首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
T4病毒科由一类单股正链RNA病毒组成,分为松天蛾β样病毒属和松天蛾ω样病毒属。这2个属的病毒具有不同的基因组结构,β样病毒含单组分基因组,其结构蛋白由一亚基因组RNA表达; 而ω样病毒含双组分基因组,2个RNA分子分别编码复制酶蛋白和结构蛋白。在T4病毒基因组RNA 3′端有类似tRNA的二级结构。ω样病毒壳蛋白的氨基酸序列一致性高达66%~86%, 而β样病毒壳蛋白的氨基酸同源性则要低得多。在昆虫细胞中表达壳蛋白基因时都能形成病毒类似粒子。该文还介绍了T4病毒复制机理以及T4病毒与其他病毒的进化关系。  相似文献   

2.
草鱼呼肠孤病毒(grass carp reovirus, GCRV)为呼肠孤病毒科水生呼肠孤病毒属一新成员. 最新的基因组序列分析发现, GCRV与哺乳动物呼肠孤病毒(mammalian reovirus, MRV)具有高度的同源性. 为了解GCRV致病机理, 进行了分辨率达到17 Å的三维重构与衣壳蛋白特性研究. 结果表明: GCRV颗粒呈多层排列, 包括RNA核心与内壳层、中间层及外壳层. 由200个按T = 13对称排列的三聚体组成外衣壳, 其典型特征是在5次轴上出现三聚体缺失凹陷区, 暴露出中间层三聚体亚单位. 内壳层由120个单体组成, 按T = 1排列, 结构特点与呼肠孤病毒科成员内衣壳特征相一致. 衣壳蛋白电泳显示, GCRV颗粒含有7种蛋白(VP1-VP7)组分, 与MRV衣壳蛋白特性相近, 两者在衣壳结构组成上的相似性与基因组序列的高度同源性相吻合. 此结果对进一步研究GCRV与宿主细胞相互作用机理具有指导意义.  相似文献   

3.
猪瘟病毒囊膜糖蛋白E0的RNA酶活性及其研究进展   总被引:4,自引:0,他引:4  
王宁  付烈振  张楚瑜   《微生物学通报》1998,25(6):354-355
猪瘟病毒(CSFV,Classicalswinefevervirus)属于黄病毒科瘟病毒属,同属的成员还有牛病毒性腹泻病毒(BVDV)和羊的边界病病毒(BDV)。猪瘟病毒是一种有囊膜的单股正链RNA病毒,基因组大小约12.3kb,含有一个大的ORF,此ORF编码一个大的多聚蛋白,经宿主和病毒编码蛋白酶的共同作用,在共同翻译中和/或翻译后,将此多聚蛋白加工成病毒的结构蛋白和非结构蛋白.猪瘟病毒基因组的5'端编码病毒结构蛋白,即衣壳蛋白(C)和三个囊膜糖蛋白(E0、E1、E2)。其中E0和E2能够刺激机体产生中和抗体,并使猪获得免疫力[1,2].意外发…  相似文献   

4.
猪流行性腹泻病毒(porcine epidemic diarrhea virus, PEDV)是引起猪流行性腹泻(porcine epidemic diarrhea, PED)的病原体,给全世界养猪业造成了重大经济损失。PEDV共编码4个结构蛋白(S蛋白、M蛋白、N蛋白和E蛋白)、16个非结构蛋白(nsp1-16)和一个辅助性蛋白ORF3。这些蛋白质在病毒结构、感染宿主、复制和组装过程中发挥着重要功能,同时在逃逸宿主天然免疫方面起到重要作用。目前,对PEDV蛋白功能的研究主要集中在少数蛋白上,如S、M、ORF3和nsp1等。本文拟对PEDV的结构蛋白及非结构蛋白的研究进展作一综述,以期为PED的防治及PEDV的感染和致病机制研究提供一定的理论借鉴。  相似文献   

5.
非洲猪瘟病毒编码蛋白功能研究进展   总被引:3,自引:0,他引:3  
非洲猪瘟(African swine fever,ASF)是非洲猪瘟病毒(African swine fever virus,ASFV)感染家猪或野猪引起的一种急性、出血性、高度接触性传染病,其特征是病程短、高热和出血性病变,急性感染死亡率高达100%,严重威胁全球养猪业但目前尚未开发出有效的疫苗和治疗方法。ASFV是非洲猪瘟病毒科非洲猪瘟病毒属的唯一成员,为大型双链DNA病毒,主要在巨噬细胞胞质中复制,其基因组约170?193 kb,含有150?167个开放阅读框,编码150?200种蛋白质。目前已知功能的病毒编码蛋白约有50个,大部分为病毒的结构蛋白,仍有一半以上的ASFV编码蛋白功能尚不清楚。除结构蛋白以外,病毒含有完整的酶和与病毒转录有关的因子,编码调节宿主细胞功能及与病毒免疫逃逸相关的蛋白等。本文综述了ASFV的结构蛋白、非结构蛋白以及参与免疫逃逸等相关蛋白功能的研究进展,以期为ASFV病毒蛋白研究及疫苗研发提供相关借鉴。  相似文献   

