首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
31P and 13C nuclear magnetic resonance (NMR) experiments were performed on suspensions of the phototrophic bacterium Chromatium vinosum incubated anaerobically in the dark. 31P NMR spectra revealed that during prolonged dark incubation high ATP levels are maintained. This phenomenon was independent of the presence of the energy reserves polyglucose and polyphosphate. 13C NMR experiments revealed that the amino acids glutamate, aspartate, and alanine are the major products of acetate incorporation in the dark. Apart from these amino acids, poly-beta-hydroxybutyrate was also formed. Acetate metabolism was markedly stimulated by the presence of polyglucose. The specific 13C activity of glutamate C-2 was approximately 50% that of glutamate C-4. The idea is discussed that this difference is the consequence of the maintenance of redox balance during entry of acetate into cell metabolism.  相似文献   

3.
31P NMR spectra of perfused lymphocytes, embedded in alginate capsules and activated by interleukin-2, were remarkably different from those of control lymphocytes. The main differences were the appearance and gradual increase in phosphodiester signals, glycerophosphocholine and glycerophosphoethanolamine. These metabolic changes also occurred following perfusion with phorbol ester and after incubation with phytohemagglutinin (PHA) and were not dependent on a special growth medium. Nifedipine, a calcium channel blocking drug, inhibited the effects of phytohemagglutinin, but not of interleukin-2. There were no NMR spectral differences between peripheral lymphocytes, stimulated for 3 weeks, and tumor-infiltrating lymphocytes. Thus, sustained accelerated turnover of phosphatidylcholine and phosphatidylethanolamine is an inherent feature of the activation process. 31P NMR spectra of lymphocytes are characterized by a low signal of phosphocholine. Perfusion studies with high concentrations of choline and the use of dapsone, an inhibitor of cytidylyltransferase, indicated that choline kinase plays a key role in regulating phosphaditylcholine synthesis in human lymphocytes.  相似文献   

4.
Glycogen-accumulating organisms (GAOs) are found in enhanced biological phosphorus removal systems where they compete with polyphosphate-accumulating organisms for external carbon substrates. (13)C nuclear magnetic resonance ((13)C-NMR) was used to elucidate the metabolic pathways operating in an enriched GAO culture dominated by two known GAOs (81.2%). The experiments consisted of adding (13)C-acetate (labelled on position 1 or 2) to the culture under anaerobic conditions, and operating the culture through a cycle consisting of an anaerobic, an aerobic and a further anaerobic phase. The carbon transformations over the cycle were monitored using in vivo(13)C-NMR. The two-carbon moieties in hydroxybutyrate and hydroxyvalerate were derived from acetate, while the propionyl precursor of hydroxyvalerate was primarily derived from glycogen, with only a small fraction originating from acetate. Comparison of the labelling patterns in hydroxyvalerate at the end of the first and the second anaerobic periods in pulse experiments with 2-(13)C-acetate showed that the Entner-Doudoroff (ED) pathway was used for the breakdown of glycogen. This conclusion was further supported by the labelling pattern on glycogen observed in the pulse experiments with 1-(13)C-acetate, which can only be explained by the operation of ED with recycling of pyruvate and glyceraldehyde 3-phosphate via gluconeogenesis. The activity of the ED pathway for glycogen degradation by GAOs is demonstrated here for the first time. In addition, the decarboxylating part of the tricarboxylic acid cycle was confirmed to operate also under anaerobic conditions.  相似文献   

5.
Spin lattice relaxation times (T1) and apparent spin-spin relaxation times (T2) derived from linewidth have been used to investigate model membranes composed of egg yolk phosphatidylcholine. T1 measurements appear to be largely dominated by segmental motion and as a consequence are not very sensitive to small changes in membrane structure. On the contrary, apparent T2 times are shown to be sensitive to such changes in the membrane and are thus suggested as a useful tool for further investigation of membrane structure.  相似文献   

