共查询到20条相似文献,搜索用时 15 毫秒
1.
The sepal color of a chameleon hydrangea, Hydrangea macrophylla cv. Hovaria™ ‘Homigo’ changes in four stages, from colorless to blue, then to green, and finally to red, during maturation and the senescence periods. To clarify the chemical mechanism of the color change, we analyzed the components of the sepals at each stage. Blue-colored sepals contained 3-O-sambubiosyl- and 3-O-glucosyldelphinidin along with three co-pigments, 5-O-p-coumaroyl-, 5-O-caffeoyl- and 3-O-caffeoylquinic acids. The contents of glycosyldelphinidins decreased toward the green-colored stage, with a coincident increase in the number of chloroplasts. During the last red colored stage, the two species of 3-O-glycosyldelphinidin almost disappeared, and another two anthocyanins, 3-O-sambubiosyl- and 3-O-glucosylcyanidin, increased in amounts. Mixing of 3-O-glycosylcyanidins, co-pigments, and Al3+ in a buffered solution at pH 3.0-3.5 gave not a blue, but a red, colored solution that was the same as that of the sepal color of the 4th stage. Sepals of hydrangea grown in an highland area also turned red in autumn, and contained the same cyanidin glycosides. The red coloration of the hydrangea during senescence was due to a change in anthocyanin biosynthesis. 相似文献
2.
3.
While considerable progress has been achieved in plant CDPK studies in the past decade, there is relatively no information about the potential substrates of CRKs. In this report, a yeast two-hybrid screen was performed with truncated form of AtCRK3 as bait to identify its interacting proteins in an effort to dissect its physiological roles. One gene encoding cytosolic glutamine synthetase AtGLN1;1 was isolated. Further analyses indicated that AtGLN1;1 could interact specifically with AtCRK3 and the kinase domain of AtCRK3 and the catalytic domain of AtGLN1;1 were responsible for such interaction, respectively. Furthermore, in vitro and in vivo co-immunoprecipitation results strongly supported that they could physically interact with each other. Phosphorylation assays revealed that AtGLN1;1 could be specifically phosphorylated by AtCRK3 in vitro. All the results demonstrate that AtGLN1;1 may be a substrate of AtCRK3. In addition, both AtGLN1;1 and AtCRK3 could be induced by natural or artificially induced leaf senescence, implying that such interaction may be involved in the regulation of nitrogen remobilization during leaf senescence. 相似文献
4.
Kamo T Endo M Sato M Kasahara R Yamaya H Hiradate S Fujii Y Hirai N Hirota M 《Phytochemistry》2008,69(5):1166-1172
Cyanamide (NH2CN) has recently been proven to be a natural product, although it has been synthesized for over 100 years for agricultural and industrial purposes. The distribution of natural cyanamide appears to be limited, as indicated by our previous investigation of 101 weed species. In the present study, to investigate the distribution of natural cyanamide in Vicia species, we monitored the cyanamide contents in V. villosa subsp. varia, V. cracca, and V. amoena during their pre-flowering and flowering seasons. It was confirmed that V. cracca was superior to V. villosa subsp. varia in accumulating natural cyanamide, and that V. amoena was unable to biosynthesize this compound under laboratory condition examined. The localization of cyanamide in the leaves of V. villosa subsp. varia seedlings was also clarified. In a screening study to find cyanamide-biosynthesizing plants, only Robinia pseudo-acacia was found to contain cyanamide among 452 species of higher plants. We have investigated 553 species to date, but have so far found the ability to biosynthesize cyanamide in only three species, V. villosa subsp. varia, V. cracca and R. pseudo-acacia. 相似文献
5.
A range of crops have been transformed with delta-endotoxin genes from Bacillus thuringiensis (Bt) to produce transgenic plants with high levels of resistance to lepidopteran pests. Parasitoids are important natural enemies of lepidopteran larvae and the effects of Bt plants on these non-target insects have to be investigated to avoid unnecessary disruption of biological control. This study investigated the effects of Cry1Ac-expressing transgenic oilseed rape (Brassica napus) on the solitary braconid endoparasitoid Cotesia plutellae in small-scale laboratory experiments. C. plutellae is an important natural enemy of the diamondback moth (Plutella xylostella), the most important pest of brassica crops world-wide. Bt oilseed rape caused 100% mortality of a Bt-susceptible P. xylostella strain but no mortality of the Bt-resistant P. xylostella strain NO-QA. C. plutellae eggs laid in Bt-susceptible hosts feeding on Bt leaves hatched but premature host mortality did not allow C. plutellae larvae to complete their development. In contrast, C. plutellae developed to maturity in Bt-resistant hosts fed on Bt oilseed rape leaves and there was no effect of Bt plants on percentage parasitism, time to emergence from hosts, time to adult emergence and percentage adult emergence from cocoons. Weights of female progeny after development in Bt-resistant hosts did not differ between plant types but male progeny was significantly heavier on wildtype plants in one of two experiments. The proportion of female progeny was significantly higher on Bt plants in the first experiment with Bt-resistant hosts but this effect was not observed again when the experiment was repeated. 相似文献
6.
