共查询到20条相似文献,搜索用时 15 毫秒
1.
Rice (Oryza sativa L.) seedlings stressed with CdCl2 (0.5 mM or 50 μM) showed typical Cd toxicity (leaf chlorosis, decrease in chlorophyll content, or increase in H2O2 and malondialdehyde contents). Rice seedlings pretreated with heat shock at 45°C (HS) for 2 or 3 h were protected against
subsequent Cd stress. Rice seedlings pretreated with HS had similar Cd concentration in leaves caused by CdCl2 as those non-HS. The content of H2O2 increased in leaves 1 h after HS exposure. However, APX and GR activities were higher in HS-treated leaves than their respective
control, and it occurred after 2 h of HS treatment. Pretreatment of rice seedlings with H2O2 under non-HS conditions resulted in an increase in APX, GR, and CAT activities and protected rice seedlings from subsequent
Cd stress. HS-induced H2O2 production and protection against subsequent Cd stress can be counteracted by imidazole, an inhibitor of NADPH oxidase complex.
Results of the present study suggest that early accumulation of H2O2 during HS signals the increase in APX and GR activities, which in turn prevents rice seedlings from Cd-caused oxidative damage. 相似文献
2.
The compound LY231617 [2,6-bis(1,1-dimethylethyl)-4-[[(1-ethyl)amino]methyl]phenol hydrochloride] has been reported to afford significant neuroprotection against hydrogen peroxide (H2O2)-induced toxicity in vitro and global ischemia in vivo. We now report on further mechanistic studies of H2O2 toxicity and protection by LY231617. Brief exposure to H2O2 (15 min) elicited an oxidative insult comparable with that generated by overnight treatment. H2O2-mediated cellular degeneration was characterized using lactate dehydrogenase (LDH) release, changes in total glutathione, and a new marker of oxidative stress, 8-epiprostaglandin F2alpha (8-isoprostane). LY231617 attenuated H2O2-mediated degeneration under a variety of exposure conditions, including a more clinically relevant posttreatment paradigm. Levels of 8-isoprostane paralleled LDH release under various treatment paradigms of 100 microM H2O2 +/- 5 microM drug. In contrast, despite affording significant protection, LY231617 had modest to no effects on cellular levels of glutathione. Taken together, these results are consistent with a membrane site of action for LY231617 and suggest that the compound affords cytoprotection via its antioxidant properties. 相似文献
3.
The role of hydrogen peroxide (H(2)O(2)) in abscisic acid (ABA)-induced anthocyanin accumulation in detached and intact leaves of rice seedlings was investigated. Treatment with ABA resulted in an accumulation of anthocyanins in detached rice leaves. Dimethylthiourea, a chemical trap for H(2)O(2), was observed to be effective in inhibiting ABA-induced accumulation of anthocyanins. Inhibitors of NADPH oxidase (diphenyleneiodonium chloride and imidazole), phosphatidylinositol 3-kinase (wortmannin and LY 294002), and a donor of nitric oxide (N-tert-butyl-alpha-phenylnitrone), which have previously been shown to prevent ABA-induced H(2)O(2) accumulation in detached rice leaves, inhibited ABA-induced anthocyanin increase. Exogenous application of H(2)O(2), however, was found to increase the anthocyanin content of detached rice leaves. In terms of H(2)O(2) accumulation, intact (attached) leaves of rice seedlings of cultivar Taichung Native 1 (TN1) are ABA sensitive and those of cultivar Tainung 67 (TNG67) are ABA insensitive. Upon treatment with ABA, H(2)O(2) and anthocyanins accumulated in leaves of TN1 seedlings but not in leaves of TNG67. Our results, obtained from detached and intact leaves of rice seedlings, suggest that H(2)O(2) is involved in ABA-induced anthocyanin accumulation in this species. 相似文献
4.
Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxide accumulation 总被引:4,自引:0,他引:4
The production of H2O2 in detached rice leaves of Taichung Native 1 (TN1) caused by CdCl2 was investigated. CdCl2 treatment resulted in H2O2 production in detached rice leaves. Diphenyleneiodonium chloride (DPI) and imidazole (IMD), inhibitors of NADPH oxidase (NOX),
prevented CdCl2-induced H2O2 production, suggesting that NOX is a H2O2-genearating enzyme in CdCl2-treated detached rice leaves. Phosphatidylinositol 3-kinase inhibitors wortmanin (WM) or LY294002 (LY) inhibited CdCl2-inducted H2O2 production in detached rice leaves. Exogenous H2O2 reversed the inhibitory effect of WM or LY, suggesting that phosphatidylinositol 3-phosphate is required for Cd-induced H2O2 production in detached rice leaves. Nitric oxide donor sodium nitroprusside (SNP) was also effective in reducing CdCl2-inducing accumulation of H2O2 in detached rice leaves. Cd toxicity was judged by the decrease in chlorophyll content. The results indicated that DPI, IMD,
WM, LY, and SNP were able to reduce Cd-induced toxicity of detached rice leaves. Twelve-day-old TN1 and Tainung 67 (TNG67)
rice seedlings were treated with or without CdCl2. In terms of Cd toxicity (leaf chlorosis), it was observed that rice seedlings of cultivar TN1 are Cd-sensitive and those
of cultivar TNG67 are Cd-tolerant. On treatment with CdCl2, H2O2 accumulated in the leaves of TN1 seedlings but not in the leaves of TNG67. Prior exposure of TN1 seedlings to 45oC for 3 h resulted in a reduction of H2O2 accumulation, as well as Cd tolerance of TN1 seedlings treated with CdCl2. The results strongly suggest that Cd toxicity of detached leaves and leaves attached to rice seedlings are due to H2O2 accumulation. 相似文献
5.
Ammonium is a central intermediate in the nitrogen metabolism of plants. We have previously shown that methyl jasmonate (MJ) not only increases the content of H(2)O(2), but also causes NH(4)(+) accumulation in rice leaves. More recently, H(2)O(2) is thought to constitute a general signal molecule participating in the recognition of and the response to stress factors. In this study, we examined the role of H(2)O(2) as a link between MJ and subsequent NH(4)(+) accumulation in detached rice leaves. MJ treatment resulted in an accumulation of NH(4)(+) in detached rice leaves, which was preceded by a decrease in the activity of glutamine synthetase (GS) and an increase in the specific activities of protease and phenylalanine ammonia-lyase (PAL). GS, PAL, and protease appear to be the enzymes responsible for the accumulation of NH(4)(+) in MJ-treated detached rice leaves. Dimethylthiourea (DMTU), a chemical trap for H(2)O(2), was observed to be effective in inhibiting MJ-induced NH(4)(+) accumulation in detached rice leaves. Scavengers of free radicals (sodium benzoate, SB, and glutathione, GSH), nitric oxide donor (N-tert-butyl-alpha-phenylnitrone, PBN), the inhibitors of NADPH oxidase (diphenyleneiodonium chloride, DPI, and imidazole, IMD), and inhibitors of phosphatidylinositol 3-kinase (wortmannin, WM, and LY 294002, LY), which have previously been shown to prevent MJ-induced H(2)O(2) production in detached rice leaves, inhibited MJ-induced NH(4)(+) accumulation. Similarly, changes in enzymes responsible for NH(4)(+) accumulation induced by MJ were observed to be inhibited by DMTU, SB, GSH, PBN DPI, IMD, WM, or LY. Seedlings of rice cultivar Taichung Native 1 (TN1) are jasmonic acid (JA)-sensitive and those of cultivar Tainung 67 (TNG67) are JA-insensitive. On treatment with JA, H(2)O(2) accumulated in the leaves of TN1 seedlings but not in the leaves of TNG67. Ethylene action inhibitor, silver thiosulfate, was observed to inhibit MJ- and abscisic acid-induced accumulation of NH(4)(+) and changes in enzymes responsible for NH(4)(+) accumulation in detached rice leaves, suggesting that the action of MJ and ABA is ethylene dependent. 相似文献
6.
《Journal of Plant Interactions》2013,8(1):647-654
The aim of this study is to investigate the impacts of exogenous salicylic acid (SA) pretreatments on hydrogen peroxide (H2O2) accumulation, protein oxidation, and H2O2-scavenging enzymes in leaves of Cd-treated flax seedlings. Cd-enhanced H2O2 levels were related to increased activities of guaiacol peroxidase (POX, EC 1.11.1.7) and ascorbate peroxidase (APX, EC 1.11.1.11), and were independent of changes in catalase (CAT, EC 1.11.1.6) and superoxide dismutase (SOD, EC 1.15.1.1) activities. In control flax seedlings, exogenous SA pretreatments inhibited the activity of CAT, resulted in an enhanced production of H2O2 suggesting that SA requires H2O2 to initiate an oxidative stress. However, although leaves of Cd-free flax seedlings pretreated with SA accumulated in vivo H2O2 by 1.2-fold compared with leaves of Cd-only exposed ones; the damage to growth and proteins after the exposure to Cd was significantly less, indicating that SA can regulate the Cd-induced oxidative stress. Moreover, the Cd-treated seedlings primed with SA exhibited a higher level of total antioxidant capacities and increased activities of H2O2-detoxifying enzymes. 相似文献
7.