6.
7.
8.
Methylamine uptake, oxidation, and assimilation were studied in Hansenula polymorpha, a methylotrophic yeast. The constitutive ammonia transport system was shown to be effective at accumulating methylamine within cells cultured with methylamine or ammonia as a nitrogen source. [13C]methylamine oxidation rates were measured in vivo in methylamine-adapted cells by 13C nuclear magnetic resonance and were found to be lower than its uptake rate into the cells. The 13C label of methylamine was found exclusively in trehalose and glycerol, and [13C]formaldehyde was also extensively assimilated, indicating the presence of an assimilation pathway for the methylamine carbon. In vivo 31P nuclear magnetic resonance analysis showed major differences in the endogenous polyphosphate levels and mean chain length during adaptation of the cells from ammonia to methylamine, indicating that methylamine accumulated in the vacuole in the same manner as basic amino acids and purines. [13C]glucose metabolism was drastically altered during adaptation of the cells from ammonia to methylamine as a nitrogen source. The total rate of glucose utilization and the rate of ethanol production fell. Direct trehalose synthesis from glucose increased, indicating a switch from carbon utilization for growth to that for storage. The rate of methylamine oxidation was sufficient to support a much higher flow of carbon into central biosynthetic pathways. These results suggest that this reduction in biosynthetic carbon flow, rather than nitrogen availability, was the main factor responsible for reducing the growth rate of the yeast when ammonia was replaced by methylamine as the nitrogen source.  相似文献   

9.
Both native and recombined membrane systems from the human erythrocyte membrane and the rabbit sarcoplasmic reticulum have been studied with 31P Nuclear Magnetic Resonance (NMR). We compare intensities of the anisotropic 31P resonance exhibited by these membranes with the intensity expected from the known phospholipid content of the membranous sample. In a recombinant with human erythrocyte glycophorin, a component of the phospholipid is "missing" from the 31P NMR resonance, apparently due to a severe broadening of the resonance of that component. Approximately 29 phospholipid molecules were found immobilized per glycophorin molecule in the membrane, regardless of the phospholipid:protein ratio. Cholesterol may inhibit the immobilization of phospholipids by glycophorin. Recombinants with band three from the human erythrocyte membrane contain an immobilized phospholipid component, analogous to the results with glycophorin. 31P NMR data from the native sarcoplasmic reticulum membrane also revealed an immobilized phospholipid component whose magnitude is independent of temperature between 30 degrees C and 45 degrees C. Extensive papain proteolysis of the membrane completely digests the Ca++ Mg++ ATPase and removes the immobilization of phospholipids noted in the intact membrane. Limited trypsin cleavage, however, does not completely remove the immobilized component; salt reduces the immobilized component.  相似文献   

10.
The location of the internal trans and cis isoprene units in ficaprenol-11 isolated from Ficus elastica was determined by 13C nuclear magnetic resonance. The alignment of the isoprene units was estimated to be in the order: omega-terminal unit, three trans units, six cis units and alpha-terminal cis alcohol unit.  相似文献   

11.
Primary metabolism of a murine hybridoma was probed with (13)C nuclear magnetic resonance (NMR) spectroscopy. Cells cultured in a hollow fiber bioreactor were serially infused with [1-(13)C] glucose, [2-(13)C] glucose, and [3-(13)C] glutamine. In vivo spectroscopy of the culture was used in conjunction with off-line spectroscopy of the medium to determine the intracellular concentration of several metabolic intermediates and to determine fluxes for primary metabolic pathways. Intracellular concentrations of pyruvate and alanine were very high relative to levels observed in normal quiescent mammalian cells. Estimates made from labeling patterns in lactate indicate that 76% of pyruvate is derived directly from glycolysis; some is also derived from the malate shunt, the pyruvate/melate shuttle associated with lipid synthesis and the pentose phosphate pathway. The rate of formation of pyruvate from the pentose phosphate pathway was estimated to be 4% of that from glycolysis; This value is a lower limit and the actual value may be higher. Incorporation of pyruvate into the tricarboxylic acid (TCA) cycle appears to occur through only pyruvate dehydrogenase; no pyruvate carboxylase activity was detected. The malate shunt rate was approximately equal to the rate of glutamine uptake. The rate of incorporation of glucosederived acetyl-CoA into lipids was 4% of the glucose uptake rate. The TCA cycle rate between isocitrate and alpha-ketoglutarate was 110% of the glutamine uptake rate. (c) 1994 John Wiley & Sons, Inc.  相似文献   