Previous studies have shown that despite having a clear seasonal fluctuation in fecal testosterone concentration, the significantly lower testosterone levels found in velvet stags of the nonseasonal breeder muntjac (Muntiacus sp.) apparently did not stop their spermatogenesis as in other deer species. In the present study, in vitro cultivated Leydig cells isolated from adult stags of three native deer species of Taiwan were treated with androstenedione, with or without adding human chorionic gonadotropin. Results showed that, unlike the two seasonal breeders, sika deer (Cervus nippon) and sambar deer (Rusa unicolor), Leydig cells of velvet muntjac had no dramatic reduction in or even maintained the full capability of their testosterone productivity compared with the hard-antlered stage. The decrease in fecal testosterone level observed earlier in muntjac during the velvet period was probably due to a reduction of number of Leydig cells. These results support the hypothesis that testosterone production in muntjac during its velvet period might never be low enough to trigger the quiescent phase of the reproduction cycle. 相似文献
7.
8.
Interactions of abscisic acid and sugar signalling in the regulation of leaf senescence 总被引:12,自引:0,他引:12
Leaf senescence can be triggered by a high availability of carbon relative to nitrogen or by external application of abscisic acid (ABA). Most Arabidopsis mutants with decreased sugar sensitivity during early plant development are either ABA insensitive (abi mutants) or ABA deficient (aba mutants). To analyse the interactions of carbon, nitrogen and ABA in the regulation of senescence, wild-type Arabidopsis thaliana (L.) Heynh. and aba and abi mutants were grown on medium with varied glucose and nitrogen supply. On medium containing glucose in combination with low, but not in combination with high nitrogen supply, senescence was accelerated and sucrose, glucose and fructose accumulated strongly. In abi mutants that are not affected in sugar responses during early development (abi1-1 and abi2-1), we observed no difference in the sugar-dependent regulation of senescence compared to wild-type plants. Similarly, senescence was not affected in the sugar-insensitive abi4-1 mutant. In contrast, the abi5-1 mutant did exhibit a delay in senescence compared to its wild type. As ABA has been reported to induce senescence and ABA deficiency results in sugar insensitivity during early development, we expected senescence to be delayed in aba mutants. However, the aba1-1 and aba2-1 mutants showed accelerated senescence compared to their wild types on glucose-containing medium. Our results show that, in contrast to sugar signalling in seedlings, ABA is not required for the sugar-dependent induction of leaf senescence. Instead, increased sensitivity to osmotic stress could have triggered early senescence in the aba mutants.Abbreviations ABA Abscisic acid - aba Abscisic acid deficient - abi Abscisic acid insensitive - Fv/Fm Maximum efficiency of photosystem II photochemistry 相似文献
9.
Background
Forage plant breeding is under increasing pressure to deliver new cultivars with improved yield, quality and persistence to the pastoral industry. New innovations in DNA sequencing technologies mean that quantitative trait loci analysis and marker-assisted selection approaches are becoming faster and cheaper, and are increasingly used in the breeding process with the aim to speed it up and improve its precision. High-throughput phenotyping is currently a major bottle neck and emerging technologies such as metabolomics are being developed to bridge the gap between genotype and phenotype; metabolomics studies on forages are reviewed in this article.Scope
Major challenges for pasture production arise from the reduced availability of resources, mainly water, nitrogen and phosphorus, and metabolomics studies on metabolic responses to these abiotic stresses in Lolium perenne and Lotus species will be discussed here. Many forage plants can be associated with symbiotic microorganisms such as legumes with nitrogen fixing rhizobia, grasses and legumes with phosphorus-solubilizing arbuscular mycorrhizal fungi, and cool temperate grasses with fungal anti-herbivorous alkaloid-producing Neotyphodium endophytes and metabolomics studies have shown that these associations can significantly affect the metabolic composition of forage plants. The combination of genetics and metabolomics, also known as genetical metabolomics can be a powerful tool to identify genetic regions related to specific metabolites or metabolic profiles, but this approach has not been widely adopted for forages yet, and we argue here that more studies are needed to improve our chances of success in forage breeding.Conclusions
Metabolomics combined with other ‘-omics’ technologies and genome sequencing can be invaluable tools for large-scale geno- and phenotyping of breeding populations, although the implementation of these approaches in forage breeding programmes still lags behind. The majority of studies using metabolomics approaches have been performed with model species or cereals and findings from these studies are not easily translated to forage species. To be most effective these approaches should be accompanied by whole-plant physiology and proof of concept (modelling) studies. Wider considerations of possible consequences of novel traits on the fitness of new cultivars and symbiotic associations need also to be taken into account. 相似文献10.
