首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The affinity of recombinant rat acyl-CoA binding protein (ACBP) towards acyl-CoAs was investigated using both fluorimetric analysis and isothermal titration microcalorimetry, neither of which requires the physical separation of bound and free ligand for determining the dissociation constants (K(d)). The displacement of 11-(dansylamino)undecanoyl-CoA (DAUDA-CoA) from ACBP yielded binding parameters for the competing acyl-CoAs that compared favourably with those obtained using ultra-sensitive microcalorimetric titration. The K(d) values of ACBP for oleoyl-CoA and docosahexaenoyl-CoA are 0.014 and 0.016 microM, respectively. Under identical experimental conditions, carnitine palmitoyltransferase I (CPT I) of purified rat liver mitochondria has K(d) values of 2.4 and 22.7 microM for oleoyl-CoA and docosahexaenoyl-CoA, respectively. Given that CPT I was not only present at a much lower concentration but also has an appreciably lower affinity for acyl-CoAs than ACBP, it is proposed that CPT I is capable of interacting directly with ACBP-acyl-CoA binary complexes. This is supported by the fact that the enzyme activity correlated with the concentration of ACBP-bound acyl-CoA but not the free acyl-CoA. A transfer of acyl-CoA from ACBP-acyl-CoA binary complexes to CPT I could be a result of the enzyme inducing a conformational alteration in the ACBP leading to the release of acyl-CoA.  相似文献   

2.
Acyl-CoA binding protein (ACBP) and fatty acid binding protein (FABP) are intracellular transporters of activated and free fatty acids, respectively. Unlike other tissues with active lipid metabolism, armadillo Harderian gland contains much more ACBP than FABP. To characterize armadillo ACBP structure and binding properties, we produced it in Escherichia coli and carried out detailed fluorescence and circular dichroism spectroscopy studies. The K(D) for palmitoyl-CoA, measured directly by fluorescence and rotatory power, was 34+/-12 and 75+/-39 nM, respectively. The structure of armadillo ACBP appears to be very similar to that of bovine and rat liver ACBPs.  相似文献   

3.
A detailed analysis of the subcellular distribution of acyl-CoA esters in rat liver revealed that significant amounts of long-chain acyl-CoA esters are present in highly purified nuclei. No contamination of microsomal or mitochondrial marker enzymes was detectable in the nuclear fraction. C16:1 and C18:3-CoA esters were the most abundant species, and thus, the composition of acyl-CoA esters in the nuclear fraction deviates notably from the overall composition of acyl-CoA esters in the cell. After intravenous administration of the non-beta-oxidizable [(14)C]tetradecylthioacetic acid (TTA), the TTA-CoA ester could be recovered from the nuclear fraction. Acyl-CoA esters bind with high affinity to the ubiquitously expressed acyl-CoA binding protein (ACBP), and several lines of evidence suggest that ACBP functions as a pool former and transporter of acyl-CoA esters in the cytoplasm. By using immunohistochemistry, immunofluorescence microscopy, and immunoelectron microscopy we demonstrate that ACBP localizes to the nucleus as well as the cytoplasm of rat liver cell and rat hepatoma cells, suggesting that ACBP may also be involved in regulation of acyl-CoA-dependent processes in the nucleus.  相似文献   

4.
The liver specific protein phosphatase inhibiting toxin nodularin (from Nodularia spumigena) rapidly induces hepatocyte apoptosis. Incubation of freshly isolated hepatocytes with this toxin results in hyperphosphorylation of cellular proteins before any morphological signs of apoptosis appear. These phosphorylated proteins may play key roles in the early stage of apoptosis. Here, we identified one of the phosphoproteins to be acyl-CoA binding protein (ACBP), a highly conserved and ubiquitously expressed protein. Phosphorylation-site analysis by matrix-assisted laser desorption ionization time-of-flight MS/MS revealed that the observed phosphorylation is positioned on Ser1 in the N-terminal tryptic peptide Ac-SQADFDKAAE EVKRLK of the rat liver protein. Additionally, we observed a translocation of ACBP towards the cellular membrane in the apoptotic hepatocytes. Moreover, nodularin-induced apoptosis was highly dependent on calpain activation, an event that has previously been shown to be regulated by ACBP. Our findings introduce the possibility that reversible phosphorylation of ACBP regulates its ability to activate calpain in phosphatase inhibitor-induced apoptosis and controls the cellular accessibility of long-chain fatty acid-CoAs for cellular signaling.  相似文献   

