首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reproductive neuroendocrine response of Suffolk ewes to the direction of daylength change was determined in animals which were ovariectomized and treated with constant release capsules of oestradiol. Two groups of animals were initially exposed to 16 or 10 h light/day for 74 days. On day zero of the study, when one group of ewes was reproductively stimulated (elevated LH concentrations) and the other reproductively inhibited (undetectable LH concentrations), half the animals from each group were transferred to an intermediate daylength of 13 h light/day. The remaining ewes were maintained on their respective solstice photoperiods to control for photorefractoriness. LH concentrations rose in animals experiencing a 3 h decrease in daylength from 16L:8D to 13L:11D while LH concentrations fell to undetectable values in those that experienced a 3 h increase in daylength from 10L:14D to 13L:11D. The photoperiodic response of the Suffolk ewe, therefore, depends on her daylength history. Such a result could be explained if the 24-h secretory pattern of melatonin secretion, known to transduce photoperiodic information to the reproductive axis, was influenced by the direction of change of daylength. Hourly samples for melatonin were collected for 24 h 17 days before and three times after transfer to 13L:11D. The melatonin secretory profile always conformed to daylength. Therefore, the mechanism by which the same photoperiod can produce opposite neuroendocrine responses must lie downstream from the pineal gland in the processing of the melatonin signal.  相似文献   

2.
The purpose of this study was to evaluate whether the insertion of a continuous-release melatonin implant into ewes provides a short-day photoperiodic signal or acts as a functional pinealectomy (provides no specific photoperiodic signal but renders ewes incapable of responding to changes in photoperiod). Ewes primed with 60 long days (18L:6D) during the spring were moved to intermediate day length (13L:11D) for 66 days and then given one of five treatments: 1) short-day control, second drop in photoperiod to 8L:16D; 2) intermediate-photoperiod control, kept on 13L:11D; 3) pinealectomy and kept on 13L:11D; 4) melatonin implant and kept on 13L:11D; 5) melatonin implant and moved to 8L:16D. Mean number of estrous cycles per group and total duration of reproductive activity were determined. Ewes in all groups began to exhibit estrous cycles after the initial reduction in photoperiod. The number of estrous cycles and duration of reproductive activity differed among groups. The number of estrous cycles and duration of reproductive activity was extended in ewes receiving the second drop in photoperiod compared to that of the intermediate-photoperiod controls. Pinealectomized ewes had a number of estrous cycles and duration of reproductive activity similar to those of ewes maintained on the intermediate photoperiod. Melatonin implants increased the number of estrous cycles and prolonged reproductive activity in ewes maintained on the intermediate photoperiod; melatonin implants did not prevent the extension of reproductive activity in ewes receiving the second photoperiodic drop to the short daylength.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Photoperiodic information is transferred from female Siberian hamsters to their fetuses during gestation. Although maternal melatonin is known to be essential for the transfer of prenatal photoperiodic information, its specific role is not well defined. The duration of the daily melatonin signal, expressed as an elevation of serum melatonin levels in the maternal circulation, has been hypothesized to convey day length information to the fetus. If this hypothesis is valid, it predicts that identical maternal melatonin signals should affect the fetuses identically, regardless of the prenatal photoperiod. To test this hypothesis, adult females received melatonin in beeswax or beeswax alone. They were paired with males and housed in photoperiods of 12L:12D or 16L:8D. On the day of parturition, mother and young were transferred to constant light (LL). Young males were killed on Day 28 of life, and weights of testes were determined. Prenatal treatment with beeswax alone did not affect the nature of the signal transferred from mother to fetus; young gestated in 12L:12D and reared in LL developed small testes, while those gestated in 16L:8D had large testes. On the other hand, the effect of the prenatal melatonin treatment on postnatal testicular development in LL was inversely dependent on the prenatal photoperiod: testicular growth was stimulated in young gestated in 12L:12D, but inhibited in young gestated in 16L:8D. To verify that the melatonin pellets produced equivalent serum melatonin levels in adult females in 12L:12D and 16L:8D, unmated adult females were killed 6-10 wk after receiving melatonin pellets. Serum levels were elevated in both groups throughout the day and night.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A. DAWSON 《Ibis》1998,140(1):35-40
Two photoperiodic mechanisms controlling gonadal regression in birds have been identified: absolute photorefractoriness, typical of species with short breeding seasons, where gonadal regression occurs spontaneously during long days, and relative photorefractoriness, where a decrease in daylength is required to induce regression. An experiment was designed to test whether these simply represent extremes of one underlying mechanism. Three groups of male House Sparrows Passer domesticus were transferred from a short photoperiod, 8 h of light: 16 h of darkness per day (8L:16D) to long photoperiods of either 18L:6D, 16L:8D or 13L:11D. Gonadal maturation rates were similar in all three groups; gonadal regression and moult began latest in the 13L:11D group. Four additional groups of sparrows were transferred from 8L:16D to 18L:6D and then transferred to either 13L: 11D or 16L:8D prior to, or shortly after, the onset of gonadal regression. The decrease in daylength prior to regression had no effect on the timing of regression but did advance the onset of moult. Decrease in daylength after the onset of regression increased the rate of regression and the rate of moult. Because a decrease in daylength did not affect the timing of regression, the data do not support the hypothesis that absolute and relative photorefractoriness represent extremes of a single underlying photoperiodic control mechanism. The adaptive significance of the effects of decreasing daylength on the rate of regression and moult is discussed.  相似文献   