12.
Cell suspensions of a respiratory deficient mutant of Saccharomyces cerevisiae were monitored by in vivo 31P and 13C Nuclear Magnetic Resonance in order to evaluate the effect of ethanol in intracellular pH and metabolism. In the absence of an added energy source, ethanol caused acidification of the cytoplasm, as indicated by the shift to higher field of the resonance assigned to the cytoplasmic orthophosphate. Under the experimental conditions used this acidification was not a consequence of an increase in the passive influx of H+. With cells energized with glucose, a lower value for the cytoplasmic pH was also observed, when ethanol was added. Furthermore, lower levels of phosphomonoesters were detected in the presence of ethanol, indicating that an early event in glycolysis is an important target of the ethanol action. Acetic acid was identified as responsible for the acidification of the cytoplasm, in experiments where [13C]ethanol was added and formation of labeled acetic acid was detected. The intracellular and the extracellular concentrations of acetic acid were respectively, 30 mM and 2 mM when 0.5% (120 mM) [13C]ethanol was added.Abbreviations Pi inorganic phosphate - Pic inorganic phosphate in the cytoplasm - Piv inorganic phosphate in the vacuole - tP terminal phosphate in polyphosphate  相似文献   

13.
High-resolution phosphorus-31 nuclear magnetic resonance (31P NMR) spectra of wild-type and mutant strains of Saccharomyces cerevisiae were observed at a frequency of 145.7 MHz. Levels of various phosphorus metabolites were investigated upon addition of glucose under both aerobic and anaerobic conditions. Three mutant strains were isolated and their biochemical defects characterized: pfk lacked phosphofructokinase activity; pgi lacked phosphoglucose isomerase activity; and cif had no glucose catabolite repression of the fructose bisphosphatase activity. Each mutant strain was found to accumulate characteristic sugar phosphates when glucose was added to the cell suspension. In the case of the phosphofructokinase deficient mutant, the appearance of a pentose shunt metabolite was observed. 31P NMR peak assignments were made by a pH titration of the acid extract of the cells. Separate signals for terminal, penultimate, and central phosphorus atoms in intracellular polyphosphates allowed the estimation of their average molecular weight. Signals for glycero(3)phosphochline, glycero(3)phosphoserine, and glycero(3) phosphoethanolamine as well as three types of nucleotide diphosphate sugars could be observed. The intracellular pH in resting and anaerobic cells was in the range 6.5--6.8 and the level of adenosine 5'-triphosphate (ATP) low. Upon introduction of oxygen, the ATP level increased considerably and the intracellular pH reached a value of pH 7.2--7.3, irrespective of the external medium pH, indicating active proton transport in these cells. A new peak representing the inorganic phosphate of one of the cellular organelles, whose pH differed from the cytoplasmic pH, could be detected under appropriate conditions.  相似文献   

14.
Anaerobic glycolysis inTrypanosoma brucei spp. has been studied by13C NMR at 50 and 75.5 MHz. The uptake of [U-13C]glucose by cell suspensions ofT. b. brucei was monitored by time-course spectroscopy, and while no anomeric specificity was found, the end -products of glycolysis were confirmed as glycerol and pyruvate together with alanine and dihydroxypropionat e. The intermediacy of L-glycerol-3-phosphate was also ascertained. The incorporation of C-I of [1-13C]glucose and of C-6 of [6-13C]glucose into glycerol and pyruvate inT. b. gambiense was quantified by measurement of the longitudinal relaxation times of the species involved. An incorporation to the extent of 66% of each substrate into equimolar amounts of glycerol and pyruvate indicate that Keq for the triosephosphate-isomerase-mediated reaction approaches unity.  相似文献   

