首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Excision of a Mos1 transposon in the germline of Caenorhabditis elegans generates a double-strand break in the chromosome. We demonstrate that breaks are most prominently repaired by gene conversion from the homolog, but also rarely by nonhomologous end-joining. In some cases, gene conversion events are resolved by crossing over. Surprisingly, expression of the transposase using an intestine-specific promoter can induce repair, raising the possibility that activation of transposase expression in somatic cells can lead to transposition of Mos1 in the germline.  相似文献   

2.
DNA double-strand breaks caused by replication arrest.   总被引:34,自引:1,他引:33       下载免费PDF全文
B Michel  S D Ehrlich    M Uzest 《The EMBO journal》1997,16(2):430-438
We report here that DNA double-strand breaks (DSBs) form in Escherichia coli upon arrest of replication forks due to a defect in, or the inhibition of, replicative DNA helicases. The formation of DSBs was assessed by the appearance of linear DNA detected by pulse-field gel electrophoresis. Processing of DSBs by recombination repair or linear DNA degradation was abolished by mutations in recBCD genes. Two E. coli replicative helicases were tested, Rep, which is essential in recBC mutants, and DnaB. The proportion of linear DNA increased up to 50% upon shift of rep recBTS recCTS cells to restrictive temperature. No increase in linear DNA was observed in the absence of replicating chromosomes, indicating that the formation of DSBs in rep strains requires replication. Inhibition of the DnaB helicase either by a strong replication terminator or by a dnaBTS mutation led to the formation of linear DNA, showing that blocked replication forks are prone to DSB formation. In wild-type E. coli, linear DNA was detected in the absence of RecBC or of both RecA and RecD. This reveals the existence of a significant amount of spontaneous DSBs. We propose that some of them may also result from the impairment of replication fork progression.  相似文献   

3.
Faithful replication of the entire genome requires replication forks to copy large contiguous tracts of DNA, and sites of persistent replication fork stalling present a major threat to genome stability. Understanding the distribution of sites at which replication forks stall, and the ensuing fork processing events, requires genome-wide methods that profile replication fork position and the formation of recombinogenic DNA ends. Here, we describe Transferase-Activated End Ligation sequencing (TrAEL-seq), a method that captures single-stranded DNA 3′ ends genome-wide and with base pair resolution. TrAEL-seq labels both DNA breaks and replication forks, providing genome-wide maps of replication fork progression and fork stalling sites in yeast and mammalian cells. Replication maps are similar to those obtained by Okazaki fragment sequencing; however, TrAEL-seq is performed on asynchronous populations of wild-type cells without incorporation of labels, cell sorting, or biochemical purification of replication intermediates, rendering TrAEL-seq far simpler and more widely applicable than existing replication fork direction profiling methods. The specificity of TrAEL-seq for DNA 3′ ends also allows accurate detection of double-strand break sites after the initiation of DNA end resection, which we demonstrate by genome-wide mapping of meiotic double-strand break hotspots in a dmc1Δ mutant that is competent for end resection but not strand invasion. Overall, TrAEL-seq provides a flexible and robust methodology with high sensitivity and resolution for studying DNA replication and repair, which will be of significant use in determining mechanisms of genome instability.

TrAEL-seq provides genome-wide base pair resolution maps of exposed DNA 3’ ends; this reveals replication fork stalling and normal replication profiles in asynchronous, unlabelled wildtype cell populations, along with the sites of resected DNA breaks.  相似文献   

4.
It is generally thought that the DNA-damage checkpoint kinases, ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), work independently of one another. Here, we show that ATM and the nuclease activity of meiotic recombination 11 (Mre11) are required for the processing of DNA double-strand breaks (DSBs) to generate the replication protein A (RPA)-coated ssDNA that is needed for ATR recruitment and the subsequent phosphorylation and activation of Chk1. Moreover, we show that efficient ATM-dependent ATR activation in response to DSBs is restricted to the S and G2 cell cycle phases and requires CDK kinase activity. Thus, in response to DSBs, ATR activation is regulated by ATM in a cell-cycle dependent manner.  相似文献   