5.
The Turkish hamster (Mesocricetus brandti) is a photoperiodic species. In this investigation, we characterized the photoperiodic requirements for termination of gonadal refractoriness, defined as the inability of the animal to respond to short-day treatment with gonadal regression. Paired testes weights were reduced to less than 20% of their original weight by 10 wk of 12L:12D treatment. This was followed by spontaneous testicular recrudescence (completed by Week 25 of 12L:12D treatment), the overt indication of refractoriness to short photoperiods. Next, the period of long-day exposure sufficient for termination of refractoriness was determined. Refractory males were exposed to 16L:8D for 5 to 20 wk. Ten weeks of 16L:8D treatment was enough for the animals to regain the sensitivity to a second challenge of 12L:12D treatment. Fifteen weeks of 20L:4D or 16L:8D terminated refractoriness in female Turkish hamsters; 20L:4D therefore was not interpreted as a short day by refractory hamsters. This was unexpected because in photosensitive animals this photoperiod acts like a short day, causing gonadal regression. These results suggest that Turkish hamsters are similar to Syrian hamsters in that both species require two or more months of long days in summer to recover sensitivity to the short days of the following fall.  相似文献   

6.
Peripubertal reproductive development of Siberian hamsters is controlled by maternally derived photoperiodic information and the ambient photoperiod present after weaning. Previous experiments suggested that the maternally derived information is transferred during gestation, not during lactation. Development was examined in several photoperiods following manipulation of gestational and lactational photoperiods; development was influenced by the gestational, but not lactational, photoperiod. Second, effects of the gestational photoperiod were observed in young reared in constant light (LL) from Day 15. Depriving the young of ambient photoperiodic information after Day 15 allows a more direct assessment of the signal received from their dams. Finally, melatonin injections to long-day dams, at certain times of day, caused transmission of a short-day signal to young, as evidenced by their development in LL and light-dark cycles. Thus, a maternally derived signal that is dependent on melatonin influences reproductive development of the young during gestation; the maternally directed pattern of development can subsequently be modified by the youngs' own response to ambient photoperiods after weaning.  相似文献   

7.
Melatonin secretion in ewes was entrained by 22-h light-dark cycles whether of long (16L:6D) or short (6L:16D) photoperiod. In photoperiods of 6L:16D, a phase-delay of melatonin secretion was evident, leading to a dark-phase duration shorter than that found in 8L:16D. Early onset of estrus was induced in anestrous ewes kept in 8L:16D, but not 6L:16D, from 22 July compared to controls in natural light. In photoperiods of 16L:6D, the melatonin profile corresponded precisely to the dark phase. Early offset of estrus was induced in estrous ewes kept in both 18L:6D and 16L:6D from 18 December compared to controls in natural light. Thus, when the duration of melatonin secretion was appropriate to the long photoperiod (16L:6D), but with a constantly changing phase position, a long-day reproductive response was found. Activity-rest cycles were not entrained by 16L:6D; thus the synchronization of melatonin and activity-rest cycles does not appear to be essential for the induction of a long-day reproductive response. These results support the hypothesis that the duration, not the circadian-phase position, of melatonin is critical to the induction of photoperiodic effects.  相似文献   

