共查询到20条相似文献,搜索用时 0 毫秒
1.
An element in human U6 RNA destabilizes the U4/U6 spliceosomal RNA complex. 总被引:3,自引:3,他引:3
下载免费PDF全文

Large-scale changes in RNA secondary structure, such as those that occur in some of the spliceosomal RNAs during pre-mRNA splicing, have been proposed to be catalyzed by ATP-dependent RNA helicases. Here we show that deproteinized human U4/U6 spliceosomal RNA complex, which has the potential for extensive intermolecular base pairing, contains a cis-acting element that promotes its dissociation into free U4 and U6 RNAs. The destabilzing element corresponds to the bae of putative intramolecular stem in U6 RNA that includes the 3' three-quarters of the molecule. Oligonucleotides expected to compete for U6 RNA 3' stem formation promote assembly of the human U4/U6 RNA complex under conditions that otherwise result in dissociation of the U4/U6 complex. Truncation of the putative 3' stem-forming sequences in U6 RNA by oligonucleotide-directed RNase H cleavage increases the melting temperature of the U4/U6 RNA complex by almost 20 degree C, to a level commensurate with its intermolecular base-pairing potential. We conclude that the stability of the competing human U6 RNA intramolecular 3' stem, combined with a low activation energy for conformational rearrangement, causes the human U4/U6 RNA complex to be intrinsically unstable despite its base-pairing potential. Therefore a helicase activity may not be necessary for disassembly of the human U4/U6 complex during activation of the spliceosome. We propose that a previously identified base-pairing interaction between U6 and U2 RNAs may stabilize the human U4/U6 RNA complex by antagonizing U6 RNA 3' stem formation. 相似文献
2.
A small nucleolar guide RNA functions both in 2'-O-ribose methylation and pseudouridylation of the U5 spliceosomal RNA 总被引:2,自引:0,他引:2
In eukaryotes, two distinct classes of small nucleolar RNAs (snoRNAs), namely the fibrillarin-associated box C/D snoRNAs and the Gar1p-associated box H/ACA snoRNAs, direct the site-specific 2'-O-ribose methylation and pseudouridylation of ribosomal RNAs (rRNAs), respectively. We have identified a novel evolutionarily conserved snoRNA, called U85, which possesses the box elements of both classes of snoRNAs and associates with both fibrillarin and Gar1p. In vitro and in vivo pseudouridylation and 2'-O-methylation experiments provide evidence that the U85 snoRNA directs 2'-O-methylation of the C45 and pseudouridylation of the U46 residues in the invariant loop 1 of the human U5 spliceosomal RNA. The U85 is the first example of a snoRNA that directs modification of an RNA polymerase II-transcribed spliceosomal RNA and that functions both in RNA pseudouridylation and 2'-O-methylation. 相似文献
3.
4.
Mougin A Gottschalk A Fabrizio P Lührmann R Branlant C 《Journal of molecular biology》2002,317(5):631-649
The U4/U6.U5 tri-snRNP is a key component of spliceosomes. By using chemical reagents and RNases, we performed the first extensive experimental analysis of the structure and accessibility of U4 and U6 snRNAs in tri-snRNPs. These were purified from HeLa cell nuclear extract and Saccharomyces cerevisiae cellular extract. U5 accessibility was also investigated. For both species, data demonstrate the formation of the U4/U6 Y-shaped structure. In the human tri-snRNP and U4/U6 snRNP, U6 forms the long range interaction, that was previously proposed to be responsible for dissociation of the deproteinized U4/U6 duplex. In both yeast and human tri-snRNPs, U5 is more protected than U4 and U6, suggesting that the U5 snRNP-specific protein complex and other components of the tri-snRNP wrapped the 5' stem-loop of U5. Loop I of U5 is partially accessible, and chemical modifications of loop I were identical in yeast and human tri-snRNPs. This reflects a strong conservation of the interactions of proteins with the functional loop I. Only some parts of the U4/U6 Y-shaped motif (the 5' stem-loop of U4 and helix II) are protected. Due to difference of protein composition of yeast and human tri-snRNP, the U6 segment linking the 5' stem-loop to the Y-shaped structure and the U4 central single-stranded segment are more accessible in the yeast than in the human tri-snRNP, especially, the phylogenetically conserved ACAGAG sequence of U6. Data are discussed taking into account knowledge on RNA and protein components of yeast and human snRNPs and their involvement in splicesome assembly. 相似文献
5.