5.
A missense mutation in C. elegans RAD-54, a homolog of RAD54 that operates in the homologous recombination (HR) pathway, was found to decrease ATPase activity in vitro. The hypomorphic mutation caused hypersensitivity of C. elegans germ cells to double-strand DNA breaks (DSBs). Although the formation of RAD-51 foci at DSBs was normal in both the mutant and knockdown worms, their subsequent dissipation was slow. The rad-54-deficient phenotypes were greatly aggravated when combined with an xpf-1 mutation, suggesting a conservative role of single-strand annealing (SSA) for DSB repair in HR-defective worms. The phenotypes of doubly-deficient rad-54;xpf-1 worms were partially suppressed by a mutation of lig-4, a nonhomologous end-joining (NHEJ) factor. In summary, RAD-54 is required for the dissociation of RAD-51 from DSB sites in C. elegans germ cells. Also, NHEJ and SSA exert negative and positive effects, respectively, on genome stability when HR is defective.  相似文献   

6.
Ionizing radiation (IR) produces direct two-ended DNA double-strand breaks (DSBs) primarily repaired by non-homologous end joining (NHEJ). It is, however, well established that homologous recombination (HR) is induced and required for repair of a subset of DSBs formed following IR. Here, we find that HR induced by IR is drastically reduced when post-DNA damage replication is inhibited in mammalian cells. Both IR-induced RAD51 foci and HR events in the hprt gene are reduced in the presence of replication polymerase inhibitor aphidicolin (APH). Interestingly, we also detect reduced IR-induced toxicity in HR deficient cells when inhibiting post-DNA damage replication. When studying DSB formation following IR exposure, we find that apart from the direct DSBs the treatment also triggers formation of secondary DSBs peaking at 7-9 h after exposure. These secondary DSBs are restricted to newly replicated DNA and abolished by inhibiting post-DNA damage replication. Further, we find that IR-induced RAD51 foci are decreased by APH only in cells replicating at the time of IR exposure, suggesting distinct differences between IR-induced HR in S- and G2-phases of the cell cycle. Altogether, our data indicate that secondary replication-associated DSBs formed following exposure to IR are major substrates for IR-induced HR repair.  相似文献   

7.
8.
Rapid activation of ATM on DNA flanking double-strand breaks   总被引:5,自引:0,他引:5  
  相似文献   

9.
Perturbed DNA replication either activates a cell cycle checkpoint, which halts DNA replication, or decreases the rate of DNA synthesis without activating a checkpoint. Here we report that at low doses, replication inhibitors did not activate a cell cycle checkpoint, but they did activate a process that required functional Bloom's syndrome-associated (BLM) helicase, Mus81 nuclease and ataxia telangiectasia mutated and Rad3-related (ATR) kinase to induce transient double-stranded DNA breaks. The induction of transient DNA breaks was accompanied by dissociation of proliferating cell nuclear antigen (PCNA) and DNA polymerase α from replication forks. In cells with functional BLM, Mus81 and ATR, the transient breaks were promptly repaired and DNA continued to replicate at a slow pace in the presence of replication inhibitors. In cells that lacked BLM, Mus81, or ATR, transient breaks did not form, DNA replication did not resume, and exposure to low doses of replication inhibitors was toxic. These observations suggest that BLM helicase, ATR kinase, and Mus81 nuclease are required to convert perturbed replication forks to DNA breaks when cells encounter conditions that decelerate DNA replication, thereby leading to the rapid repair of those breaks and resumption of DNA replication without incurring DNA damage and without activating a cell cycle checkpoint.  相似文献   

