired during reproduction (i.e., income breeders). Energy storage incurs a metabolic cost. However, previous studies suggest that this cost may be minimal for small‐bodied ectotherms. Here I test this assumption. I use a laboratory feeding experiment with the European green crab Carcinus maenas to establish individuals with different amounts of energy storage. I then demonstrate that differences in energy storage account for 26% of the variation in basal metabolic costs. The magnitudes of these costs for any individual crab vary through time depending on the amount of energy it has stored, as well as on temperature‐dependent metabolism. I use previously established relationships between temperature‐ and mass‐dependent metabolic rates, combined with a feasible annual pattern of energy storage in the Gulf of Maine and annual sea surface temperature patterns in this region, to estimate potential annual metabolic costs expected for mature female green crabs. Results indicate that energy storage should incur an ~8% increase in metabolic costs for female crabs, relative to a hypothetical crab that did not store any energy. Translated into feeding, for a medium‐sized mature female (45 mm carapace width), this requires the consumption of an additional ~156 mussels annually to support the metabolic cost of energy storage. These results indicate, contrary to previous assumptions, that the cost of energy storage for small‐bodied ectotherms may represent a considerable portion of their basic operating energy budget. An inability to meet these additional costs of energy storage may help explain the recent decline of green crabs in the Gulf of Maine where reduced prey availability and increased consumer competition have combined to hamper green crab foraging success in recent years.  相似文献   

8.
The evolution of cooperation requires benefits of group living to exceed costs. Hence, some components of fitness are expected to increase with increasing group size, whereas others may decrease because of competition among group members. The social spiders provide an excellent system to investigate the costs and benefits of group living: they occur in groups of various sizes and individuals are relatively short-lived, therefore life history traits and Lifetime Reproductive Success (LRS) can be estimated as a function of group size. Sociality in spiders has originated repeatedly in phylogenetically distant families and appears to be accompanied by a transition to a system of continuous intra-colony mating and extreme inbreeding. The benefits of group living in such systems should therefore be substantial. We investigated the effect of group size on fitness components of reproduction and survival in the social spider Stegodyphus dumicola in two populations in Namibia. In both populations, the major benefit of group living was improved survival of colonies and late-instar juveniles with increasing colony size. By contrast, female fecundity, female body size and early juvenile survival decreased with increasing group size. Mean individual fitness, estimated as LRS and calculated from five components of reproduction and survival, was maximized for intermediate- to large-sized colonies. Group living in these spiders thus entails a net reproductive cost, presumably because of an increase in intra-colony competition with group size. This cost is traded off against survival benefits at the colony level, which appear to be the major factor favouring group living. In the field, many colonies occur at smaller size than expected from the fitness curve, suggesting ecological or life history constraints on colony persistence which results in a transient population of relatively small colonies.  相似文献   

9.
Food availability is an important factor in the life histories of organisms because it is often limiting and thus can affect growth, mass change, reproduction, and behaviors such as thermoregulation, locomotion, and mating. Experimental studies in natural settings allow researchers to examine the effects of food on these parameters while animals are free to behave naturally. The wide variation among organisms in energy demands and among environmental food resources suggest that responses to changes in food availability may vary among organisms. Since most supplemental feeding field experiments have been conducted on species with high energy demands, we conducted a supplemental feeding study on free-ranging, female Western diamond-backed rattlesnakes (Crotalus atrox), a species with low energy demands and infrequent reproductive investment. Snakes were offered thawed rodents 1–4 times per week. Over two active seasons, we collected data on surface activity, home range size, growth, mass change, and reproduction of supplementally fed and control snakes. Fed and control snakes did not differ in surface activity levels (proportion of time encountered above versus below ground) or home range size. Fed snakes grew and gained mass faster, and had a dramatically higher occurrence of reproduction than control snakes. Also, fed snakes were in better body condition following reproduction than snakes that were not fed. However, litter characteristics such as offspring number and size were not increased by feeding, suggesting that these characteristics may be fixed. These data experimentally demonstrate that food availability can directly impact some life history traits (i.e., growth and reproduction for C. atrox), but not others (i.e., surface activity and home range size for C. atrox). The relationship between food availability and life history traits is affected in a complex way by ecological traits and physiological constraints, and thus interspecific variation in this relationship is likely to be high.  相似文献   