6.
黄病毒科病毒是一类具有囊膜的RNA病毒,现包括黄病毒、瘟病毒及类丙型肝炎病毒三个属。该科的许多病毒均是引起人和动物一些严重疾病的病原,其基因组为一单股正链的RNA分子,分别编码病毒的结构蛋白和非结构蛋白,其中非结构蛋白对于病毒的复制及病毒与其宿主细胞的相互作用起着极为重要的作用。本文综述了该科病毒编码的非结构蛋白及其主要功能,旨在深入了解和研究该科病毒的复制规律,以有助于由该科病毒引起的许多严重病毒病的防治  相似文献   

7.
森林脑炎(TBE)病毒属黄病毒科,基因姐RNA含有单个开放阅读框架,5′端编码病毒的结构蛋白,3′端编码非结构蛋白。翻译成聚蛋白后,通过细胞和病毒编码的蛋白酶裂解产生单个的病毒蛋白。成熟的病毒是由两个相关的E和M膜蛋白脂质包膜所包围的立体对称的核衣壳组成。包膜E蛋白在病毒的感染周期中对细胞的识别和穿入细胞具有极其重要的功能,同时E蛋白诱导保护性的免疫反应,E蛋白内某一位点单个氨基酸的改变可引起病毒毒力的改变。因此,对TBE病毒分子生物学的研究有助于了解病毒与宿主细胞相互作用的机理,为病毒感染的特异性诊断、疫苗的研制和抗病毒药物的设计提供理论依据。  相似文献   

8.
探索了F蛋白缺失及核心蛋白(Core)二级结构改变对丙型肝炎病毒(HCV)复制和感染性的影响.利用定点突变方法,将J6JFH1的核心基因引进5个终止密码子以中断F蛋白的表达,从而获得F蛋白缺失的病毒复制子J6JFH1/ΔF.体外制备RNA转录体,并电穿孔转染Huh7.5.1细胞,采用免疫荧光、实时荧光定量PCR方法以及病毒感染等方法,观察F蛋白缺失对病毒复制、蛋白质表达及转染细胞上清感染性病毒颗粒产生的影响.在此基础上,构建5个单一突变病毒体,对HCV核心蛋白进行二级结构分析,观察核心蛋白二级结构对HCV复制和翻译的影响.结果显示,转染48 h后,J6JFH1/ΔF与野生型J6JFH1相比,J6JFH1/ΔF转染阳性细胞数明显降低,细胞内HCV RNA 水平降低约95%,J6JFH1/ΔF转染后不同时间点细胞上清中HCV RNA拷贝数和病毒颗粒也明显降低.5个单一突变体不影响核心基因二级结构,病毒在细胞内复制和感染性与野生型水平一致.J6JFH1/ΔF所产生的改变可能是由于5处突变导致核心基因二级结构改变而造成的.结果说明,HCV F蛋白缺失不影响病毒的复制翻译及病毒颗粒的包装释放,核心蛋白二级结构的改变对病毒复制和翻译则产生较大影响.  相似文献   

9.
呼肠病毒基因组片段S1 编码蛋白的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
呼肠病毒共有3个血清型,不同型之间S1片段编码蛋白的同源性小于26%,其它9个片段编码蛋白的同源性都在86%以上。S1片段是双顺反子,编码σ1和σls,这两个蛋白决定了呼肠病毒的感染性、致病性和毒力。本文综述了σ1、σ1s的结构与功能的研究进展。  相似文献   

10.
黄病毒属病毒是单股正链RNA病毒,病毒基因组编码至少三种结构蛋白(衣壳蛋白C、膜蛋白M和包膜蛋白E)和七种非结构蛋白。其中E蛋白是病毒的重要抗原成分,包含有中和抗原表位和型特异性抗原表位,决定了病毒的细胞嗜性和毒力,与病毒的吸附、穿入、致病等作用密切相关,并且具有血凝活性,能刺激机体产生中和抗体和血凝抑制抗体。研究E蛋白的结构与功能对于深入了解黄病毒致病机制和免疫应答特点,研发疫苗和特异性抗病毒药物均有重要的指导意义。为此,综述了近年来黄病毒E蛋白有关结构与功能的研究进展及其生物学意义。  相似文献   