8.
The seasonal reproductive cycle of photoperiodic rodents is conceptualized as a series of discrete melatonin-dependent neuroendocrine transitions. Least understood is the springtime restoration of responsiveness to winter-like melatonin signals (breaking of refractoriness) that enables animals to once again respond appropriately to winter photoperiods the following year. This has been posited to require many weeks of long days based on studies employing static photoperiods instead of the annual pattern of continually changing photoperiods under which these mechanisms evolved. Maintaining Siberian hamsters under simulated natural photoperiods, we demonstrate that winter refractoriness is broken within six weeks after the spring equinox. We then test whether a history of natural photoperiod exposure can eliminate the requirement for long-day melatonin signalling. Hamsters pinealectomized at the spring equinox and challenged 10 weeks later with winter melatonin infusions exhibited gonadal regression, indicating that refractoriness was broken. A photostimulatory effect on body weight is first observed in the last four weeks of winter. Thus, the seasonal transition to the summer photosensitive phenotype is triggered prior to the equinox without exposure to long days and is thereafter melatonin-independent. Distinctions between photoperiodic and circannual seasonal organization erode with the incorporation in the laboratory of ecologically relevant day length conditions.  相似文献   

9.
The mechanisms underlying the photoperiodic entrainment of the endogenous circannual rhythm of maturation in the rainbow trout were investigated by subjecting December-spawning fish to abrupt changes in daylength which varied in their timing or magnitude. These protocols advanced spawning by up to 4 months. Maturation occurred in sequence in fish maintained on 18L:6D from January and February, and in fish exposed to 18L:6D from December, January and February, followed by 6L:18D in May, indicating that the abrupt increases in daylength were effective entraining cues. `Long' photoperiods of between 12 and 22 h applied in January, followed by shorter photoperiods of between 3.5 and 13.5 h from May, were equally effective in advancing maturation. Maturation was also advanced, though to a lesser extent, in fish maintained on photoperiods of 8.5 or 10 h from January, followed by a photoperiod of 1.5 h from May. In contrast, maturation was delayed in fish maintained under a constant 8.5-h photoperiod from January, and these fish also exhibited a desynchronization of spawning times characteristic of endogenous circannual rhythms in free-run. Collectively, these results indicate that photoperiodic history determines the reproductive response of rainbow trout to changes in daylength. Accepted: 7 August 1998  相似文献   

10.
Photoperiodic induction of reproductive diapause at 18°C was investigated in fourOrius [Heteroptera: Anthocoridae] species.Orius insidiosus (Say) displayed a long-day response with a critical photoperiod between L11:D13 and L12:D12. Diapause in this species was terminated rapidly when the temperature and/or the daylength were increased.Orius majusculus (Reuter) also displayed a long-day response. The critical photoperiod fell between L14:D10 and L16:D8. Diapause in this species was not terminated within 14 days when both temperature and daylength were increased. InOrius albidipennis (Reuter) no diapause could be induced at photoperiods varying from L8:D16 to L16:D8. InOrius tristicolor (White) a high proportion of diapause was found at all photoperiods tested. The effect of temperature on photoperiodic induction of diapause was studied inO. insidiosus at L10:D14. Diapause occurred at 18°C, 21°C and 25°C, but not at 30°C. Again, diapause was terminated rapidly after transfer to 25°C/L16:D8. Exposing only the nymphal instars 1–5 to short daylength was not enough to induce diapause in the whole population ofO. majusculus. Orius predatory bugs are used as biocontrol agents against western flower thrips,Frankliniella occidentalis (Pergande) [Thysanoptera: Thripidael, in greenhouses. The consequences of photoperiodic induction of diapause for the success of early season releases ofOrius are discussed.  相似文献   