6.
U6 RNA is an abundant small nuclear RNA (snRNA) required for splicing of pre-mRNAs. In mammalian cells, the genes for U1 to U4 snRNAs consist of multigene families ranging from 10 to 100 copies of real genes per haploid genome, and are transcribed by RNA polymerase II. In contrast, results obtained in this study indicate that U6 RNA, which is transcribed by RNA polymerase II and III, may be coded for in mouse cells by only two genes. These two U6 genes are at least 9 kb apart from each other, and the flanking sequences are highly conserved, indicating that the organization of U6 genes is similar to that observed for other mammalian U-snRNA genes.This investigation was supported by Grant GM 38320, awarded by the Department of Health and Human Services, United States Public Health Service. 相似文献
7.
The highly conserved internal stem-loop (ISL) of U6 spliceosomal RNA is unwound for U4/U6 complex formation during spliceosome assembly and reformed upon U4 release during spliceosome activation. The U6 ISL is structurally similar to Domain 5 of group II self-splicing introns, and contains a dynamic bulge that coordinates a Mg++ ion essential for the first catalytic step of splicing. We have analyzed the causes of growth defects resulting from mutations in the Saccharomyces cerevisiae U6 ISL-bulged nucleotide U80 and the adjacent C67-A79 base pair. Intragenic suppressors and enhancers of the cold-sensitive A79G mutation, which replaces the C-A pair with a C-G pair, suggest that it stabilizes the ISL, inhibits U4/U6 assembly, and may also disrupt spliceosome activation. The lethality of mutations C67A and C67G results from disruption of base-pairing potential between U4 and U6, as these mutations are fully suppressed by compensatory mutations in U4 RNA. Strikingly, suppressor analysis shows that the lethality of the U80G mutation is due not only to formation of a stable base pair with C67, as previously proposed, but also another defect. A U6-U80G strain in which mispairing with position 67 is prevented grows poorly and assembles aberrant spliceosomes that retain U1 snRNP and fail to fully unwind the U4/U6 complex at elevated temperatures. Our data suggest that the U6 ISL bulge is important for coupling U1 snRNP release with U4/U6 unwinding during spliceosome activation. 相似文献
8.
Structure of a self-splicing group II intron catalytic effector domain 5: parallels with spliceosomal U6 RNA 总被引:3,自引:3,他引:3
Domain 5 (D5) is absolutely required for all catalytic functions of group II introns. Here we describe the solution NMR structure, electrostatic calculations, and detailed magnesium ion-binding surface of D5 RNA from the Pylaiella littoralis large ribosomal RNA intron (D5-PL). The overall structure consists of a hairpin capped by a GNRA tetraloop. The stem is divided into lower and upper helices of 8 and 5 bp, respectively, separated by an internal bulge. The D5-PL internal bulge nucleotides stack into the helical junction, resulting in a coupling between the bulge A25 and the closing base pair (G8-C27) of the lower helix. Comparison of the D5-PL structure to previously reported related structures indicates that our structure is most similar, in the helical regions, to the crystal structure of D5 from yeast Ai5gamma (D5-Ai5gamma) and the NMR structure of the U6 snRNA stem-loop region. Our structure differs in many respects from both the NMR and X-ray structures of D5-Ai5gamma in the bulge region. Electrostatic calculations and NMR chemical shift perturbation analyses reveal magnesium ion-binding sites in the tetraloop, internal bulge, and the AGC triad in the lower stem. Our results suggest that the structure, electrostatic environment, and the magnesium ion-binding sites within the tetraloop, bulge, and triad regions are conserved features of the splicing machinery of both the group II introns and the spliceosome that are likely key for catalytic function. 相似文献
9.
U6 spliceosomal RNA has a complex secondary structure that includes a highly conserved stemloop near the 3' end. The 3' stem is unwound when U6 RNA base-pairs with U4 RNA during spliceosome assembly, but likely reforms when U4 RNA leaves the spliceosome prior to the catalysis of splicing. A mutation in yeast U6 RNA that hyperstabilizes the 3' stem confers cold sensitivity and inhibits U4/U6 assembly as well as a later step in splicing. Here we show that extragenic suppressors of the 3' stem mutation map to the gene coding for splicing factor Prp24. The suppressor mutations are located in the second and third of three RNA-recognition motifs (RRMs) in Prp24 and are predicted to disrupt RNA binding. Mutations in U6 RNA predicted to destabilize a novel helix adjacent to the 3' stem also suppress the 3' stem mutation and enhance the growth defect of a suppressor mutation in RRM2 of Prp24. Both phenotypes are reverted by a compensatory mutation that restores pairing in the novel helix. These results are best explained by a model in which RRMs 2 and 3 of Prp24 stabilize an extended intramolecular structure in U6 RNA that competes with the U4/U6 RNA interaction, and thus influence both association and dissociation of U4 and U6 RNAs during the splicing cycle. 相似文献
10.