5.
6.
Membrane localization of Arabidopsis acyl-CoA binding protein ACBP2   总被引:3,自引:0,他引:3  
Cytosolic acyl-CoA binding proteins bind long-chain acyl-CoAs and act as intracellular acyl-CoA transporters and pool formers. Recently, we have characterized Arabidopsis thaliana cDNAs encoding novel forms of ACBP, designated ACBP1 and ACBP2, that contain a hydrophobic domain at the N-terminus and show conservation at the acyl-CoA binding domain to cytosolic ACBPs. We have previously demonstrated that ACBP1 is membrane-associated in Arabidopsis. Here, western blot analysis of anti-ACBP2 antibodies on A. thaliana protein showed that ACBP2 is located in the microsome-containing membrane fraction and in the subcellular fraction containing large particles (mitochondria, chloroplasts and peroxisomes), resembling the subcellular localization of ACBP1. To further investigate the subcellular localization of ACBP2, we fused ACBP2 translationally in-frame to GFP. By means of particle gene bombardment, ACBP2-GFP and ACBP1-GFP fusion proteins were observed transiently expressed at the plasma membrane and at the endoplasmic reticulum in onion epidermal cells. GFP fusions with deletion derivatives of ACBP1 or ACBP2 lacking the transmembrane domain were impaired in membrane targeting. Our investigations also showed that when the transmembrane domain of ACBP1 or that of ACBP2 was fused with GFP, the fusion protein was targeted to the plasma membrane, thereby establishing their role in membrane targeting. The localization of ACBP1-GFP is consistent with our previous observations using immunoelectron microscopy whereby ACBP1 was localized to the plasma membrane and vesicles. We conclude that ACBP2, like ACBP1, is a membrane protein that likely functions in membrane-associated acyl-CoA transfer/metabolism.  相似文献   

7.
The ability of purified rat liver and heart fatty acid binding proteins to bind oleoyl-CoA and modulate acyl-CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart fatty acid binding protein was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver fatty acid binding protein has a single binding site acyl-CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl-CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver fatty acid binding protein stimulated acyl-CoA production, whereas that from heart did not stimulate production over control values. 14C-labeled fatty acid-fatty acid binding protein complexes were prepared, incubated with membranes, and acyl-CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl-CoA in the presence of liver fatty acid binding protein but in the presence of heart fatty acid binding protein, only 45% of the fatty acid was converted. Liver but not heart fatty acid binding protein bound the acyl-CoA formed and removed it from the membranes. The amount of product formed was not changed by additional membrane, enzyme cofactors, or incubation time. Additional liver fatty acid binding protein was the only factor found that stimulated product formation. Acyl-CoA hydrolase activity was also shown in the absence of ATP and CoA. These studies suggest that liver fatty acid binding protein can increase the amount of acyl-CoA by binding this ligand, thereby removing it from the membrane and possibly aiding transport within the cell.  相似文献   

8.
The carnitine palmitoyltransferase activity of various subcellular preparations measured with octanoyl-CoA as substrate was markedly increased by bovine serum albumin at low M concentrations of octanoyl-CoA. However, even a large excess (500 M) of this acyl-CoA did not inhibit the activity of the mitochondrial outer carnitine palmitoyltransferase, a carnitine palmitoyltransferase isoform that is particularly sensitive to inhibition by low M concentrations of palmitoyl-CoA. This bovine serum albumin stimulation was independent of the salt activation of the carnitine palmitoyltransferase activity. The effects of acyl-CoA binding protein (ACBP) and the fatty acid binding protein were also examined with palmitoyl-CoA as substrate. The results were in line with the findings of stronger binding of acyl-CoA to ACBP but showed that fatty acid binding protein also binds acyl-CoA esters. Although the effects of these proteins on the outer mitochondrial carnitine palmitoyltransferase activity and its malonyl-CoA inhibition varied with the experimental conditions, they showed that the various carnitine palmitoyltransferase preparations are effectively able to use palmitoyl-CoA bound to ACBP in a near physiological molar ratio of 1:1 as well as that bound to the fatty acid binding protein. It is suggested that the three proteins mentioned above effect the carnitine palmitoyltransferase activities not only by binding of acyl-CoAs, preventing acyl-CoA inhibition, but also by facilitating the removal of the acylcarnitine product from carnitine palmitoyltransferase. These results support the possibility that the acyl-CoA binding ability of acyl-CoA binding protein and of fatty acid binding protein have a role in acyl-CoA metabolismin vivo.Abbreviations ACBP acyl-CoA binding protein - BSA bovine serum albumin - CPT carnitine palmitoyltransferase - CPT0 malonyl-CoA sensitive CPT of the outer mitochondrial membrane - CPT malonyl-CoA insensitive CPT of the inner mitochondrial membrane - OG octylglucoside - OMV outer membrane vesicles - IMV inner membrane vesicles Affiliated to the Department of Experimental Medicine, University of Montreal  相似文献   