Bruno-Bárcena JM Andrus JM Libby SL Klaenhammer TR Hassan HM 《Applied and environmental microbiology》2004,70(8):4702-4710
In living organisms, exposure to oxygen provokes oxidative stress. A widespread mechanism for protection against oxidative stress is provided by the antioxidant enzymes: superoxide dismutases (SODs) and hydroperoxidases. Generally, these enzymes are not present in Lactobacillus spp. In this study, we examined the potential advantages of providing a heterologous SOD to some of the intestinal lactobacilli. Thus, the gene encoding the manganese-containing SOD (sodA) was cloned from Streptococcus thermophilus AO54 and expressed in four intestinal lactobacilli. A 1.2-kb PCR product containing the sodA gene was cloned into the shuttle vector pTRK563, to yield pSodA, which was functionally expressed and complemented an Escherichia coli strain deficient in Mn and FeSODs. The plasmid, pSodA, was subsequently introduced and expressed in Lactobacillus gasseri NCK334, Lactobacillus johnsonii NCK89, Lactobacillus acidophilus NCK56, and Lactobacillus reuteri NCK932. Molecular and biochemical analyses confirmed the presence of the gene (sodA) and the expression of an active gene product (MnSOD) in these strains of lactobacilli. The specific activities of MnSOD were 6.7, 3.8, 5.8, and 60.7 U/mg of protein for L. gasseri, L. johnsonii, L. acidophilus, and L. reuteri, respectively. The expression of S. thermophilus MnSOD in L. gasseri and L. acidophilus provided protection against hydrogen peroxide stress. The data show that MnSOD protects cells against hydrogen peroxide by removing O(2)(.-) and preventing the redox cycling of iron. To our best knowledge, this is the first report of a sodA from S. thermophilus being expressed in other lactic acid bacteria. 相似文献
8.
Cadmium toxicity and translocation in rice seedlings are reduced by hydrogen peroxide pretreatment 总被引:1,自引:0,他引:1
A hydroponic experiment was carried out to study the role of hydrogen peroxide (H2O2) in enhancing tolerance and reducing translocation of cadmium (Cd) in rice seedlings. Plant growth (length and biomass of
shoot and root) was significantly repressed by Cd exposure. However, pretreatment with 100 μM H2O2 for 1d mitigated Cd stress by inducing enzyme activities for antioxidation (e.g., superoxide dismutase (SOD), catalase (CAT),
guaiacol peroxidase (GPX), ascorbate peroxidase (APX)) and detoxification (e.g., glutathione S-transferase (GST)) as well as by elevating contents of reduced glutathione (GSH) and ascorbic acid (AsA). As a result, H2O2 and malondialdehyde (MDA) content decreased in plants and the seedling growth was less inhibited. On the other hand, H2O2 pretreatment decreased Cd concentration in shoots, thus lowered the ratio of Cd concentration in shoots and roots (S/R),
indicating that H2O2 may affect Cd distribution in rice seedlings. The improved Cd tolerance is partly due to an enhanced antioxidative system
that efficiently prevents the accumulation of H2O2 during Cd stress. Increased Cd sequestration in rice roots may contribute to the decline of Cd translocation. 相似文献
9.
10.
Abstract. Wheat (Triticum aestivum L. var. TAM-W101) leaf segments exhibited an acquired protection against metal toxicity following exposure of the seedlings to heat shock temperatures in the dark. The acquired protection of the leaf segments to cadmium was 400-fold greater than leaf segments from seedlings kept at 25°C and exhibited the greatest change in protection of the five metals tested. Increased protection against aluminium and iron toxicity was also detected in the leaf segments from heat shocked seedlings. The concentration of aluminium at which a 50% loss of 2,3,5-triphenyltetrazolium chloride reduction occurred was 5.5 mol m?3 in control leaf segments and 20 mol m?3 in the leaf segments from heat shocked seedlings. The 50% loss of 2,3,5-triphenyltetrazolium chloride reduction in the leaf segments from heal shocked seedlings was four-fold higher for iron. A small, yet reproducible change in the 2,3,5-triphenyltetrazolium chloride reduction was observed for copper and no change in reduction was observed for zinc treatments in the leaf segments from heat shocked seedlings. These data indicate that exposure of wheat seedlings to heat shock temperatures results in the acquisition of protection against metal toxicity to otherwise lethal concentrations of aluminium, cadmium, and iron. 相似文献
11.