10.
We analyzed the mechanism of recombination-dependent DNA replication in bacteriophage T4-infected Escherichia coli using plasmids that have sequence homology to the infecting phage chromosome. Consistent with prior studies, a pBR322 plasmid, initially resident in the infected host cell, does not replicate following infection by T4. However, the resident plasmid can be induced to replicate when an integrated copy of pBR322 vector is present in the phage chromosome. As expected for recombination-dependent DNA replication, the induced replication of pBR322 required the phage-encoded UvsY protein. Therefore, recombination-dependent plasmid replication requires homology between the plasmid and phage genomes but does not depend on the presence of any particular T4 DNA sequence on the test plasmid. We next asked whether T4 recombination-dependent DNA replication can be triggered by a double-strand break (dsb). For these experiments, we generated a novel phage strain that cleaves its own genome within the nonessential frd gene by means of the I-TevI endonuclease (encoded within the intron of the wild-type td gene). The dsb within the phage chromosome substantially increased the replication of plasmids that carry T4 inserts homologous to the region of the dsb (the plasmids are not themselves cleaved by the endonuclease). The dsb stimulated replication when the plasmid was homologous to either or both sides of the break but did not stimulate the replication of plasmids with homology to distant regions of the phage chromosome. As expected for recombination-dependent replication, plasmid replication triggered by dsbs was dependent on T4-encoded recombination proteins. These results confirm two important predictions of the model for T4-encoded recombination-dependent DNA replication proposed by Gisela Mosig (p. 120-130, in C. K. Mathews, E. M. Kutter, G. Mosig, and P. B. Berget (ed.), Bacteriophage T4, 1983). In addition, replication stimulated by dsbs provides a site-specific version of the process, which should be very useful for mechanistic studies.  相似文献   

11.
Xu B  Sun Z  Liu Z  Guo H  Liu Q  Jiang H  Zou Y  Gong Y  Tischfield JA  Shao C 《PloS one》2011,6(4):e18618

Background

Micronuclei (MN) in mammalian cells serve as a reliable biomarker of genomic instability and genotoxic exposure. Elevation of MN is commonly observed in cells bearing intrinsic genomic instability and in normal cells exposed to genotoxic agents. DNA double-strand breaks are marked by phosphorylation of H2AX at serine 139 (γ-H2AX). One subclass of MN contains massive and uniform γ-H2AX signals. This study tested whether this subclass of MN can be induced by replication stress.

Principal Findings

We observed that a large proportion of MN, from 20% to nearly 50%, showed uniform staining by antibodies against γ-H2AX, a marker of DNA double-strand breaks (DSBs). Such micronuclei were designated as MN-γ–H2AX (+). We showed that such MN can be induced by chemicals that are known to cause DNA replication stress and S phase arrest. Hydroxyurea, aphidicolin and thymidine could all significantly induce MN-γ–H2AX (+), which were formed during S phase and appeared to be derived from aggregation of DSBs. MN-γ–H2AX (−), MN that were devoid of uniform γ-H2AX signals, were induced to a lesser extent in terms of fold change. Paclitaxel, which inhibits the disassembly of microtubules, only induced MN-γ–H2AX (−). The frequency of MN-γ–H2AX (+), but not that of MN-γ–H2AX (−), was also significantly increased in cells that experience S phase prolongation due to depletion of cell cycle regulator CUL4B. Depletion of replication protein A1 (RPA1) by RNA interference resulted in an elevation of both MN-γ–H2AX (+) and MN-γ–H2AX (−).

Conclusions/Significance

A subclass of MN, MN-γ–H2AX (+), can be preferentially induced by replication stress. Classification of MN according to their γ-H2AX status may provide a more refined evaluation of intrinsic genomic instabilities and the various environmental genotoxicants.  相似文献   

12.
Rac GTPases act as molecular switch in various morphogenic events. However, the regulation of their activities during the development of multicellular organisms is not well understood. Caenorhabditis elegans rac genes ced-10 and mig-2 have been shown to act redundantly to control P cell migration and the axon outgrowth of D type motoneurons. We showed that ced-10 and mig-2 also control amphid axon outgrowth and amphid dendrite fasciculation in a redundant fashion. Our biochemical and genetic data indicate that unc-73, which encodes a protein related to Trio-like guanine nucleotide exchange factor, acts as a direct activator of ced-10 and mig-2 during P cell migration and axon outgrowth of D type motoneurons and amphid sensory neurons. Furthermore, rac regulators ced-2/crkII and ced-5/dock180 function genetically upstream of ced-10 and mig-2 during axon outgrowth of D type motoneurons and act upstream of mig-2 but not ced-10 during P cell migration. However, neither ced-2/crkII nor ced-5/dock180 is involved in amphid axon outgrowth. Therefore, distinct rac regulators control ced-10 and mig-2 differentially in various cellular processes.  相似文献   