9.
10.
11.
Although acyl-CoA binding protein (ACBP) stimulates utilization of long-chain fatty acyl-CoA by a variety of membrane-bound enzymes, it is not known whether ACBP directly interacts with membranes. To test this hypothesis, mouse recombinant (mr) ACBP was engineered to contain the native mouse ACBP amino acid sequence expressed as a fusion protein at high levels (>150 mg/L) in Escherichia coli. Purification and cleavage of the fusion tag resulted in mrACBP identical to native ACBP as shown by mass (10000.5 Da) and amino acid sequence (peptide mapping after proteolysis) determined by matrix-assisted laser desorption time of flight (MALDI-TOF) mass spectroscopy. The mrACBP was functionally active as shown by binding of cis-parinaroyl-CoA with high affinity, K(d) = 12 +/- 2 nM, at a single binding site, stimulating oleoyl-CoA utilization by microsomal glycerol-3-phosphate acyltransferase 3.2-fold and protecting oleoyl-CoA from microsomal acyl-CoA hydrolase. Direct interaction of mrACBP with membranes was demonstrated by two independent methods: (i) Circular dichroism showed an 8% increase in alpha-helix content of mrACBP in the presence of anionic phospholipid-rich, but not neutral, small unilamellar vesicles (SUV). (ii) Membrane filtration confirmed that mrACBP bound to anionic phospholipid-rich SUV but only weakly interacted with neutral SUV or large unilamellar vesicles (LUV), regardless of charge. (iii) The mrACBP-oleoyl-CoA complex transferred 2-3-fold more oleoyl-CoA to anionic phospholipid-rich SUV than to anionic phospholipid-rich LUV and neutral SUV or LUV. Conversely, mrACBP extracted less oleoyl-CoA from anionic phospholipid-rich SUV. Taken together, these data indicated for the first time that mrACBP interacted preferentially with anionic phospholipid-rich, highly curved membranes to facilitate transfer of ACBP-bound ligands.  相似文献   

12.
Identification of an interleukin-1 beta binding protein in human plasma   总被引:5,自引:0,他引:5  
J.A. Eastgate  J.A. Symons  G.W. Duff   《FEBS letters》1990,260(2):217-219
A covalent cross-linking technique was used to bind iodinated interleukin-1 (IL1) alpha and beta to plasma proteins. One specific IL1 beta binding protein was observed, that when cross-linked to 125I-ILl beta migrated to approximately 60 kDa on SDS-PAGE. The protein did not bind IL1 alpha. The 43 -kDa protein was partially purified using a wheat germ agglutinin affinity column. The isolated factor again specifically bound IL1 beta, and appeared to consist of single chain glycoprotein. The protein was heat stable and had a rapid association time with IL1 beta. This protein may be an important carrier molecule for IL1 beta in vivo.  相似文献   

