首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
In experiments on the assembly of the sulfolipid sulfoquinovosyl diacylglycerol in envelope membranes of chloroplasts, UDP-sulfoquinovose (UDPS) was used with highest efficiency, and the corresponding enzyme, UDP-sulfoquinovose:diacylglycerol sulfoquinovosyltransferase, was partially characterized (E. Heinz et al., 1989, Eur J Biochem 184: 445–453). Here, we identified 35S- and 33P-labelled UDPS from various photosynthetically active organisms, suggesting that the sulfosugar nucleotide used for sulfolipid biosynthesis throughout the plant kingdom, including phototrophic bacteria, may indeed be UDPS. For attribution of the sulfolipid synthase to one of the two plastidial envelope membranes, these membranes were isolated from pea and spinach chloroplasts. The sulfoquinovosyltransferase was localized in the inner membrane of envelopes, which also contains the competing UDP-galactose:diacylglycerol galactosyltransferase. In contrast to the sulfoquinovosyltransferase, a substantial proportion of the galactosyltransferase was found in the outer membranes of envelopes from pea chloroplasts. Received: 6 October 1997 / Accepted: 31 January 1998  相似文献   

2.
R. Haas  H. P. Siebertz  K. Wrage  E. Heinz 《Planta》1980,148(3):238-244
Spinach chloroplasts were purified on gradients of Percoll which preserved envelope impermeability and CO2-dependent oxygen evolution in the light. Application of 35SO4 to purified chloroplasts resulted in a light-dependent labeling of a lipid component which was indentified as sulfoquinovosyl diacylglycerol. Fractionation of chloroplasts showed that after 5 min of labeling most of the newly synthesized sulfolipid was present in thylakoids. Only a small percentage was recovered from the envelopes. Molecular species from envelopes and thylakoids were identical. The molecular species did not change during incubation times ranging from 5 min up to 4.5 h. Mesophyll protoplasts from 35SO4-labeled oat primary leaves were gently disrupted and separated into organelles by sucrose gradient centrifugation. Labeled sulfolipid was located almost exclusively in the chloroplasts. This, in combination with the experiments carried out with isolated chloroplasts, indicates that the final assembly steps in the biosynthesis of sulfolipid are confined to the chloroplasts.  相似文献   

3.
4.
Ebosin, a novel exopolysaccharide produced by Streptomyces sp. 139 has antagonist activity for IL-1R in vitro and remarkable anti-rheumatic arthritis activity in vivo. Its biosynthesis gene cluster (ste) has been identified. In this study, gene ste17 was expressed in Escherichia coli BL21 and the recombinant protein was purified. With CTP and α-d-glucose-1-phosphate as substrates, the recombinant Ste17 protein was found capable of catalyzing the production of CDP-d-glucose and pyrophosphate, demonstrating its identity as an α-d-glucose-1-phosphate–cytidylyltransferase (CDP-d-glucose synthase). To investigate the function of ste17 in Ebosin biosynthesis, the gene was disrupted with a double crossover via homologous recombination. The monosaccharide composition of exopolysaccharide (EPS) produced by the mutant Streptomyces sp. 139 (ste17 ) was found significantly altered from that of Ebosin, with glucose becoming undetectable. This gene knockout also negatively affected the antagonist activity for IL-1R of EPS. These results indicate that the CDP-d-glucose synthase encoded by ste17 gene is involved in the formation of nucleotide sugar (CDP-d-glucose) as glucose precursor in Ebosin biosynthesis. Xiao-Qiang Qi and Qing-Li Sun contributed equally to this work.  相似文献   