The role of H2O2 in abscisic acid (ABA)-induced NH4+ accumulation in rice leaves was investigated. ABA treatment resulted in an accumulation of NH4+ in rice leaves, which was preceded by a decrease in the activity of glutamine synthetase (GS) and an increase in the specific activities of protease and phenylalanine ammonia-lyase (PAL). GS, PAL, and protease seem to be the enzymes responsible for the accumulation of NH4+ in ABA-treated rice leaves. Dimethylthiourea (DMTU), a chemical trap for H2O2, was observed to be effective in inhibiting ABA-induced accumulation of NH4+ in rice leaves. Inhibitors of NADPH oxidase, diphenyleneiodonium chloride (DPI) and imidazole (IMD), and nitric oxide donor (N-tert-butyl-α-phenylnitrone, PBN), which have previously been shown to prevent ABA-induced increase in H2O2 contents in rice leaves, inhibited ABA-induced increase in the content of NH4+. Similarly, the changes of enzymes responsible for NH4+ accumulation induced by ABA were observed to be inhibited by DMTU, DPI, IMD, and PBN. Exogenous application of H2O2 was found to increase NH4+ content, decrease GS activity, and increase protease and PAL-specific activities in rice leaves. Our results suggest that H2O2 is involved in ABA-induced NH4+ accumulation in rice leaves. 相似文献
12.
Nitric oxide (NO) is a highly reactive, membrane-permeable free radical, which has recently emerged as an important antioxidant. Here we investigated the protective effect of NO against the toxicity and NH4+ accumulation in rice leaves caused by excess CuSO4 (10 mmol L−1). It was found that free radical scavengers (sodium benzoate, thiourea, and reduced glutathione) reduced the toxicity and NH4+ accumulation in rice leaves caused by excess CuSO4. NO donor sodium nitroprusside (SNP) was also effective in reducing CuSO4-induced toxicity and NH4+ accumulation in rice leaves. The protective effect of SNP on the toxicity and NH4+ accumulation can be reversed by 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethyl- imidazoline-1-oxyl-3-oxide, a NO scavenger, suggesting that the protective effect of SNP is attributable to NO released. Results obtained in the present study suggest that reduction of CuSO4-induced toxicity and NH4+ accumulation by SNP is most likely mediated through its ability to scavenge active oxygen species. 相似文献
13.
Phosphatidylinositol 3-phosphate is required for abscisic acid-induced
hydrogen peroxide production in rice leaves 总被引:1,自引:0,他引:1
Rice leaves produce H2O2 in response to abscisic acid (ABA), which results in induction of senescence and accumulation of NH4+. The upstream steps of the ABA-induced H2O2 production pathway in rice leaves remain largely unclear. In animal cells, H2O2 production in neutrophils is activated by phosphatidylinositol 3-phosphate (PI3P), a product of phosphatidylinositol 3-knase (PI3K). In the present study, we examined whether PI3P plays a role in H2O2 production in rice leaves exposed to ABA. We found that PI3K inhibitors LY 294002 (LY) or wortmannin (WM) inhibited ABA-induced H2O2 production, senescence and NH4+ accumulation. Hydrogen peroxide almost completely rescued the inhibitory effect of LY or WM. It appears that PI3P plays a role in ABA-induced H2O2 production, senescence, and NH4+ accumulation in rice leaves. 相似文献
14.
Summary. The polyamines spermidine and spermine have been hypothesized to possess different functions in the protection of DNA from
reactive oxygen species. The growth and survival of mouse fibroblasts unable to synthesize spermine were compared to their
normal counterparts in their native and polyamine-depleted states in response to oxidative stress. The results of these studies
suggest that when present at normal or supraphysiological concentrations, either spermidine or spermine can protect cells
from reactive oxygen species. However, when polyamine pools are pharmacologically manipulated to produce cells with low levels
of predominately spermine or spermidine, spermine appears to be more effective. Importantly, when cells are depleted of both
glutathione and endogenous polyamines, they exhibit increased sensitivity to hydrogen peroxide as compared to glutathione
depletion alone, suggesting that polyamines not only play a role in protecting cells from oxidative stress but this role is
distinct from that played by glutathione. 相似文献
15.