13.
14.
Both enzymatic and autocatalytic mechanisms have been proposed to account for protein thioacylation (commonly known as palmitoylation). Acyl-CoA binding proteins (ACBP) strongly suppress non-enzymatic thioacylation of cysteinyl-containing peptides by long-chain acyl-CoAs. At physiological concentrations of ACBP, acyl-CoAs, and membrane lipids, the rate of spontaneous acylation is expected to be too slow to contribute significantly to thioacylation of signaling proteins in mammalian cells (Leventis et al., Biochemistry 36 (1997) 5546-5553). Here we characterized the effects of ACBP on enzymatic thioacylation. A protein S-acyltransferase activity previously characterized using G-protein alpha-subunits as a substrate (Dunphy et al., J. Biol. Chem., 271 (1996) 7154-7159), was capable of thioacylating short lipid-modified cysteinyl-containing peptides. The minimum requirements for substrate recognition were a free cysteine thiol adjacent to a hydrophobic lipid anchor, either myristate or farnesyl isoprenoid. PAT activity displayed specificity for the acyl donor, efficiently utilizing long-chain acyl-CoAs, but not free fatty acid or S-palmitoyl-N-acetylcysteamine. ACBP only modestly inhibited enzymatic thioacylation of a myristoylated peptide or G-protein alpha-subunits under conditions where non-enzymatic thioacylation was reduced to background. Thus, protein S-acyltransferase remains active in the presence of physiological concentrations of ACBP and acyl-CoA in vitro and is likely to represent the predominant mechanism of thioacylation in vivo.  相似文献   

15.
It is well known that cellular function declines with age. Since phosphatidic acid (PtdOH) biosynthesis is central to the generation of membrane phospholipids, the hypothesis that aging decreases PtdOH biosynthesis was tested. Glycerol-3-phosphate acyltransferase (GPAT) and lysophosphatidic acid acyltransferase (LAT) activities were examined in isolated mitochondria and microsomes from young and old rat liver. The results show that mitochondrial GPAT preference for palmitoyl-CoA over oleoyl-CoA was only observed if albumin or acyl-CoA binding protein (ACBP) were present in the assay in the young rats. Furthermore, mitochondrial GPAT activity was significantly reduced in the presence of albumin and ACBP in aged mitochondria using palmitoyl-CoA as the substrate. These data show, for the first time, that mitochondrial GPAT acyl-CoA preference is due to the presence of a protein that binds acyl-CoAs, not the enzyme itself, and that aging significantly reduces mitochondrial GPAT activity.  相似文献   

16.
Human short-chain acyl-CoA dehydrogenase (hSCAD) catalyzes the first matrix step in the mitochondrial beta-oxidation cycle for substrates with four and six carbons. Previous studies have shown that the act of substrate/product binding induces a large enzyme potential shift in acyl-CoA dehydrogenases. The objective of this work was to examine the thermodynamic regulation of this process through direct characterization of the electrochemical properties of hSCAD using spectroelectrochemical methodology. A large amount of substrate activation was observed in the enzymatic reaction of hSCAD (+33 mV), the greatest magnitude measured in any acyl-CoA dehydrogenase to date. To examine the role of the substrate as well as the product in electron transfer by hSCAD, a catalytic base mutation (E368Q) was constructed. The E368Q mutation inactivates the reductive and oxidative pathways such that the individual effects of substrate and product binding on the redox potential can be investigated. Optimal substrate (butyryl-CoA) was seen to shift the flavin redox potential slightly more positive (+38 mV) than did optimal product (crotonyl-CoA) (+31 mV), a finding opposite of that observed in another short-chain enzyme, bacterial SCAD. These results indicate that substrate redox activation occurs in hSCAD leading to a large enzyme midpoint potential shift. Substrate binding in hSCAD appears to make a larger contribution than does product to thermodynamic modulation.  相似文献   

17.
18.
Outer membrane protein As (OmpAs) are highly conserved proteins within the Enterobacteriaceae family. OmpA contributes to the maintenance of structural membrane integrity and invasion into mammalian cells. In Escherichia coli K1 OmpA also contributes to serum resistance and is involved in the virulence of the bacterium. Here we describe the identification of an OmpA-like protein in Neisseria gonorrhoeae (Ng-OmpA). We show that the gonococcal OmpA-like protein, similarly to E. coli OmpA, plays a significant role in the adhesion and invasion into human cervical carcinoma and endometrial cells and is required for entry into macrophages and intracellular survival. Furthermore, the isogenic knockout ompA mutant demonstrates reduced recovery in a mouse model of infection when compared with the wild-type strain, suggesting that Ng-OmpA plays an important role in the in vivo colonization. All together, these data suggest that the newly identified surface exposed protein Ng-OmpA represents a novel virulence factor of gonococcus.  相似文献   

19.
Antisense transcripts at the EMX2 locus in human and mouse   总被引:2,自引:0,他引:2  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号