Mannan transglycosylase is a novel cell wall enzyme activity acting on mannan-based plant polysaccharides in primary cell walls of monocotyledons and dicotyledons. The enzyme activity was detected by its ability to transfer galactoglucomannan (GGM) polysaccharides to tritium-labelled GGM-derived oligosaccharides generating tritium-labelled GGM polysaccharides. Mannan transglycosylase was found in a range of plant species and tissues. High levels of the enzyme activity were present in flowers of some kiwifruit (Actinidia) species and in ripe tomato (Solanum lycopersicum L.) fruit. Low levels were detected in mature green tomato fruit and activity increased during tomato fruit ripening up to the red ripe stage. Essentially all activity was found in the tomato skin and outermost 2 mm of tissue. Mannan transglycosylase activity in tomato skin and outer pericarp is specific for mannan-based plant polysaccharides, including GGM, galactomannan, glucomannan and mannan. The exact structural requirements for valid acceptors remain to be defined. Nevertheless, a mannose residue at the second position of the sugar chain and the absence of a galactose substituent on the fourth residue (counting from the non-reducing end) appear to be minimal requirements. Mannan-based polysaccharides in the plant cell wall may have a role analogous to that of xyloglucans, introducing flexibility and forming growth-restraining networks with cellulose. Thus mannan transglycosylase and xyloglucan endotransglycosylase, the only other known transglycosylase activity in plant cell walls, may both be involved in remodelling and refining the cellulose framework in developmental processes throughout the life of a plant.Abbreviations EBM Endo--mannanase - GGM galactoglucomannan - GGMO Galactoglucomannan-derived oligosaccharide - G2M5 Di-galactosyl mannopentaitol - M2–M5 Mannobiitol to mannopentaitol oligosaccharides - SK+OP Skin plus outer pericarp - XET Xyloglucan endotransglucosylase - XG Xyloglucan 相似文献
11.
Mao-Sen LiuHui-Chun Li You-Min ChangMin-Tze Wu Long-Fang Oliver Chen 《Plant science》2011,181(3):288-299
Our previous study revealed a cytokinin-related retardation of post-harvest floret yellowing in transgenic broccoli (Brassica oleracea var. italica) that harbored the bacterial isopentenyltransferase (ipt) gene. We aimed to investigate the underlining mechanism of this delayed post-harvest senescence. We used 2D electrophoresis and liquid chromatography-electrospray ionization-mass spectrometry/mass spectrometry for a proteomics analysis of heads of ipt-transgenic and non-transgenic inbred lines of broccoli at harvest and after four days post-harvest storage. At harvest, we found an accumulation of stress-responsive proteins involved in maintenance of protein folding (putative protein disulfide isomerase, peptidyl-prolyl cis-trans isomerase and chaperonins), scavenging of reactive oxygen species (Mn superoxide dismutase), and stress protection [myrosinase-binding protein, jasmonate inducible protein, dynamin-like protein, NADH dehydrogenase (ubiquinone) Fe-S protein 1 and stress-inducible tetratricopeptide repeat-containing protein]. After four days’ post-harvest storage of non-transgenic broccoli florets, the levels of proteins involved in protein folding and carbon fixation were decreased, which indicates cellular degradation and a change in metabolism toward senescence. In addition, staining for antioxidant enzyme activity of non-transgenic plants after post-harvest storage revealed a marked decrease in activity of Fe-superoxide dismutase and ascorbate peroxidase. Thus, the accumulation of stress-responsive proteins and antioxidant enzyme activity in ipt-transgenic broccoli are most likely associated with retardation of post-harvest senescence. 相似文献
12.