5.
Orotidine-5-monophosphate pyrophosphorylase (OMPppase, E.C. 2.4.2.10) and orotidylate decarboxylase (OMPdecase, E.C. 4.1.1.23) were purified from Serratia marcescens HY. These enzymes required physical association for maximal catalytic activities and formed a fragile complex with dihydroorotase (DHOase, E.C. 3.5.2.3.). OMPppase reversibly lost 50% of its activity upon separation from DHOase. The kinetic characteristics of OMPppase were modified by this separation. In the presence of DHOase, the K ms for PRPP and orotate were stoichiometric: 2.3×10–6 m and 2.6×10–6 m, respectively. Following separation, the K ms were significantly different: 1.3 × 10–6 m for PRPP and 4.1×10–6 m for orotate. OMPppase and OMPdecase could be reversibly separated by acrylamide gel electrophoresis, but the separation was accompanied by a loss of catalytic efficiency for both enzymes. DHOase readily associated into multiple molecular forms and could not be purified. The DHOase-OMPppase-OMPdecase interactions demonstrate that a weakly aggregated, multifunctional enzyme complex participates in the biosynthesis of pyrimidine nucleotides in S. marcescens. This unique association of nonsequential biosynthetic enzymes may represent a larger complex which provides a channeling or regulatory unit.This work was supported by grants from the National Science Foundation (NSF GB 5811) and the Office of Naval Research (Nonr 4413). One of us (J.W.) was a National Science Foundation Graduate Fellow.  相似文献   

6.
Escherichia coli W was genetically engineered to produce l-alanine as the primary fermentation product from sugars by replacing the native d-lactate dehydrogenase of E. coli SZ194 with alanine dehydrogenase from Geobacillus stearothermophilus. As a result, the heterologous alanine dehydrogenase gene was integrated under the regulation of the native d-lactate dehydrogenase (ldhA) promoter. This homologous promoter is growth-regulated and provides high levels of expression during anaerobic fermentation. Strain XZ111 accumulated alanine as the primary product during glucose fermentation. The methylglyoxal synthase gene (mgsA) was deleted to eliminate low levels of lactate and improve growth, and the catabolic alanine racemase gene (dadX) was deleted to minimize conversion of l-alanine to d-alanine. In these strains, reduced nicotinamide adenine dinucleotide oxidation during alanine biosynthesis is obligately linked to adenosine triphosphate production and cell growth. This linkage provided a basis for metabolic evolution where selection for improvements in growth coselected for increased glycolytic flux and alanine production. The resulting strain, XZ132, produced 1,279 mmol alanine from 120 g l−1 glucose within 48 h during batch fermentation in the mineral salts medium. The alanine yield was 95% on a weight basis (g g−1 glucose) with a chiral purity greater than 99.5% l-alanine. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
This study concerns the effects of four different classes of plant growth regulators on root morphology, patterns of growth and condensed tannin accumulation in transgenic root cultures of Lotus corniculatus L. (Bird's-foot trefoil). Growth of transformed roots in 2,4-dichlorophenoxyacetic acid (2,4-D) resulted in decreased tannin levels relative to controls at concentrations of 10-6 M and above, while gibberellic acid (GA3) inhibited tannin accumulation at concentrations of 10-7 M and above. Benzyladenine (BA) had little effect at low concentrations (10-7 M and below) but resulted in an increase in tannin levels at 10-6 M. Abscisic acid had little effect on levels of condensed tannins at any of the concentrations used. Experiments involving growth regulator addition and medium transfer demonstrated that 2,4-D inhibition of tannin accumulation could be reversed by GA3 and BA, while GA3 downregulation could only be reversed by the addition of 2,4-D. Although 2,4-D inhibited tannin accumulation, addition of 2,4-D to root cultures grown for 14 or 28 days in the absence of plant growth regulators stimulated both growth and tannin biosynthesis. Characteristic alterations in root morphologies accompanied growth regulator-mediated modulation of tannin biosynthesis. Growth in 2,4-D resulted in partially de-differentiated root cultures while growth in GA3 produced roots with an elongated phenotype. Restoration of tannin biosynthesis in 2,4-D-treated roots was accompanied by root re-differentiation and the production of new lateral roots.Abbreviations ABA abscisic acid - BA benzyladenine - 2,4-d 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid 3 - FW fresh weight  相似文献   