16.
Rauen U Li T Ioannidis I de Groot H 《American journal of physiology. Cell physiology》2007,292(4):C1440-C1449
Nitric oxide (NO) and hydrogen peroxide (H2O2) show cooperativity in their cytotoxic action. The present study was performed to decipher the mechanisms underlying this phenomenon. In cultured liver endothelial cells and in cultured, glutathione-depleted hepatocytes, the combined exposure to NO (released by spermine NONOate, 1 mM) and H2O2 (released by glucose oxidase) induced cell injury that was far higher than the injury elicited by NO or H2O2 alone. In both cell types, the addition of the NO donor increased H2O2 steady-state levels, although with different kinetics: in hepatocytes, the increase in H2O2 levels was already evident at early time points while in liver endothelial cells it became evident after 2 h of incubation. NO exposure inhibited H2O2 degradation, assessed after addition of 50 µM, 200 µM, or 4 mM authentic H2O2, significantly in both cell types. However, again, early and delayed inhibition was observed. The late inhibition of H2O2 degradation in endothelial cells was paralleled by a decrease in glutathione peroxidase activity. Glutathione peroxidase inactivation was prevented by hypoxia or by ascorbate, suggesting inactivation by reactive nitrogen oxide species (NOx). Early inhibition of H2O2 degradation by NO, in contrast, could be mimicked by the catalase inhibitor azide. Together, these results suggest that the cooperative effect of NO and H2O2 is due to inhibition of H2O2 degradation by NO, namely to inhibition of catalase by NO itself (predominant in hepatocytes) and/or to inhibition of glutathione peroxidase by NOx (prevailing in endothelial cells). nitrogen monoxide; catalase; glutathione peroxidase 相似文献
17.
Erik F. J. Weenink Hans C. P. Matthijs J. Merijn Schuurmans Tim Piel Maria J. van Herk Corrien A. M. Sigon Petra M. Visser Jef Huisman 《Environmental microbiology》2021,23(5):2404-2419
Oceanographic studies have shown that heterotrophic bacteria can protect marine cyanobacteria against oxidative stress caused by hydrogen peroxide (H2O2). Could a similar interspecific protection play a role in freshwater ecosystems? In a series of laboratory experiments and two lake treatments, we demonstrate that freshwater cyanobacteria are sensitive to H2O2 but can be protected by less-sensitive species such as green algae. Our laboratory results show that green algae degrade H2O2 much faster than cyanobacteria. Consequently, the cyanobacterium Microcystis was able to survive at higher H2O2 concentrations in mixtures with the green alga Chlorella than in monoculture. Interestingly, even the lysate of destructed Chlorella was capable to protect Microcystis, indicating a two-component H2O2 degradation system in which Chlorella provided antioxidant enzymes and Microcystis the reductants. The level of interspecific protection provided to Microcystis depended on the density of Chlorella. These findings have implications for the mitigation of toxic cyanobacterial blooms, which threaten the water quality of many eutrophic lakes and reservoirs worldwide. In several lakes, H2O2 has been successfully applied to suppress cyanobacterial blooms. Our results demonstrate that high densities of green algae can interfere with these lake treatments, as they may rapidly degrade the added H2O2 and thereby protect the bloom-forming cyanobacteria. 相似文献
18.