10.
Novel adaptations often cause pleiotropic reductions in fitness. Under optimal conditions individual organisms may be able to compensate for, or reduce, these fitness costs. Declining environmental quality may therefore lead to larger costs. We investigated whether reduced plant quality would increase the fitness costs associated with resistance to Bacillus thuringiensis in two populations of the diamondback moth Plutella xylostella. We also measured the rate of decline in resistance on two host-plant (Brassica) species for one insect population (Karak). Population X plant species interactions determined the fitness costs in this study. Poor plant quality increased the fitness costs in terms of development time for both populations. However, fitness costs seen in larval survival did not always increase as plant quality declined. Both the fitness and the stability experiment indicated that fitness costs were higher on the most suitable plant for one population. Theoretically, if the fitness cost of a mutation interacts additively with environmental factors, the relative fitness of resistant insects will decrease with environmental quality. However, multiplicative costs do not necessarily increase with declining quality and may be harder to detect when fitness parameters are more subject to variation in poorer environments.  相似文献   

11.
To maximize fitness upon pathogenic infection, host organisms might reallocate energy and resources among life‐history traits, such as reproduction and defense. The fitness costs of infection can result from both immune upregulation and direct pathogen exploitation. The extent to which these costs, separately and together, vary by host genotype and across generations is unknown. We attempted to disentangle these costs by transiently exposing wild isolates and a lab‐domesticated strain of Caenorhabditis elegans nematodes to the pathogen Staphylococcus aureus, using exposure to heat‐killed pathogens to distinguish costs due to immune upregulation and pathogen exploitation. We found that host nematodes exhibit a short‐term delay in offspring production when exposed to live and heat‐killed pathogen, but their lifetime fecundity (total offspring produced) recovered to control levels. We also found genetic variation between host isolates for both cumulative offspring production and magnitude of fitness costs. We further investigated whether there were maternal pathogen exposure costs (or benefits) to offspring and revealed a positive correlation between the magnitude of the pathogen‐induced delay in the parent''s first day of reproduction and the cost to offspring population growth. Our findings highlight the capacity for hosts to recover fecundity after transient exposure to a pathogen.  相似文献   

12.
Life-history theory predicts that increased current reproductive effort should lead to a fitness cost. This cost of reproduction may be observed as reduced survival or future reproduction, and may be caused by temporal suppression of immune function in stressed or hard-working individuals. In birds, consideration of the costs of incubating eggs has largely been neglected in favour of the costs of brood rearing. We manipulated incubation demand in two breeding seasons (2000 and 2001) in female common eiders (Somateria mollissima) by creating clutches of three and six eggs (natural range 3-6 eggs). The common eider is a long-lived sea-duck where females do not eat during the incubation period. Mass loss increased and immune function (lymphocyte levels and specific antibody response to the non-pathogenic antigens diphtheria and tetanus toxoid) was reduced in females incubating large clutches. The increased incubation effort among females assigned to large incubation demand did not lead to adverse effects on current reproduction or return rate in the next breeding season. However, large incubation demand resulted in long-term fitness costs through reduced fecundity the year after manipulation. Our data show that in eiders, a long-lived species, the cost of high incubation demand is paid in the currency of reduced future fecundity, possibly mediated by reduced immune function.  相似文献   

13.
The effect of flight on reproduction in an outbreaking forest lepidopteran   总被引:1,自引:0,他引:1  
Post‐flight reproductive investment by female insects may be limited as a result of a trade‐off in resource allocation between flight and reproduction. Outbreaking forest pests reduce their habitat quality as a result of severe defoliation when population densities are high. Female relocation to better‐quality habitats can increase offspring survival but reduce their reproductive fitness through flight. In the present study, the effect of flight on the capacity of female Choristoneura conflictana (Walker) (Lepidoptera: Tortricidae) to mate and produce eggs is examined. Females are flown on flight mills, and the subsequent reproductive capacity of each moth is assessed through measures of mating success and egg production. There is no effect of flight on commencement or the duration of mating. Although flight does not affect egg production directly, energy expenditure as a result of flight (as measured by weight loss) shows a negative correlation to potential fecundity, possibly indicating the resorption of eggs in some females. The effect of female size on fecundity is dependent on mating status, suggesting that energy allocated to reproduction is not dependent on flight treatment. Female moth longevity also has a significant effect on egg production but is dependent on flight and mating treatments. There is a relationship between energy expenditure to flight and reproduction in C. conflictana. Females that fly away from dense populations may produce fewer offspring, although this cost may be mitigated by improved offspring survivorship in less defoliated habitats.  相似文献   