8.
Noji M  Saito K 《Amino acids》2002,22(3):231-243
Summary. Serine acetyltransferase (SATase) and cysteine synthase (O-acetylserine (thiol)-lyase) (CSase) are committed in the final step of cysteine biosynthesis. Six cDNA clones encoding SATase have been isolated from several plants, e.g. watermelon, spinach, Chinese chive and Arabidopsis thaliana. Feedback-inhibition pattern and subcellular localization of plant SATases were evaluated. Two types of SATase that differ in their sensitivity to the feedback inhibition by l-cysteine were found in plants. In Arabidopsis, cytosolic SATase was inhibited by l-cysteine at a physiological concentration in an allosteric manner, but the plastidic and mitochondrial forms were not subjected to this feedback regulation. These results suggest that the regulation of cysteine biosynthesis through feedback inhibition may differ depending on the subcellular compartment. The allosteric domain responsible for l-cysteine inhibition was characterized, using several SATase mutants. The single change of amino acid residue, glycine-277 to cysteine, in the C-terminal region of watermelon SATase caused a significant decrease of the feedback-inhibition sensitivity of watermelon SATase. We made the transgenic Arabidopsis overexpressing point-mutated watermelon SATase gene whose product was not inhibited by l-cysteine. The contents of OAS, cysteine, and glutathione in transgenic Arabidopsis were significantly increased as compared to the wild-type Arabidopsis. Transgenic tobacco (Nicotiana tabacum) (F1) plants with enhanced CSase activities both in the cytosol and in the chloroplasts were generated by cross-fertilization of two transgenic tobacco expressing either cytosolic CSase or chloroplastic CSase. Upon fumigation with 0.1 μL L−1 sulfur dioxide, both the cysteine and glutathione contents in leaves of F1 plants were increased significantly, but not in leaves of non-transformed control plants. These results indicated that both SATase and CSase play important roles in cysteine biosynthesis and its regulation in plants. Received November 27, 2001 Accepted December 21, 2001  相似文献   

9.
Summary Neb-TMOF, the trypsin modulating oostatic factor of gray fleshflyNeobellieria bullata, is a hexapeptide with the following sequence: H-Asn-Pro-Thr-Asn-Leu-His-OH. It has been isolated from vitellogenic ovaries in 1994. TMOF, the newly discovered insect peptide, inhibits trypsin biosynthesis in the gut, lowers yolk polypeptide concentration in the hemolymph and strongly inhibits ecdysone biosynthesis by larval ring glands. It is interesting that this short non-protected peptide contains in its molecule two Asn residues at positions 1 and 4 and His at its C-terminus. To obtain information about the role of the His-6 and Asn-4 residues we synthesised two series of Neb-TMOF analogs, modified: (1) in position 6 byd-His (I), His(Bzl) (II) and Phe(p-X) derivatives, where X=NH2 (III), NO2 (IV), OEt (V) and OH (VI) and (2) in position 4 by such amino acid residues as Ser (VII), Thr (VIII), Gly (IX), Asp (X), Glu (XI) andd-Asn (XII). The influence of these peptides on trypsin biosynthesis inN. bullata was determinedin vivo. In preliminary investigations, we found that Neb-TMOF, [Phe(NH2)6], and [Phe(NO2)6]-Neb-TMOF inhibited trypsin biosynthesis, whereas [d-His)6]- and [d-His(Bzl)6]-Neb-TMOF were inactive. In further biological studies performedin vitro on heart ofTenebrio molitor were found that-TMOF and [Phe(p-NH2)6]-Neb-TMOF showed weak cardioexcitatory activity, about 30% of the cardioexcitatory activity of proctolin, an insect neuromodulating peptide.  相似文献   