13.
BACKGROUND: Carnivorous pitcher plants (CPPs) use cone-shaped leaves to trap animals for nutrient supply but are not able to kill all intruders of their traps. Numerous species, ranging from bacteria to vertrebrates, survive and propagate in the otherwise deadly traps. This paper reviews the literature on phytotelmata of CPPs. PITCHER: Fluid as a Habitat The volumes of pitchers range from 0·2 mL to 1·5 L. In Nepenthes and Cephalotus, the fluid is secreted by the trap; the other genera collect rain water. The fluid is usually acidic, rich in O(2) and contains digestive enzymes. In some taxa, toxins or detergents are found, or the fluid is extremely viscous. In Heliamphora or Sarracenia, the fluid differs little from pure water. INQUILINE: Diversity Pitcher inquilines comprise bacteria, protozoa, algae, fungi, rotifers, crustaceans, arachnids, insects and amphibia. The dominant groups are protists and Dipteran larvae. The various species of CPPs host different sets of inquilines. Sarracenia purpurea hosts up to 165 species of inquilines, followed by Nepenthes ampullaria with 59 species, compared with only three species from Brocchinia reducta. Reasons for these differences include size, the life span of the pitcher as well as its fluid. MUTUALISTIC: Activities Inquilines closely interact with their host. Some live as parasites, but the vast majority are mutualists. Beneficial activities include secretion of enzymes, feeding on the plant's prey and successive excretion of inorganic nutrients, mechanical break up of the prey, removal of excessive prey and assimilation of atmospheric N(2). CONCLUSIONS: There is strong evidence that CPPs influence their phytotelm. Two strategies can be distinguished: (1) Nepenthes and Cephalotus produce acidic, toxic or digestive fluids and host a limited diversity of inquilines. (2) Genera without efficient enzymes such as Sarracenia or Heliamphora host diverse organisms and depend to a large extent on their symbionts for prey utilization. 相似文献
14.
Porta H Jiménez G Cordoba E León P Soberón M Bravo A 《Insect biochemistry and molecular biology》2011,41(7):513-519
Cry toxins produced by Bacillus thuringiensis bacteria are insecticidal proteins used worldwide in the control of different insect pests. Alterations in toxin-receptor interaction represent the most common mechanism to induce resistance to Cry toxins in lepidopteran insects. Cry toxins bind with high affinity to the cadherin protein present in the midgut cells and this interaction facilitates the proteolytic removal of helix ??-1 and pre-pore oligomer formation. Resistance to Cry toxins has been linked with mutations in the cadherin gene. One strategy effective to overcome larval resistance to Cry1A toxins is the production of Cry1AMod toxins that lack helix ??-1. Cry1AMod are able to form oligomeric structures without binding to cadherin receptor and were shown to be toxic to cadherin-silenced Manduca sexta larvae and Pectinophora gossypiella strain with resistance linked to mutations in a cadherin gene.We developed Cry1AbMod tobacco transgenic plants to analyze if Cry1AMod toxins can be expressed in transgenic crops, do not affect plant development and are able to control insect pests. Our results show that production of the Cry1AbMod toxin in transgenic plants does not affect plant development, since these plants exhibited healthy growth, produced abundant seeds, and were virtually undistinguishable from control plants. Most importantly, Cry1AbMod protein produced in tobacco plants retains its functional toxic activity against susceptible and tolerant M. sexta larvae due to the silencing of cadherin receptor by RNAi. These results suggest that CryMod toxins could potentially be expressed in other transgenic crops to protect them against both toxin-susceptible and resistant lepidopteran larvae affected in cadherin gene. 相似文献
15.