Small nuclear RNAs (snRNA), cofactors in the splicing of pre-mRNA, are highly modified. In this report the modification of human U4 RNA was studied using cell extracts and in vitro synthesized, and therefore unmodified, U4 RNA. The formation of pseudouridine (Psi) at positions 4, 72 and 79 in U4 RNA was dependent on an RNA-containing cofactor, since the activities in the extracts were micrococcal nuclease (MN) sensitive. Extracts were fractionated on glycerol gradients and there was a broad peak of reconstitution activity centered at 14 S. Reconstitution was not due to additional enzymatic activity, since the peak fraction was MN sensitive. Oligodeoxynucleotide-mediated RNase H digestion of U6 RNA in the extracts inhibited formation of Psi in U4 RNA. From glycerol gradient analysis we determined that exogenously added U4 RNA that is associated with U6 RNA (sedimentation velocity 16 S) was significantly higher in Psi content than U4 RNA not associated with U6 RNA (8 S). Competitive inhibitors of Psi synthases, 5-fluorouridine-containing (5-FU) wild-type and mutant U4 RNAs, were used to investigate formation of Psi in U4 RNA. Deletions and point mutations in these 5-FU-containing U4 RNAs affected their ability to inhibit Psi synthase in vitro. With the aid of these potent inhibitors it was determined that at least two separate activities modify the uridines at these positions. 相似文献
11.
Caijie Zhao Ravichandra Bachu Milena Popovi? Matthew Devany Michael Brenowitz J?rg C. Schlatterer Nancy L. Greenbaum 《RNA (New York, N.Y.)》2013,19(4):561-573
The complex formed between the U2 and U6 small nuclear (sn)RNA molecules of the eukaryotic spliceosome plays a critical role in the catalysis of precursor mRNA splicing. Here, we have used enzymatic structure probing, 19F NMR, and analytical ultracentrifugation techniques to characterize the fold of a protein-free biophysically tractable paired construct representing the human U2-U6 snRNA complex. Results from enzymatic probing and 19F NMR for the complex in the absence of Mg2+ are consistent with formation of a four-helix junction structure as a predominant conformation. However, 19F NMR data also identify a lesser fraction (up to 14% at 25°C) of a three-helix conformation. Based upon this distribution, the calculated ΔG for inter-conversion to the four-helix structure from the three-helix structure is approximately −4.6 kJ/mol. In the presence of 5 mM Mg2+, the fraction of the three-helix conformation increased to ∼17% and the Stokes radius, measured by analytical ultracentrifugation, decreased by 2%, suggesting a slight shift to an alternative conformation. NMR measurements demonstrated that addition of an intron fragment to the U2-U6 snRNA complex results in displacement of U6 snRNA from the region of Helix III immediately 5′ of the ACAGAGA sequence of U6 snRNA, which may facilitate binding of the segment of the intron adjacent to the 5′ splice site to the ACAGAGA sequence. Taken together, these observations indicate conformational heterogeneity in the protein-free human U2-U6 snRNA complex consistent with a model in which the RNA has sufficient conformational flexibility to facilitate inter-conversion between steps of splicing in situ. 相似文献
12.
G G Simpson G P Clark H M Rothnie W Boelens W van Venrooij J W Brown 《The EMBO journal》1995,14(18):4540-4550
In addition to their role in pre-mRNA splicing, the human spliceosomal proteins U1A and U2B" are important models of how RNP motif-containing proteins execute sequence-specific RNA binding. Genes encoding U1A and U2B" have been isolated from potato and thereby provide the only evolutionary comparison available for both proteins and represent the only full-length genes encoding plant spliceosomal proteins to have been cloned and characterized. In vitro RNA binding experiments revealed the ability of potato U2B" to interact with human U2A' to enhance sequence-specific binding and to distinguish cognate RNAs of either plant or animal origin. A comparison of the sequence of U1A and U2B" proteins indicated that multiple residues which could affect RNP motif conformation probably govern the specific distinction in RNA binding by these proteins. Since human U1A modulates polyadenylation in vertebrates, the possibility that plant U1A might be exploited in the characterization of this process in plants was examined. However, unlike vertebrate U1A, neither U1A from potato nor Arabidopsis bound their own mRNA and no evidence for binding to upstream efficiency elements in polyadenylation signals was obtained, suggesting that plant U1A is not involved in polyadenylation. 相似文献
13.