10.
Pollen-tube cell walls are unusual in that they are composed almost entirely of callose, a (1,3)--linked glucan with a few 6-linked branches. Regulation of callose synthesis in pollen tubes is under developmental control, and this contrasts with the deposition of callose in the walls of somatic plant cells which generally occurs only in response to wounding or stress. The callose synthase (uridine-diphosphate glucose: 1,3--d-glucan 3--d-glucosyl transferase, EC 2.4.1.34) activities of membrane preparations from cultured pollen tubes and suspension-cultured cells of Nicotiana alata Link et Otto (ornamental tobacco) exhibited different kinetic and regulatory properties. Callose synthesis by membrane preparations from pollen tubes was not stimulated by Ca2+ or other divalent cations, and exhibited Michaelis-Menten kinetics only between 0.25 mM and 6 mM uridine-diphosphate glucose (K m 1.5–2.5 mM); it was activated by -glucosides and compatible detergents. In contrast, callose synthesis by membrane preparations from suspension-cultured cells was dependent on Ca2+, and in the presence of 2 mM Ca2+ exhibited Michaelis-Menten kinetics above 0.1 mM uridine-diphosphate glucose (K m 0.45 mM); it also required a -glucoside and low levels of compatible detergent for full activity, but was rapidly inactivated at higher levels of detergent. Callose synthase activity in pollen-tube membranes increased ten fold after treatment of the membranes with trypsin in the presence of detergent, with no changes in cofactor requirements. No increase in callose synthase activity, however, was observed when membranes from suspension-cultured cells were treated with trypsin. The insoluble polymeric product of the pollen-tube enzyme was characterised as a linear (1,3)--d-glucan with no 6-linked glucosyl branches, and the same product was synthesised irrespective of the assay conditions employed.Abbreviations Ara l-arabinose - CHAPS 3-[(3-cholamidopropyl)dimethylammonia]-1-propane sulphonic acid - DAP diphenylamine-aniline-phosphoric acid stain - Gal d-galactose - Glc d-glucose - Man d-mannose - Mes 2-(N-morpholino)ethane sulphonic acid - Rha d-rhamnose - Rib d-ribose - TFA trifluoroacetic acid - UDPGlc uridine-diphosphate glucose - Xyl d-xylose This research was supported by funds from a Special Research Centre of the Australian Research Council. H.S. was funded by a Melbourne University Postgraduate Scholarship and an Overseas Postgraduate Research Studentship; S.M.R. was supported by a Queen Elizabeth II Research Fellowship. We thank Bruce McGinness and Susan Mau for greenhouse assistance, and Deborah Delmer and Adrienne Clarke for advice and encouragement throughout this project.  相似文献   

11.
The pathway construction and allosteric regulation of phenylalanine and tyrosine biosynthesis was examined in Neisseria gonorrhoeae. A single 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase enzyme sensitive to feedback inhibition by l-phenylalanine was found. Chorismate mutase and prephenate dehydratase appear to co-exist as catalytic components of a bifunctional enzyme, known to be present in related genera. The latter enzyme activities were both feedback inhibited by l-phenylalanine. Prephenate dehydratase was strongly activated by l-tyrosine. NAD+-linked prephenate dehydrogenase and arogenate dehydrogenase activities coeluted following ion-exchange chromatography, suggesting their identity as catalytic properties of a single broad-specificity cyclohexadienyl dehydrogenase. Each dehydrogenase activity was inhibited by 4-hydroxyphenylpyruvate, but not by l-tyrosine. Two aromatic aminotransferases were resolved, one preferring the l-phenylalanine:2-ketoglutarate substrate combination and the other preferring the l-tyrosine: 2-ketoglutarate substrate combination. Each aminotransferase was also able to transaminate prephenate. The overall picture of regulation is one in which l-tyrosine modulates l-phenylalanine synthesis via activation of prephenate dehydratase. l-Phenylalanine in turn regulates early-pathway flow through inhibition of DAHP synthase. The recent phylogenetic positioning of N. gonorrhoeae makes it a key reference organism for emerging interpretations about aromatic-pathway evolution.  相似文献   