11.
Chemical-enzymatic synthesis and cloning in Escherichia coli of double-stranded DNAs, coding for simple and complex antigenic determinants of foot-and-mouth disease virus (FMDV) strain A22, have been carried out. The simple antigenic determinants are a part of the viral coat protein VP1 (amino acid sequence 131-152 or 131-160) whereas the complex antigenic determinants comprise additionally the amino acid sequence 200-213 of VP1 linked to N-terminus of simple antigenic determinants through a tetrapeptide spacer Pro-Pro-Ser-Pro. Recombinant DNAs containing genes for antigenic determinants of FMDV fused with C-terminus of gene for human tumor necrosis factor (hrTNF) have been constructed. Expression of the hybrid genes and properties of the proteins coded were studied. All recombinant proteins were shown to interact specifically with polyclonal antibodies both against hrTNF and FMDV strain A22. The recombinant proteins produced by bacteria are perspective for study as a vaccine against FMDV.  相似文献   

12.
Tang X  Wu J  Sivaraman J  Hew CL 《Journal of virology》2007,81(12):6709-6717
White spot syndrome virus (WSSV) is a virulent pathogen known to infect various crustaceans. It has bacilliform morphology with a tail-like appendage at one end. The envelope consists of four major proteins. Envelope structural proteins play a crucial role in viral infection and are believed to be the first molecules to interact with the host. Here, we report the localization and crystal structure of major envelope proteins VP26 and VP28 from WSSV at resolutions of 2.2 and 2.0 A, respectively. These two proteins alone account for approximately 60% of the envelope, and their structures represent the first two structural envelope proteins of WSSV. Structural comparisons among VP26, VP28, and other viral proteins reveal an evolutionary relationship between WSSV envelope proteins and structural proteins from other viruses. Both proteins adopt beta-barrel architecture with a protruding N-terminal region. We have investigated the localization of VP26 and VP28 using immunoelectron microscopy. This study suggests that VP26 and VP28 are located on the outer surface of the virus and are observed as a surface protrusion in the WSSV envelope, and this is the first convincing observation for VP26. Based on our studies combined with the literature, we speculate that the predicted N-terminal transmembrane region of VP26 and VP28 may anchor on the viral envelope membrane, making the core beta-barrel protrude outside the envelope, possibly to interact with the host receptor or to fuse with the host cell membrane for effective transfer of the viral infection. Furthermore, it is tempting to extend this host interaction mode to other structural viral proteins of similar structures. Our finding has the potential to extend further toward drug and vaccine development against WSSV.  相似文献   

13.
Antibodies induced against intact foot-and-mouth disease Virus (FMDV) particles bind to the retro-inverso analogue of fragment 141–159 of the viral coat protein VP1 of FMDV, variant A, equally well as to the parent peptide. A conformational investigation of this retro-inverso peptide was carried out by nmr spectroscopy and restrained molecular modeling in order to identify the structural basis for the antigenic mimicry between these retro-inverso and parent peptides. In 100% trifluoroethanol a well-defined left-handed α-helical region exists from residue 150 to residue 159, which is consistently present in all conformational families obtained from restrained modelling. A less-defined left-handed helical region is present in the tract 144–148, which is also consistent for all structures. Conformational flexibility exists about Gly149, which leads to two types of structures, either bent or linear. In the bent structures, a three-residue inverse tight turn is found, which can be classified as an inverse γ-turn centered at Gly149. The overall structural features of the retro-inverso peptide are shown to be similar to those of the parent L-peptide. The two molecules, however, are roughly mirror images because they share inherently chiral secondary structure elements. By comparing these conformational conclusions with the x-ray structure of the Fab complex of a corresponding VP1 antigenic fragment, a rationale is proposed to account for the topological requirements of specific recognition that are implied by the equivalent antigenic activity of the natural and retro-inverso compounds. © 1997 John Wiley & Sons, Inc. Biopoly 41: 569–590, 1997.  相似文献   

14.
以SVDV外壳蛋白基因序列为基础,采用Chou-Fasman法、Garnier-Robson 法和Karplus-Schulz法预测蛋白质的二级结构;按Kyte-Doolittle方案、Emini方案和Jameson-Wolf方案预测SVDV外壳蛋白的B细胞表位。预测结果表明,SVDV外壳蛋白的二级结构较为复杂,含有较多的转角和无规则卷曲等柔性区域以及α-螺旋和β-折叠区段;SVDV外壳蛋白的VP1、VP2和VP3上均有多个区域为B细胞优势表位,其中,VP1蛋白的B细胞表位优势区域比VP2和VP3蛋白的多,与已鉴定的B细胞表位相比较,该方法预测的结果有较高的准确度。为实验确定SVDV外壳蛋白的B细胞表位和反向疫苗学设计提供理论基础。  相似文献   