Qiang Xu Xin Xu Yan Zhao Kun Jiao Stephen J. Herbert Lin Hao 《Plant Growth Regulation》2008,54(3):249-259
This study investigates the role of salicylic acid (SA), hydrogen peroxide (H2O2) and calcium chloride (CaCl2) singly or in combination, in inducing naked oat plant tolerance to sodium chloride (NaCl). Two-week-old naked oat plants
were pretreated with both single and double of 0.5 mM SA, 0.5 mM H2O2 and 5 mM CaCl2 by adding them to the culture solution for 24 h. At the end of the pretreatment, the plants were subjected to 200 mM NaCl
exposure for 7 days. Data were collected on plant biomass, H2O2 level, antioxidant enzyme activity, non-enzymatic antioxidant content and malondialdehyde (MDA) content. Results showed that
exposure to salt significantly inhibited plant growth, and the shoot and root dry weights were reduced 47.5% and 63.4%, and
the H2O2 levels elevated 5.8 and 2.4 times in comparison with those in the control, respectively. Under the saline stress, the activities
of superoxide dismutase (SOD) and catalase (CAT) were induced, but the contents of ascorbic acid (AA) and glutathione (GSH)
decreased, and MDA largely accumulated. The various pretreatments efficiently counteracted the salt-caused growth inhibition,
especially with H2O2 + CaCl2 the shoot and root dry weights reduced only 9.4% and 24.4% of the non salt-stressed plants. The determination of endogenous
H2O2 level demonstrated that the pretreatments induced H2O2 accumulation, with H2O2 + CaCl2 being most efficient, but the effect was transient. After 7 days of saline stress, the H2O2 contents in the pretreated shoots and roots accounted for 23.7–41.8% and 31.7–57.3% of the non-pretreated plants, varying
according to the different pretreatments. Under saline stress, SOD and CAT further increased, AA and GSH maintained higher
levels and MDA decreased in the pretreated plants compared to the untreated plants. With application of diphenylene iodonium
(DPI) during the pretreatment, which inhibited the accumulation of H2O2, the ameliorative effect of the pretreatment on salt-caused plant growth inhibition was reduced. However, applied DPI at
the immediate end of the pretreatment did not alter its favorable role, indicating a H2O2 peak formed at the early time of saline stress might play an important role in regulating plant tolerance to saline stress. 相似文献
19.
Zhang R Kang KA Piao MJ Maeng YH Lee KH Chang WY You HJ Kim JS Kang SS Hyun JW 《Chemico-biological interactions》2009,177(1):21-27
Flavonoids are a class of secondary metabolites abundantly found in fruits and vegetables. In addition, flavonoids have been reported as potent antioxidants with beneficial effects against oxidative stress-related diseases such as cancer, aging, and diabetes. The present study was carried out to investigate the cytoprotective effects of morin (2′,3,4′,5,7-pentahydroxyflavone), a member of the flavonoid group, against hydrogen peroxide (H2O2)-induced DNA and lipid damage. Morin was found to prevent the cellular DNA damage induced by H2O2 treatment, which is shown by the inhibition of 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation (a modified form of DNA base), inhibition of comet tail (a form of DNA strand breakage), and decrease of nuclear phospho histone H2A.X expression (a marker for DNA strand breakage). In addition, morin inhibited membrane lipid peroxidation, which is detected by inhibition of thiobarbituric acid reactive substance (TBARS) formation. Morin was found to scavenge the intracellular reactive oxygen species (ROS) generated by H2O2 treatment in cells, which is detected by a spectrofluorometer, flow cytometry, and confocal microscopy after staining of 2′,7′-dichlorodihydrofluorescein diacetate (DCF-DA). Morin also induces an increase in the activity of catalase and protein expression. The results of this study suggest that morin protects cells from H2O2-induced damage by inhibiting ROS generation and by inducing catalase activation. 相似文献
20.
Ruangkiattikul N Bhubhanil S Chamsing J Niamyim P Sukchawalit R Mongkolsuk S 《FEMS microbiology letters》2012,329(1):87-92
An Agrobacterium tumefaciens membrane-bound ferritin (mbfA) mutant was generated to assess the physiological functions of mbfA in response to iron and hydrogen peroxide (H(2) O(2) ) stresses. Wild-type and the mbfA mutant strains showed similar growth under high- and low-iron conditions. The mbfA mutant was more sensitive to H(2) O(2) than wild-type strain. Expression of a functional mbfA gene could complement the H(2) O(2) -hypersensitive phenotype of the mbfA mutant and a rhizobial iron regulator (rirA) mutant, suggesting that MbfA protects cells from H(2) O(2) toxicity by sequestering intracellular free iron, thus preventing the Fenton reaction. The expression of mbfA could be induced in response to iron and to H(2) O(2) treatment. The iron response regulator (irr) also acted as a repressor of mbfA expression. An irr mutant had high constitutive expression of mbfA, which partly contributed to the H(2) O(2) -hyperresistant phenotype of the irr mutant. The data reported here demonstrate an important role of A.?tumefaciens MbfA in the cellular defence against iron and H(2) O(2) stresses. 相似文献