14.
Boggs CL  Freeman KD 《Oecologia》2005,144(3):353-361
Allocation of larval food resources affects adult morphology and fitness in holometabolous insects. Here we explore the effects on adult morphology and female fitness of larval semi-starvation in the butterfly Speyeria mormonia. Using a split-brood design, food intake was reduced by approximately half during the last half of the last larval instar. Body mass and forewing length of resulting adults were smaller than those of control animals. Feeding treatment significantly altered the allometric relationship between mass and wing length for females but not males, such that body mass increased more steeply with wing length in stressed insects as compared to control insects. This may result in changes in female flight performance and cost. With regard to adult life history traits, male feeding treatment or mating number had no effect on female fecundity or survival, in agreement with expectations for this species. Potential fecundity decreased with decreasing body mass and relative fat content, but there was no independent effect of larval feeding treatment. Realized fecundity decreased with decreasing adult survival, and was not affected by body mass or larval feeding treatment. Adult survival was lower in insects subjected to larval semi-starvation, with no effect of body mass. In contrast, previous laboratory studies on adult nectar restriction showed that adult survival was not affected by such stress, whereas fecundity was reduced in direct 11 proportion to the reduction of adult food. We thus see a direct impact of larval dietary restriction on survival, whereas fecundity is affected by adult dietary restriction, a pattern reminiscent of a survival/reproduction trade-off, but across a developmental boundary. The data, in combination with previous work, thus provide a picture of the intra-specific response of a suite of traits to ecological stress.  相似文献   

15.
Reduced fitness among resistant versus susceptible individuals slows resistance evolution and makes it easier to manage. A loss of resistance costs could indicate novel adaptations or mutations contributing to resistance. We measured costs of resistance to imidacloprid in a Massachusetts resistant population compared with a Massachusetts susceptible population in 1999 in terms of fecundity, hatching success, egg development time, and sprint speed. Resistance was additive and seemed to be polygenic with high heritability. The fecundity cost appeared overdominant in 1999, and the hatch rate cost was partly recessive in 1999, but neither was significantly different from dominant or recessive. In 2004, we repeated our measures of resistance costs in Massachusetts in terms of fecundity and hatching success, and we added a new resistant population from Maine. In 2005, we compared development time of Maine resistant and the laboratory susceptible colony eggs. Significant fecundity costs of resistance were found in both population in both 1999 and 2004, and significant egg developmental time costs were found in 1999 and 2005. However, the hatching success costs of resistance were significant in 1999 and not apparent in 2004, suggesting some modification or replacement of the resistance genes in the intervening time.  相似文献   

16.
Facultative reproductive strategies that incorporate both sexual and parthenogenetic reproduction should be optimal, yet are rarely observed in animals. Resolving this paradox requires an understanding of the economics of facultative asexuality. Recent work suggests that switching from parthenogenesis to sex can be costly and that females can resist mating to avoid switching. However, it remains unclear whether these costs and resistance behaviors are dependent on female age. We addressed these questions in the Cyclone Larry stick insect, Sipyloidea larryi, by pairing females with males (or with females as a control) in early life prior to the start of parthenogenetic reproduction, or in mid‐ or late life after a period of parthenogenetic oviposition. Young females were receptive to mating even though mating in early life caused reduced fecundity. Female resistance to mating increased with age, but reproductive switching in mid‐ or late life did not negatively affect female survival or offspring performance. Overall, mating enhanced female fitness because fertilized eggs had higher hatching success and resulted in more adult offspring than parthenogenetic eggs. However, female fecundity and offspring viability were also enhanced in females paired with other females, suggesting a socially mediated maternal effect. Our results provide little evidence that switching from parthenogenesis to sex at any age is costly for S. larryi females. However, age‐dependent effects of switching on some fitness components and female resistance behaviors suggest the possibility of context‐dependent effects that may only be apparent in natural populations.  相似文献   