12.
Membrane fractions and digitonin-solubilized enzymes prepared from stem segments isolated from the third internode of etiolated pea seedlings (Pisum sativum L. cv. Alaska) catalyzed the synthesis of a -1,4-[su14C]mannan from GDP-d-[U-14C]-mannose, a mixed -1,3- and -1,4-[14C]glucan from GDP-d-[U-14C]-glucose and a -1,4-[14C]-glucomannan from both GDP-d-[U-14C]mannose and GDP-d-[U-14C]glucose. The kinetics of the membrane-bound and soluble mannan and glucan synthases were determined. The effects of ions, chelators, inhibitors of lipid-linked saccharides, polyamines, polyols, nucleotides, nucleoside-diphosphate sugars, acetyl-CoA, group-specific chemical probes, phospholipases and detergents on the membrane-bound mannan and glucan synthases were investigated. The -glucan synthase had different properties from other preparations which bring about the synthesis of -1,3-glucans (callose) and mixed -1,3- and -1,4-glucans and which use UDP-d-glucose as substrate. It also differed from xyloglucan synthase because in the presence of several concentrations of UDP-d-xylose in addition to GDP-d-glucose no xyloglucan was formed. Using either the membrane-bound or the soluble mannan synthase, GDP-d-glucose acted competitively in the presence of GDP-d-mannose to inhibit the incorporation of mannose into the polymer. This was not due to an inhibition of the transferase activity but was a result of the incorporation of glucose residues from GDP-d-glucose into a glucomannan. The kinetics and the composition of the synthesized glucomannan depended on the ratio of the concentrations of GDP-d-glucose and GDP-d-mannose that were available. Our data indicated that a single enzyme has an active centre that can use both GDP-d-mannose and GDP-d-glucose to bring about the synthesis of the heteropolysaccharide.Abbreviations CHAPS 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate - CHAPSO 3-[(3-cholamidopropyl)-dimethylammonio]-2-hydroxy-1-propanesulfonate - CHD 1,2-cyclohexanedione - CDP cytidine 5-diphosphate - EGTA ethylene glycol-bis(-aminoethyl ether) N,N,N,N-tetraacetic acid - GDP guanosine 5-diphosphate - NAI N-acetyl-imidazole - NEM N-ethylmaleimide - PGO phenylglyoxal This work has been made possible by grants of M.A.F. and M.U.R.S.T. 40% of Italy. Dr. A. Zuppa wishes to thank the C.N.R. of Italy for his research scolarship.  相似文献   

13.
Key enzymes of aromatic amino acid biosynthesis were examined in the genus Acinetobacter. Members of this genus belong to a suprafamilial assemblage of Gram-negative bacteria (denoted Superfamily B) for which a phylogenetic tree based upon oligonucleotide cataloging of 16S rRNA exists. Since the Acinetobacter lineage diverged at an early evolutionary time from other lineages within Superfamily B, an examination of aromatic biosynthesis in members of this genus has supplied improtant clues for the deduction of major evolutionary events leading to the contemporary aromatic pathways that now exist within Superfamily B. Together with Escherichia coli, Pseudomonas aeruginosa and Xanthomonas campestris, four well-spaced lineages have now been studied in comprehensive detail with respect to comparative enzymological features of aromatic amino acid biosynthesis. A. calcoaceticus and A. lwoffii both possess two chorismate mutase isozymes: one a monofunctional isozyme (chorismate mutase-F), and the other (chorismate mutase-P) a component of a bifunctional P-protein (chorismate mutase-prephenate dehydratase). While both P-protein activities were feedback inhibited by l-phenylalanine, the chorismate mutase-P activity was additionally inhibited by prephenate. Likewise, chorismate mutase-F was product inhibited by prephenate. Two isozymes of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase were detected. The major isozyme (>95%) was sensitive to feedback inhibition by l-tyrosine, whereas the minor isozyme was apparently insensitive to allosteric control. Prephenate dehydrogenase and arogenate dehydrogenase activities were both detected, but could not be chromatographically resolved. Available evidence favors the existence of a single dehydrogenase enzyme, exhibiting substrate ambiguity for prephenate andl-arogenate. Dehydrogenase activity with either of the latter substrates was specific for NADP+, NAD+ being ineffective. Consideration of the phylogeny of Superfamily-B organisms suggests that the stem ancestor of the Superfamily possessed a single dehydrogenase enzyme having ambiguity for both substrate and pyridine nucleotide cofactor. Since all other members of Superfamily B have NAD+-specific dehydrogenases, specialization for NADP+ must have occurred following the point of Acinetobacter divergence, leading to the dichotomy seen in present-day Superfamily-B organisms.  相似文献   