15.
The molecular basis of the temperature-sensitive (ts) phenotype of P3/Sabin, the type 3 vaccine strain of poliovirus, was investigated in light of the known correlation between ts and attenuation phenotypes. A phenylalanine at residue 91 of the capsid protein VP3 was a major determinant of both phenotypes, and attenuation and ts could be reverted by the same second-site mutations. The ts phenotype was due to a defect early in the assembly process that inhibited the formation of 14S pentamers, empty capsids, and virions. It was further shown that capsid proteins that were not incorporated into higher-order structures had short half-lives at the nonpermissive temperature.  相似文献   

16.
Antigenic drift and shift involving the surface proteins of Influenza virus gave rise to new strains that caused epidemics affecting millions of people worldwide over the last hundred years. Variations in the membrane proteins like Hemagglutinin (HA) and Neuraminidase (NA) necessitates new vaccine strains to be updated frequently and poses challenge to effective vaccine design. Though the HA protein, the primary target of the human immune system, has been well studied, reports on the antigenic variability in the other membrane protein NA are sparse. In this paper we investigate the molecular basis of antigenic drift in the NA protein of the Influenza A/H3N2 vaccine strains between 1968 and 2009 and proceed to establish correlation between antigenic drift and antigen-antibody interactions. Sequence alignments and phylogenetic analyses were carried out and the antigenic variability was evaluated in terms of antigenic distance. To study the effects of antigenic drift on the protein structures, 3D structure of NA from various strains were predicted. Also, rigid body docking protocol has been used to study the interactions between these NA proteins and antibody Mem5, a 1998 antibody.  相似文献   

17.
Rotaviruses are the main cause of infantile viral gastroenteritis worldwide leading to approximately 500,000 deaths each year mostly in the developing world. For unknown reasons, live attenuated viruses used in classical vaccine strategies were shown to be responsible for intussusception (a bowel obstruction). New strategies allowing production of safe recombinant non-replicating rotavirus candidate vaccine are thus clearly needed. In this study we utilized transgenic rabbit milk as a source of rotavirus antigens. Individual transgenic rabbit lines were able to produce several hundreds of micrograms per ml of secreted recombinant VP2 and VP6 proteins in their milk. Viral proteins expressed in our model were immunogenic and were shown to induce a significant reduction in viral antigen shedding after challenge with virulent rotavirus in the adult mouse model. To our knowledge, this is the first report of transgenic mammal bioreactors allowing the rapid co-production of two recombinant viral proteins in milk to be used as a vaccine.  相似文献   

18.
Three-dimensional structure of rotavirus   总被引:40,自引:0,他引:40  
  相似文献   

19.
Foot-and-mouth disease (FMD) is an acute and highly contagious disease caused by foot-and-mouth disease virus (FMDV) that can affect cloven-hoofed animal species, leading to severe economic losses worldwide. Therefore, the development of a safe and effective new vaccine to prevent and control FMD is both urgent and necessary. In this study, we developed a chimeric virus-like particle (VLP) vaccine candidate for serotype O FMDV and evaluated its protective immunity in guinea pigs. Chimeric VLPs were formed by the antigenic structural protein VP1 from serotype O and segments of the viral capsid proteins (VP2, VP3, and VP4) from serotype A. The chimeric VLPs elicited significant humoral and cellular immune responses with a higher level of anti-FMDV antibodies and cytokines than the control group. Furthermore, four of the five guinea pigs vaccinated with the chimeric VLPs were completely protected against challenge with 100 50% guinea pig infectious doses (GPID50) of the virulent FMDV strain O/MAY98. These data suggest that chimeric VLPs are potential candidates for the development of new vaccines against FMDV.  相似文献   

20.
Xu W  Han L  Lin Z 《PloS one》2011,6(3):e18016
The antigenic structure of the membrane protein hemagglutinin (HA) from the 2009 A(H1N1) influenza virus was dissected with a high-throughput screening method using complex antisera. The approach involves generating yeast cell libraries displaying a pool of random peptides of controllable lengths on the cell surface, followed by one round of fluorescence-activated cell sorting (FACS) against antisera from mouse, goat and human, respectively. The amino acid residue frequency appearing in the antigenic peptides at both the primary sequence and structural level was determined and used to identify "hot spots" or antigenically important regions. Unexpectedly, different antigenic structures were seen for different antisera. Moreover, five antigenic regions were identified, of which all but one are located in the conserved HA stem region that is responsible for membrane fusion. Our findings are corroborated by several recent studies on cross-neutralizing H1 subtype antibodies that recognize the HA stem region. The antigenic peptides identified may provide clues for creating peptide vaccines with better accessibility to memory B cells and better induction of cross-neutralizing antibodies than the whole HA protein. The scheme used in this study enables a direct mapping of the antigenic regions of viral proteins recognized by antisera, and may be useful for dissecting the antigenic structures of other viral proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号