17.
The physiological costs of reproduction in small mammals   总被引:1,自引:0,他引:1  
Life-history trade-offs between components of fitness arise because reproduction entails both gains and costs. Costs of reproduction can be divided into ecological and physiological costs. The latter have been rarely studied yet are probably a dominant component of the effect. A deeper understanding of life-history evolution will only come about once these physiological costs are better understood. Physiological costs may be direct or indirect. Direct costs include the energy and nutrient demands of the reproductive event, and the morphological changes that are necessary to facilitate achieving these demands. Indirect costs may be optional 'compensatory costs' whereby the animal chooses to reduce investment in some other aspect of its physiology to maximize the input of resource to reproduction. Such costs may be distinguished from consequential costs that are an inescapable consequence of the reproductive event. In small mammals, the direct costs of reproduction involve increased energy, protein and calcium demands during pregnancy, but most particularly during lactation. Organ remodelling is necessary to achieve the high demands of lactation and involves growth of the alimentary tract and associated organs such as the liver and pancreas. Compensatory indirect costs include reductions in thermogenesis, immune function and physical activity. Obligatory consequential costs include hyperthermia, bone loss, disruption of sleep patterns and oxidative stress. This is unlikely to be a complete list. Our knowledge of these physiological costs is currently at best described as rudimentary. For some, we do not even know whether they are compensatory or obligatory. For almost all of them, we have no idea of exact mechanisms or how these costs translate into fitness trade-offs.  相似文献   

18.
Costs of reproduction are expected to be ubiquitous in wild animal populations and understanding the drivers of variation in these costs is an important aspect of life-history evolution theory. We use a 43 year dataset from a wild population of red deer to examine the relative importance of two factors that influence the costs of reproduction to mothers, and to test whether these costs vary with changing ecological conditions. Like previous studies, our analyses indicate fitness costs of lactation: mothers whose calves survived the summer subsequently showed lower survival and fecundity than those whose calves died soon after birth, accounting for 5% and 14% of the variation in mothers'' survival and fecundity, respectively. The production of a male calf depressed maternal survival and fecundity more than production of a female, but accounted for less than 1% of the variation in either fitness component. There was no evidence for any change in the effect of calf survival or sex with increasing population density.  相似文献   

19.
Investment in fecundity and egg size is compared among two types of chinook salmon Oncorhynchus tshawytscha : stream-type, which undertake long, arduous oceanic and upstream migrations and often return to their natal rivers (where they do not feed)months before spawning, and ocean-type, which undertake relatively short oceanic and upstream migrations and remain at sea feeding and accumulating energy until a few days or weeks before spawning. The coefficient of variation in egg size for both life-history types was significantly less than variation in fecundity, reflecting the expected strong selection on egg size relative to egg number. Total investment in the gonad varied significantly among years in both life-history types, apparently reflecting variation in oceanic feeding conditions. Stream-type chinook were smaller in total body size and more than 1 year older than ocean-type. Stream-type also invested relatively less of their total body energy in eggs and produced smaller eggs than ocean-type, reflecting the greater energetic cost of their longer migration and freshwater maintenance. These differences suggest that stream-type chinook pay a considerable fitness penalty in reproductive output. This may be offset by the fact that stream-type go to sea at larger size and migrate far offshore, thereby avoiding some of the mortality costs of oceanic migration.  相似文献   

20.
Sickness behavior is a taxonomically widespread coordinated set of behavioral changes that increases shelter‐seeking while reducing levels of general activity, as well as food (anorexia) and water (adipsia) consumption, when fighting infection by pathogens and disease. The leading hypothesis explaining such sickness‐related shifts in behavior is the energy conservation hypothesis. This hypothesis argues that sick (i.e., immune‐challenged) animals reduce energetic expenditure in order have more energy to fuel an immune response, which in some vertebrates, also includes producing an energetically expensive physiological fever. We experimentally tested the hypothesis that an immune challenge with lipopolysaccharide (LPS) will cause Gryllus firmus field crickets to reduce their activity, increase shelter use and avoid foods that interfere with an immune response (i.e., fat) while preferring a diet that fuels an immune response (i.e., protein). We found little evidence of sickness behavior in Gryllus firmus as immune‐challenged individuals did not reduce their activity or increase their shelter‐seeking. Neither did we observe changes in feeding or drinking behavior nor a preference for protein or avoidance of lipids. Males tended to use shelters less than females but no other behaviors differed between the sexes. The lack of sickness behavior in our study might reflect the fact that invertebrates do not possess energetically expensive physiological fever as part of their immune response. Therefore, there is little reason to conserve energy via reduced activity or increased shelter use when immune‐challenged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号