13.
Mori C  Takanami T  Higashitani A 《Genetics》2008,180(1):681-686
Here we show that inactivation of the ATR-related kinase ATL-1 results in a significant reduction in mitochondrial DNA (mtDNA) copy numbers in Caenorhabditis elegans. Although ribonucleotide reductase (RNR) expression and the ATP/dATP ratio remained unaltered in atl-1 deletion mutants, inhibition of RNR by RNAi or hydroxyurea treatment caused further reductions in mtDNA copy number. These results suggest that ATL-1 functions to maintain mtDNA independently of RNR.  相似文献   

14.
The MRE11/RAD50/NBS1 complex is the primary sensor rapidly recruited to DNA double-strand breaks (DSBs). MRE11 is known to be arginine methylated by PRMT1 within its glycine-arginine-rich (GAR) motif. In this study, we report a mouse knock-in allele of Mre11 that substitutes the arginines with lysines in the GAR motif and generates the MRE11(RK) protein devoid of methylated arginines. The Mre11(RK/RK) mice were hypersensitive to γ-irradiation (IR) and the cells from these mice displayed cell cycle checkpoint defects and chromosome instability. Moreover, the Mre11(RK/RK) MEFs exhibited ATR/CHK1 signaling defects and impairment in the recruitment of RPA and RAD51 to the damaged sites. The M(RK)RN complex formed and localized to the sites of DNA damage and normally activated the ATM pathway in response to IR. The M(RK)RN complex exhibited exonuclease and DNA-binding defects in vitro responsible for the impaired DNA end resection and ATR activation observed in vivo in response to IR. Our findings provide genetic evidence for the critical role of the MRE11 GAR motif in DSB repair, and demonstrate a mechanistic link between post-translational modifications at the MRE11 GAR motif and DSB processing, as well as the ATR/CHK1 checkpoint signaling.  相似文献   

15.
DNA damage encountered by DNA replication forks poses risks of genome destabilization, a precursor to carcinogenesis. Damage checkpoint systems cause cell cycle arrest, promote repair and induce programed cell death when damage is severe. Checkpoints are critical parts of the DNA damage response network that act to suppress cancer. DNA damage and perturbation of replication machinery causes replication stress, characterized by accumulation of single-stranded DNA bound by replication protein A (RPA), which triggers activation of ataxia telangiectasia and Rad3 related (ATR) and phosphorylation of the RPA32, subunit of RPA, leading to Chk1 activation and arrest. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) [a kinase related to ataxia telangiectasia mutated (ATM) and ATR] has well characterized roles in DNA double-strand break repair, but poorly understood roles in replication stress-induced RPA phosphorylation. We show that DNA-PKcs mutant cells fail to arrest replication following stress, and mutations in RPA32 phosphorylation sites targeted by DNA-PKcs increase the proportion of cells in mitosis, impair ATR signaling to Chk1 and confer a G2/M arrest defect. Inhibition of ATR and DNA-PK (but not ATM), mimic the defects observed in cells expressing mutant RPA32. Cells expressing mutant RPA32 or DNA-PKcs show sustained H2AX phosphorylation in response to replication stress that persists in cells entering mitosis, indicating inappropriate mitotic entry with unrepaired damage.  相似文献   

16.
DNA double-strand breaks (DSBs) are highly hazardous for genome integrity because they have the potential to cause mutations, chromosomal rearrangements and genomic instability. The cellular response to DSBs is orchestrated by signal transduction pathways, known as DNA damage checkpoints, which are conserved from yeasts to humans. These pathways can sense DNA damage and transduce this information to specific cellular targets, which in turn regulate cell cycle transitions and DNA repair. The mammalian protein kinases ATM and ATR, as well as their budding yeast corresponding orthologs Tel1 and Mec1, act as master regulators of the checkpoint response to DSBs. Here, we review the early steps of DSB processing and the role of DNA-end structures in activating ATM/Tel1 and ATR/Mec1 in an orderly and reciprocal manner.  相似文献   