11.
Daylengths during the spring are repeated in reverse order in the autumn. For some photoperiodic species, a given photoperiod may be stimulatory for reproduction in the spring and inhibitory in the autumn. The mechanisms regulating this type of seasonal response have, until recently, remained a mystery. Horton (1984a) showed in Microtus montanus that the photoperiod experienced by the mother influences the gonadal development of her young after weaning. To determine if this phenomenon is characteristic of other photoperiodic rodents, adult Djungarian hamsters were paired on 16L:8D, 14L:10D, or 12L:12D. Young males born from these pairings were killed at 15, 28, and 34 days of age to assess gonadal development (testes weight). At 15 days testicular development was identical in all groups; by 28 days, however, males raised in 16L:8D or 14L:10D exhibited a greater degree of testicular development than those raised in 12L:12D. Next, females maintained on each of the three photoperiods throughout gestation were transferred, with their offspring, to the other two photoperiods at birth. Postnatal exposure to 14L:10D or 12L:12D inhibited testicular development in young that had been gestated on 16L:8D. Both 16L:8D and 14L:10D stimulated testicular growth in animals that had been gestated on 12L:12D or 14L:10D. Therefore, a) 16L:8D stimulates testicular growth in all animals, b) 12L:12D inhibits testicular growth in all animals, and c) the testicular response to 14L:10D depends on the photoperiod experienced by the mother during pregnancy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We examined the effects of photoperiod on pituitary levels of two types of gonadotropin (GTH), GTH I and GTH II, in masu salmon Oncorhynchus masou to study their mechanism of synthesis. In Experiment 1, the effects of long or short photoperiod combined with castration were examined using 8-month-old precocious males. Castration was carried out in early August and then the fish were reared under a short (8L16D) or long (16L8D) photoperiod for 60 days. In Experiment 2, the effects of photoperiod combined with testosterone treatment were examined using 12-month-old immature females. Silastic tubes containing testosterone (500 microg /fish) or vehicle were implanted intra-peritoneally in early October. Fish were reared under 16L8D for 60 days, and then half of the fish were transferred to 8L16D, while the remaining fish were kept under 16L8D until Day 90. In Experiment 1, GTH I contents were higher under 16L8D than under 8L16D in the castrated group on Day 30. Moreover, GTH I contents were higher in the castrated group than the control group under 16L8D on Day 30. GTH II contents increased with testicular maturation in the control groups, whereas they remained at low levels in the castrated groups regardless of photoperiodic treatment. In Experiment 2, GTH I contents did not change remarkably in all the groups, while GTH II contents were remarkably increased by testosterone treatment regardless of photoperiodic treatment. These results indicate that the synthesis of GTH I and GTH II are differently regulated by photoperiod and testosterone in masu salmon.  相似文献   

13.
During the light phase of each of 3 photoperiods tested, plasma melatonin concentrations were less than 16 to 62 pg/ml and during the dark phase they were 31 to 169 pg/ml. When the photoperiod to which the tammars were exposed was altered from 15 h light:9 h dark to 12L:12D the onset of the nocturnal rise in melatonin was advanced from the first day, thereby extending its duration, and the females gave birth 32 +/- 0.4 (mean +/- s.e.m.) days later. To test whether melatonin mediated this effect of photo-period change, tammars in a second group were injected s.c. with melatonin (400 ng/kg, N = 6) or the arachis oil vehicle (N = 6), 2.5 to 2.25 h before dark during 15L:9D for 15 days before exposure to 12.5L:11.5D. The melatonin injections mimicked the endogenous melatonin profile of 12L:12D and the melatonin-injected tammars gave birth 32 +/- 0.8 days after the start of injections, which was the same as the interval from photoperiod change in Exp. 1 but was significantly different (P less than 0.005) from the interval in the control group (46.0 +/- 1.1 days). These results show that exogenous melatonin given 2.5 to 2.25 h in advance of the endogenous rise fully mimics the response of the tammar to photoperiod change.  相似文献   