Sander B Golas MM Makarov EM Brahms H Kastner B Lührmann R Stark H 《Molecular cell》2006,24(2):267-278
In eukaryotes, pre-mRNA exons are interrupted by large noncoding introns. Alternative selection of exons and nucleotide-exact removal of introns are performed by the spliceosome, a highly dynamic macromolecular machine. U4/U6.U5 tri-snRNP is the largest and most conserved building block of the spliceosome. By 3D electron cryomicroscopy and labeling, the exon-aligning U5 snRNA loop I is localized at the center of the tetrahedrally shaped tri-snRNP reconstructed to approximately 2.1 nm resolution in vitrified ice. Independent 3D reconstructions of its subunits, U4/U6 and U5 snRNPs, show how U4/U6 and U5 combine to form tri-snRNP and, together with labeling experiments, indicate a close proximity of the spliceosomal core components U5 snRNA loop I and U4/U6 at the center of tri-snRNP. We suggest that this central tri-snRNP region may be the site to which the prespliceosomal U2 snRNA has to approach closely during formation of the catalytic core of the spliceosome. 相似文献
14.
15.
16.
17.
Mycoplasma capricolum, a parasitic prokaryote, contains several small stable RNAs, besides rRNAs and tRNAs. One of them, designated MCS4 RNA (125 nucleotides in length), has been isolated and sequenced. This RNA is abundant in the cell, and is encoded by two genes. Unexpectedly, MCS4 RNA has been found to reveal extensive sequence similarity to eukaryotic U6 snRNAs. This finding suggests that MCS4 and U6 snRNAs are derived from a common ancestral RNA that has existed before the divergence of prokaryotes and eukaryotes. 相似文献
18.
G G Simpson P Vaux G Clark R Waugh J D Beggs J W Brown 《Nucleic acids research》1991,19(19):5213-5217
U1 and U2snRNPs play key roles in pre-mRNA splicing. The interactions between the U1 and U2snRNP-specific proteins, U1A, U2A' and U2B' and their respective UsnRNAs are of interest both to elucidate their roles in splicing, and as models to study RNA-protein interactions. We have cloned a full-length cDNA, encoding U2B', from potato. This is the first report of a sequence for a plant UsnRNP protein. The plant U2B' sequence exhibits extensive similarity with the human U2B' protein at both the DNA and amino acid levels. The evolutionary conservation at the protein level, particularly in sequences implicated in determining specific binding to U2snRNA, suggests conservation of U2B' function from plants to man. The significance of amino acid substitutions in the RNP-80 motif with respect to U2snRNA binding in plants is discussed. 相似文献
19.
In metazoans, the E complex is operationally defined as an ATP-independent spliceosomal complex that elutes as a single peak on a gel filtration column and can be chased into spliced products in the presence of an excess of competitor pre-mRNA. The A complex is the first ATP-dependent functional spliceosomal complex. U1 snRNP first binds tightly to the 5'splice site in the E complex and U2 snRNP first binds tightly to the branch site in the A complex. In this study, we have generated and characterized a monoclonal antibody (mAb 4G8) directed against SAP 62, a component of U2 snRNP and a subunit of the essential mammalian splicing factor SF3a. We show that this antibody is highly specific for SAP 62, detecting only SAP 62 on Western blots and immunoprecipitating only SAP 62 from nuclear extracts. The anti-SAP 62 antibody also immunoprecipitates U2 snRNP and the A complex. Significantly, however, we find that the E complex is also efficiently immunoprecipitated by the anti-SAP 62 antibody. This antibody does not cross-react with any E complex-specific components, indicating that SAP 62 itself is associated with the E complex. To determine whether other U2 snRNP components are associated with the E complex, we used antibodies to the U2 snRNP proteins B"and SAP 155. These antibodies also specifically immunoprecipitate the E complex. These observations indicate that U2 snRNP is associated with the E complex. However, we find that U2 snRNP is not as tightly bound in the E complex as it is in the A complex. The possible significance of the weak association of U2 snRNP with the E complex is discussed. 相似文献