14.
Crocus sativus L., cultivated since ancient times as the source of saffron, is a triploid plant that can be propagated only via its corms which undergo a period of dormancy. Understanding the processes taking place in the corm is essential to preserve the plant and improve its quality. Color and taste being of prime importance in the quality of the saffron spice, knowledge on polyphenol oxidase (PPO) activity in the plant is of particular interest given the role of the enzyme in fruit and vegetable browning during processing and during the storage of processed food. In this paper, PPO activity was investigated for the first time in extracts obtained from dormant C. sativus L. corms. PPO activity was detectable using l-DOPA, pyrogallol, catechol or p-cresol as substrate, each being oxidized to its corresponding o-quinone; no activity was detectable with l-tyrosine, tyramine or phenol as substrate. Two pH optima, respectively at 4.5 and 6.7, were observed with all substrates and a third one, at 8.5, was found with l-DOPA and p-cresol. Kinetics parameters studied at pH 6.7 indicated the highest catalytic efficiency (in units mg−1 prot mM−1) with pyrogallol: 150, then catechol: 39, l-DOPA: 6.4 and p-cresol: 4.6. The enzymatic activity was inhibited by 50% in the presence of 0.22, 0.35, 0.5 and 0.7 mM kojic acid with, respectively, catechol, pyrogallol, p-cresol and l-DOPA as substrate. When stained for PPO activity, non-denaturing gel electropherograms of extract revealed three distinct bands, indicating the presence of multiple isoenzymes in dormant C. sativus L. corms.  相似文献   

15.
The hydride carrier coenzyme F420 contains the unusual chromophore 7,8-didemethyl-8-hydroxy-5-deazariboflavin (FO). Microbes that generate F420 produce this FO moiety using a pyrimidine intermediate from riboflavin biosynthesis and the 4-hydroxyphenylpyruvate precursor of tyrosine. The fbiC gene, cloned from Mycobacterium smegmatis, encodes the bifunctional FO synthase. Expression of this protein in Escherichia coli caused the host cells to produce FO during growth, and activated cell-free extracts catalyze FO biosynthesis in vitro. FO synthase in the methanogenic euryarchaeon Methanocaldococcus jannaschii comprises two proteins encoded by cofG (MJ0446) and cofH (MJ1431). Both subunits were required for FO biosynthesis in vivo and in vitro. Cyanobacterial genomes encode homologs of both genes, which are used to produce the coenzyme for FO-dependent DNA photolyases. A molecular phylogeny of the paralogous cofG and cofH genes is consistent with the genes being vertically inherited within the euryarchaeal, cyanobacterial, and actinomycetal lineages. Ancestors of the cyanobacteria and actinomycetes must have acquired the two genes, which subsequently fused in actinomycetes. Both CofG and CofH have putative radical S-adenosylmethionine binding motifs, and pre-incubation with S-adenosylmethionine, Fe2+, sulfide, and dithionite stimulates FO production. Therefore a radical reaction mechanism is proposed for the biosynthesis of FO.Abbreviations AdoMet (SAM) S-adenosyl-l-methionine - Compound 6 5-Amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione - FO 7,8-Didemethyl-8-hydroxy-5-deazariboflavin - HPP 4-Hydroxyphenylpyruvate  相似文献   

16.
17.
In Nocardia sp. 239 d-phenylalanine is converted into l-phenylalanine by an inducible amino acid racemase. The further catabolism of this amino acid involves an NAD-dependent l-phenylalanine dehydrogenase. This enzyme was detected only in cells grown on l- or d-phenylalanine and in batch cultures highest activities were obtained at relatively low amino acid concentrations in the medium. The presence of additional carbon- or nitrogen sources invariably resulted in decreased enzyme levels. From experiments with phenylalanine-limited continuous cultures it appeared that the rate of synthesis of the enzyme increased with increasing growth rates. The regulation of phenylalanine dehydrogenase synthesis was studied in more detail during growth of the organism on mixtures of methanol and l-phenylalanine. Highest rates of l-phenylalanine dehydrogenase production were observed with increasing ratios of l-phenylalanine/methanol in the feed of chemostat cultures. Characteristic properties of the enzyme were investigated following its (partial) purification from l- and d-phenylalanine-grown cells. This resulted in the isolation of enzymes with identical properties. The native enzyme had a molecular weight of 42 000 and consisted of a single subunit; it showed activity with l-phenylalanine, phenylpyruvate, 4-hydroxyphenyl-pyruvate, indole-3-pyruvate and -ketoisocaproate, but not with imidazolepyruvate, d-phenylalanine and other l-amino acids tested. Maximum activities with phenylpyruvate (310 mol min-1 mg-1 of purified protein) were observed at pH 10 and 53°C. Sorbitol and glycerol stabilized the enzyme.Abbreviations RuMP ribulose monophosphate - HPS hexulose-6-phosphate synthase - HPT hexulose-6-phosphate isomerase - FPLC fast protein liquid chromatography  相似文献   