14.
Daily variation in melatonin receptor (MT1 and MT2) density in three specific tissues-brain, retina, and ovary-and its temporal relationship with serum melatonin were evaluated for the first time in a freshwater teleost, the carp Catla catla, under natural as well as altered photoperiods in different reproductive phases of the annual cycle. Cosinor analysis was used to determine rhythmic features of the serum melatonin and receptors (MT1 and MT2) in different tissues. In each photoperiodic group, irrespective of season, the daily minimum serum melatonin level was noted at midday. However, the daily peak value of melatonin varied in relation to both photo-schedules and reproductive phases. Under natural photoperiods (NPs; duration varied with seasons) and short photoperiods (SPs; light [L]:dark [D] 8:16), it occurred in the late dark phase during the preparatory phase, and at midnight in the remaining parts of the annual cycle. On the other hand, in each reproductive phase, compared to corresponding NP carp, the daily melatonin peak under long photoperiods (LPs; L:D 16:8) exhibited a phase delay of ~2-3?h (occurring during the late dark phase). The melatonin levels at each sampling point were highest during the postspawning phase and lowest during the spawning phase, irrespective of the photoperiodic history of the fish. In each tissue, Western blot analysis revealed a band at ~37?kDa and a band at ~36?kDa corresponding to the molecular weights of native MT1 and MT2 receptor proteins, respectively, with the band intensity of MT1 always being higher than that of a 36-kDa protein. The content of both melatonin receptor proteins varied significantly according to the studied tissue (being highest in the retina, intermediate in the brain, and lowest in the ovary), time in the daily cycle (peak at midnight and fall at midday), and reproductive phase in the annual cycle (highest in the spawning phase and lowest in the postspawning phase). Remarkably, no significant effects of altered photoperiod were detected on any rhythm parameters of either MT1 or MT2 in any of the studied tissues. Collectively, the results of the present study suggest a role of photoperiod in determining daily and seasonal profiles of serum melatonin, but not its receptor proteins, on the ovary or on any nongonad tissues in carp.  相似文献   

15.
The objectives were to determine if relative lengths of photoperiods that induce reproductive cycles in ewes affect the length of the subsequent breeding season, if duration of the refractoriness that terminates breeding is affected by photoperiod length, and if the resulting refractoriness to an inductive photoperiod is absolute. Groups of Welsh Mountain ewes were exposed to either 12L:12D (n = 12) or 8L:16D (n = 6) photoperiods beginning at the summer solstice when daylengths reach a maximum of 17.5 h at Bristol, England. A control group (n = 10) was exposed to natural daylengths. Ovarian cycles in the controls, as judged by monitored plasma progesterone levels, commenced in early October, about 1 mo later (p less than 0.001 in both cases) than in sheep exposed to 12L:12D or 8L:16D. The advancement in cycle onset was similar under 12L:12D and 8L:16D (69 +/- 2 and 77 +/- 4 days after the summer solstice compared with 102 +/- 2 days in the controls). Duration of the breeding season (100 +/- 4 days) in ewes exposed to 12L:12D was significantly shorter (p less than 0.001 in both cases) than in ewes exposed to natural daylengths or 8L:16D (153 +/- 3 and 133 +/- 5 days, respectively). Approximately 70 days after the ending of ovulatory cycles in the 12L:12D group, half of the animals (n = 6) were transferred to 8L:16D. This treatment greatly (p less than 0.001) reduced the duration of anestrus and cycles began again 62 +/- 4 days after transfer to 8L:16D, or about 90 days earlier than in ewes (n = 6) remaining in 12L:12D.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The roseringed parakeet has been shown to exhibit a variable testicular responsiveness to both altered photoperiodic regimens and to treatment with melatonin during different phases of the annual gonadal cycle. Adult male roseringed parakeets were held under either natural photoperiods (NP), or long photoperiods (LP; 16L 8D), or short photoperiods (SP; 8L 16D) for a total period of 90 days. From day 46 onward, half of the total birds in each group were administered with the vehicle of melatonin, and the other birds were injected daily in the afternoon with melatonin (25 µg/ 100 g body wt.) till the end of the experiment. An identical experimental schedule was followed during the four different (preparatory, progressive, pre-breeding, and breeding) phases of the annual testicular cycle. The testicular activities in various bird groups were evaluated by volumetric, gravimetric, histometric and karyometric measurements, and by quantitative histological studies. The findings revealed that exogenous melatonin may exert either a suppressive influence or none at all on the testicular functions in relation to the photoperiodic schedule as well as to the reproductive phase of the concerned bird, but in no case modulates gonadal responsiveness to artificially altered photoperiods.  相似文献   