Martínez AT Rencoret J Marques G Gutiérrez A Ibarra D Jiménez-Barbero J del Río JC 《Phytochemistry》2008,69(16):2831-2843
Lignins from three nonwoody angiosperms were analyzed by 2D NMR revealing important differences in their molecular structures. The Musatextilis milled-wood-lignin (MWL), with a syringyl-to-guaiacyl (S/G) ratio of 9, was strongly acylated (near 85% of side-chains) at the γ-carbon by both acetates and p-coumarates, as estimated from 1H-13C correlations in Cγ-esterified and Cγ-OH units. The p-coumarate H3,5-C3,5 correlation signal was completely displaced by acetylation, and disappeared after alkali treatment, indicating that p-coumaric acid was esterified maintaining its free phenolic group. By contrast, the Cannabissativa MWL (S/G ∼0.8) was free of acylating groups, and the Agavesisalana MWL (S/G ∼4) showed high acylation degree (near 80%) but exclusively with acetates. Extensive Cγ-acylation results in the absence (in M.textilis lignin) or low abundance (4% in A.sisalana lignin) of β-β′ resinol linkages, which require free Cγ-OH to form the double tetrahydrofuran ring. However, minor signals revealed unusual acylated β-β′ structures confirming that acylation is produced at the monolignol level, in agreement with chromatographic identification of γ-acetylated sinapyl alcohol among the plant extractives. In contrast, resinol substructures involved 22% side-chains in the C.sativa MWL. The ratio between β-β′ and β-O-4′ side-chains in these and other MWL varied from 0.32 in C.sativa MWL to 0.02 in M.textilis MWL, and was inversely correlated with the degree of acylation. The opposite was observed for the S/G ratio that was directly correlated with the acylation degree. Monolignol acylation is discussed as a mechanism potentially involved in the control of lignin structure. 相似文献
16.
Modification of senescence in ryegrass transformed with IPT under the control of a monocot senescence-enhanced promoter 总被引:1,自引:0,他引:1
We report here the genetic modification of ryegrass senescence. Embryogenic cell suspensions of Lolium multiflorum were transformed by microprojectile bombardment with plasmid constructs containing 1.98 kb of the 5 flanking sequence of SEE1 (a maize cysteine protease gene showing enhanced expression during senescence) fused either to the Agrobacterium tumefaciens cytokinin biosynthesis gene IPT (designated PSEE1::IPT) or to the -glucuronidase reporter gene UIDA (PSEE1::UIDA). Plants were regenerated under selection for the HPH hygromycin resistance gene in the vector. PSEE1::UIDA transformants confirmed that the SEE1 flanking sequence functioned as a senescence-enhanced promoter in ryegrass. The IPT transgene was detected in 28 regenerants (PSEE1::IPT) from five independent transformation events. PSEE1::IPT leaves displayed a stay-green phenotype. Some PSEE1::IPT lines developed spontaneous lesions.Abbreviations Chl: Chlorophyll - GUS: -Glucuronidase - RChl: Relative Chl content - WT: Wild-typeCommunicated by M.R. Davey 相似文献
17.
18.
A new chamber was developed for a simultaneous measurement of fluorescence kinetics and oxygen exchange in filamentous and thallous algae as well as in small leaves of water plants. Algal filaments or thalli are kept by a stainless grid close to the bottom window of the chamber in the sample compartment. The grid separates the object from the electrode compartment with the oxygen electrode at the top. This compartment accommodates, in addition, a magnetic stirrer that provides efficient circulation of the medium between the sample and the electrode. This magnetic bar spins on a fixed axis and is driven by an electronically commutated magnetic field produced by four coils which are arranged around the chamber. This design yields a very favourable signal to noise ratio in the oxygen electrode records. Consequently, measurements can be performed even of algae with very low photosynthetic rates such as marine low-light red algae or algae under severe stress. For irradiation of the samples and for fluorescence measurements a fibre optic light guide is used facing the window of the chamber. The four branches of a commercially available light guide serve the following purposes: collection of sample fluorescence and supply of measuring, actinic, and saturating light, respectively.This revised version was published online in March 2005 with corrections to the page numbers. 相似文献
19.
20.
Oxidative coupling of the pyrogallol B-ring with a galloyl group during enzymatic oxidation of epigallocatechin 3-O-gallate 总被引:1,自引:0,他引:1
In order to clarify the mechanism for formation of catechin oligomers during the fermentation stage of black tea manufacture, epigallocatechin-3-O-gallate, the most abundant tea flavanol in fresh tea leaves, was enzymatically oxidized and the resulting unstable quinone metabolites were converted to phenazine derivatives by treatment with o-phenylenediamine. In addition to formation of monomeric and dimeric derivatives, four trimeric derivatives were isolated whose structures were determined by application of spectroscopic methods. The derivatives differed from each other in the location of the phenazine moieties and in the atropisomerism of the biphenyl bond. The results suggested that oxidative coupling of the galloyl group with the B-ring proceeds by a quinone dimerization mechanism similar to that for production of theasinensins. 相似文献