17.
We report that the bacterial transposon Tn7 can preferentially transpose into regions where chromosomal DNA replication terminates. DNA double-strand breaks are associated with the termination of chromosomal replication; therefore, we directly tested the effect of DNA breaks on Tn7 transposition. When DNA double-strand breaks are induced at specific sites in the chromosome, Tn7 transposition is stimulated and insertions are directed proximal to the induced break. The targeting preference for the terminus of replication and DNA double-strand breaks is dependent on the Tn7-encoded protein TnsE. The results presented in this study could also explain the previous observation that Tn7 is attracted to events associated with conjugal DNA replication during plasmid DNA transfer.  相似文献   

18.
Fractionated radiotherapy (RT) is widely used in cancer treatment, because it preserves normal tissues. However, repopulation of radioresistant tumors during fractionated RT limits the efficacy of RT. We recently demonstrated that a moderate level of long-term fractionated radiation confers acquired radioresistance to tumor cells, which is caused by DNA-PK/AKT/GSK3β-mediated cyclin D1 overexpression. The resulting cyclin D1 overexpression leads to forced progression of the cell cycle to S-phase, concomitant with induction of DNA double-strand breaks (DSBs). In this study, we investigated the molecular mechanisms underlying cyclin D1 overexpression-induced DSBs during DNA replication in acquired radioresistant cells. DNA fiber data demonstrated that replication forks progressed slowly in acquired radioresistant cells compared with corresponding parental cells in HepG2 and HeLa cell lines. Slowly progressing replication forks were also observed in HepG2 and HeLa cells that overexpressed a nondegradable cyclin D1 mutant. We also found that knockdown of Mus81endonuclease, which is responsible for resolving aberrant replication forks, suppressed DSB formation in acquired radioresistant cells. Consequently, Mus81 created DSBs to remove aberrant replication forks in response to replication perturbation triggered by cyclin D1 overexpression. After treating cells with a specific inhibitor for DNA-PK or ATM, apoptosis rates increased in acquired radioresistant cells but not in parental cells by inhibiting the DNA damage response to cyclin D1-mediated DSBs. This suggested that these inhibitors might eradicate acquired radioresistant cells and improve fractionated RT outcomes.  相似文献   

19.
Single-strand breaks (ssb) in opposite strands of DNA can be sufficiently near that a double-strand break (dsb) results. A theory is presented by which the maximum number h of base pairs which cannot prevent double-strand breakage can be determined from the rates of production of ssb and dsb. The assumptions required to derive the necessary equations as well as the range of validity of the equations are discussed in detail. In the experiments ssb and dsb were produced by x-irradiation in buffers which do not eliminate indirect effects and were measured by analytical ultracentrifugation. Values of h have been determined in low and high ionic strength and in low ionic strength over a range of temperatures. The values, 2.64 and 15.8, were obtained for high and low ionic strength, respectively.  相似文献   

20.
DNA double-strand breaks (DSBs) are among the most deleterious DNA lesions, which if unrepaired or repaired incorrectly can cause cell death or genome instability that may lead to cancer. To counteract these adverse consequences, eukaryotes have evolved a highly orchestrated mechanism to repair DSBs, namely DNA-damage-response (DDR). DDR, as defined specifically in relation to DSBs, consists of multi-layered regulatory modes including DNA damage sensors, transducers and effectors, through which DSBs are sensed and then repaired via DNAprotein interactions. Unexpectedly, recent studies have revealed a direct role of RNA in the repair of DSBs, including DSB-induced small RNA (diRNA)-directed and RNA-templated DNA repair. Here, we summarize the recent discoveries of RNA-mediated regulation of DSB repair and discuss the potential impact of these novel RNA components of the DSB repair pathway on genomic stability and plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号