17.
The roseringed parakeet has been shown to exhibit a variable testicular responsiveness to both altered photoperiodic regimens and to treatment with melatonin during different phases of the annual gonadal cycle. Adult male roseringed parakeets were held under either natural photoperiods (NP), or long photoperiods (LP; 16L 8D), or short photoperiods (SP; 8L 16D) for a total period of 90 days. From day 46 onward, half of the total birds in each group were administered with the vehicle of melatonin, and the other birds were injected daily in the afternoon with melatonin (25 µg/ 100 g body wt.) till the end of the experiment. An identical experimental schedule was followed during the four different (preparatory, progressive, pre-breeding, and breeding) phases of the annual testicular cycle. The testicular activities in various bird groups were evaluated by volumetric, gravimetric, histometric and karyometric measurements, and by quantitative histological studies. The findings revealed that exogenous melatonin may exert either a suppressive influence or none at all on the testicular functions in relation to the photoperiodic schedule as well as to the reproductive phase of the concerned bird, but in no case modulates gonadal responsiveness to artificially altered photoperiods.  相似文献   

18.
The effect of photoperiodic history on the neuroendocrine response to intermediate daylengths (11-13.5 hr of light) was investigated in the male Syrian hamster. The duration of the nocturnal peak of pineal melatonin content was inversely proportional to photoperiod and independent of photoperiodic history. Serum levels of prolactin were lower in animals exposed to shorter photoperiods. Photoperiodic history had little effect on the response of serum prolactin to intermediate daylengths. Serum luteinizing hormone (LH) concentrations were also lower in shorter photoperiods, but in addition were sensitive to the direction of photoperiodic change, so that a single photoperiod could be interpreted as either stimulatory or inhibitory to LH secretion. This effect of photoperiodic history was expressed at intermediate photoperiods with 12-13.5 hr of light. The sensitivity of serum follicle-stimulating hormone (FSH) levels to photoperiodic history was masked by an early onset of photorefractoriness. Testicular size and serum testosterone levels revealed weaker effects of photoperiodic history; these were attributed to the dissociation between gonadotrophin and prolactin secretion induced by intermediate daylengths. The contrasting effects of photoperiodic history on the secretion of LH and prolactin may represent the expression of multiple photoperiodic time-measuring systems.  相似文献   

19.
This study analyzed photoperiodic sensitivity of brahminy myna (Sturnus pagodarum), which is a seasonally breeding bird species. During regression phase of the reproductive cycle (in early September), groups of myna were exposed to artificial photoperiods that were either close to or longer than those brahminy myna experiences at this time in wild at 29 degrees N. Following a 14-week exposure to such photoperiods (hours of light: hours of darkness; 13L:11D, 12L:12D, 11.5L:12.5D and 11L:13D), the birds were subjected to a longer day length (16L:8D) for another 9 weeks to test whether pre-treatment with varying photoperiods had an effect on subsequent long day photostimulation. There was a progressive increase in body mass under different pre-treatment photoperiods, with a faster increase in 11L:13D and 11.5L:12.5D than in 12L:12D and 13L:11D. When subjected to 16L: 8D, however, all groups showed decline in body mass. By contrast, the testes were not stimulated under 11L:13D and 11.5L:12.5D, and only one individual of the groups under 12L:12D and 13L: 11D showed a small testis recrudescence. All birds except one individual of the 13L:11D group, however, showed testis recrudescence when subjected to 16L:8D. These results suggest that body mass and testes have a different profile of photoperiodic response and appear to have two different threshold photoperiods for dissipating the post-reproductive refractoriness.  相似文献   

20.
The willow leaf beetle, Plagiodera versicolora (Coleoptera: Chrysomelidae) overwinters in adult diapause. In this study, the photoperiodic responses for diapause induction and developmental time were examined in the Ishikari (Hokkaido, Japan) population of P. versicolora. All females entered reproductive diapause under short daylength (L10:D14), but 31.7% of females did not enter diapause under long daylength (L16:D8). The developmental time from oviposition to adult emergence was significantly longer at L10:D14 than that at L16:D8. Norm of reaction curves illustrated variation among families in the photoperiodic responses for diapause induction and for developmental time. ANOVA indicated significant family × photoperiod interactions in the developmental time. At L16:D8, developmental time was positively correlated with the incidence of diapause in females. This means that a female having a longer developmental time tends to have a longer critical photoperiod. Such variation may be maintained by differences in selection pressures on the growth rate and the critical photoperiod for diapause induction between univoltine and bivoltine genotypes because Ishikari is located in a transitional area between populations with univoltine and bivoltine life cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号