18.
Multivariate analysis of vegetative and reproductive characters was used to examine morphological relatedness amongAntennaria alborosea A. E. Porsild,A. corymbosa E. Nels.,A. marginata Greene,A. microphylla Rydb.,A. parvifolia Nutt.,A. rosea Greene, andA. umbrinella Rydb. Both pistillate and staminate plants were examined. Some of the characters examined were variable in one species, but stable in another (i.e., presence or absence of papillae on the achenes). Our analyses indicate that the seven species are morphologically distinct. It is hypothesized that theA. rosea agamic complex arose through hybridization amongA. corymbosa, A. microphylla, A. umbrinella, and possiblyA. dioica (L.)Gaertn. However, hybridization between the three former species and others, as well as their subsequent morphological responses to different environmental conditions causes confusion in recognizing the taxa.Antennaria angustifolia Rydb.,A. arida E. Nels.,A. confinis Greene,A. scariosa E. Nels.,A. foliacea humilis Rydb.,A. concinna E. Nels., andA. viscidula E. Nels. are considered to represent F 1 hybrids.  相似文献   

19.
A rapid, gratuitous and cell-division uncoupled induction of intracytoplasmic photosynthetic membrane formation was demonstrated in low-aeration suspensions of chemotrophically grown Rhodopseudomonas sphaeroides. Despite a nearly 2-fold increase in phospholipid levels, no significant increases were detected in the specific activities of CDP-1,2-diacyl-sn-glycerol:sn-glycerol-3-phosphate phosphatidyltransferase (phosphatidylglycerophosphate synthase, EC 2.7.8.5) and CDP-1,2-diacyl-sn-glycerol:L-serine O-phosphatidyltransferase (phosphatidylserine synthase, EC 2.7.8.8), the first committed enzymes of anionic and zwitterionic phospholipid biosyntheses, respectively. The distribution of phosphatidylglycerophosphate and phosphatidylserine synthase activities after rate-zone sedimentation of cell-free extracts indicated that intracytoplasmic membrane phospholipids were synthesized mainly within distinct domains of the conserved cytoplasmic membrane. Labeling studies with 32Pi and L-[3H]phenylalanine suggested that preexisting phospholipid was utilized initially as the matrix for insertion of intracytoplasmic membrane protein that was synthesized and assembled de novo during induction.Abbreviations BChl bacteriochlorophyll a - B800-850, B875 peripheral and core light-harvesting BChl-protein complexes, respectively, identified by near-IR absorption maxima This paper is dedicated to Professor Gerhart Drews on the occasion of his sixtieth birthday  相似文献   

20.
Algicide production by the filamentous cyanobacteriumFischerellasp. CENA 19   总被引:4,自引:2,他引:2  
The biosynthesis of algicides produced by a novelFischerellastrain was investigated. Two allelochemicals were identified, the aminoacylpolyketide fischerellin A (FsA) and the alkaloid 12-epi-hapalindole F (HapF). Based on the structure of FsA, genes that could be involved in its biosynthesis, including those encoding nonribosomal peptide synthetases (NRPSs) and a polyketide synthase (PKS), were identified by the polymerase chain reaction (PCR). By showing that the expression of NRPSs and PKSs is concomitant with algicide production we suggest that the identified genes may be involved in algicide biosynthesis. Analysis of an algicide preparation of the Brazilian-Amazonian strainFischerellasp. CENA 19 revealed the production of FsA,m/z409 (MH+), HapF,m/z370 (MH+), and other potential isoforms of the latter compounds, which were identified by high-performance liquid chromatography (HPLC) and matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass-spectrometry. The production of HapF was confirmed after purification by HPLC, analysis by NMR, and high-resolution mass-spectrometry (HRMS). Two-NRPS and a PKS gene were identified after specific amplification using a degenerate PCR. The expression of these synthetases was confirmed by Western blot analysis employing enzyme family-specific antibodies. These analyses revealed the presence of three NRPSs and a single PKS inFischerellasp. CENA 19. The structure of FsA indicates both aminoacyl- and polyketide moeities, suggesting that its biosynthesis may require an integrated NRPS/PKS enzyme system, possibly involving the genes and the synthetases identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号