15.
1. Natural abundance carbon-13 nmr spectra of several intact cestodes have been obtained. 2. All spectra show peaks assignable to triglycerides and the N(CH3)3 carbons of the choline moiety. 3. The olefinic region of the 13C nmr spectra indicated that the cestode larvae Mesocestoides corti and Echinococcus multilocularis have a larger concentration of polyunsaturated fatty acids than Hymenolepis adults. 4. Mobile fragments of glycogen were detected in all species studied, but its apparent concentration in individual cestodes was highly variable.  相似文献   

16.
The main metabolic pathways in Methanospirillum hungatei GP1 were followed by using 13C nuclear magnetic resonance, with 13C-labeled acetate and CO2 as carbon sources. The labeling patterns found in carbohydrates, amino acids, lipids, and nucleosides were consistent with the formation of pyruvate from acetate and CO2 as the first step in biosynthesis. Carbohydrates are formed by the glucogenic pathway, and no scrambling of label was observed, indicating that the oxidative or reductive pentose phosphate pathways are not functioning at significant rates. The pathways for amino acid biosynthesis are the usual ones, with the exception of that for isoleucine. The tricarboxylic acid pathway is incomplete and operates in a reductive direction to form alpha-ketoglutarate. The phytanyl chains of lipids are synthesized from acetate via mevalonic acid.  相似文献   

17.
Bacterial biofilms of Pseudomonas aeruginosa selectively labeled by introduction of 2-13C-glycerol was studied by solid-state and high-resolution nuclear magnetic resonance. The 13C nuclei were mainly integrated into mannuronate and guluronate, the two monomer units forming the bacterial alginate. The signal for the C5 position of the mannuronate, which was easily identified and well separated from other peaks, was analyzed for molecular mobility. The result indicated a high degree of motional freedom within the molecular network of the alginate. Despite the fact that the alginate was part of a solid aqueous gel phase, the reorientation mechanism of the monomer units came close to isotropic tumbling. Solid-state spectra of biofilms labeled in the described manner may serve as a valuable tool for noninvasive analyses of molecular mobility of the alginate component under various influences, thereby revealing important structural information. In addition, the effect of a monovalent electrolyte (LiCl) on the molecular mobility of alginate fragments in an aqueous solution was studied by determining the spin–lattice relaxation times, line widths and line shapes under variations of the ion concentration. The presence of ions accelerated overall motions but left rapid local motions virtually unaffected. Journal of Industrial Microbiology & Biotechnology (2001) 26, 62–69. Received 26 January 2000/ Accepted in revised form 30 August 2000  相似文献   

18.
The 13C NMR spectra were analyzed in bacteriochlorophyll a and magnesium protoporphyrin methyl ester formed in Rhodopseudomonas spheroides S. in the presence of L-[1-13C]glutamate and [2-13C]glycine. After reassignment of three alpha-pyrrolic carbons (C-9, -14 and -16) of bacteriochlorophyll a, the spectra showed that C-2 of glycine was preferentially incorporated into the eight-carbon atoms in these tetrapyrrole macrocycles derived from C-5 of 5-aminolevulinic acid (ALA). C-2 of glycine was also incorporated specifically into methyl ester carbon of magnesium protoporphyrin IX methyl ester and methoxyl carbon of methoxycarbonyl group attached to isocyclic ring of bacteriochlorophyll a. No enrichment of these nine-carbon atoms was observed in the spectrum of bacteriochlorophyll formed in the presence of L-[1-13C]glutamate, showing exclusive operation of ALA synthase on bacteriochlorophyll biosynthesis.  相似文献   

19.
20.
Summary Purified, delipidated rhodopsin is recombined with phospholipid using octyl-glucoside (OG) and preformed vesicles. Normal egg phosphatidylcholine, phosphatidylcholine in which the N-methyl groups are fully deuterated, and dioleoyl phosphatidylcholine labeled with deuterium at carbons 9 and 10 were used.31P nuclear magnetic resonance (NMR) and2H NMR measurements were obtained of the pure phospholipids and of the recombined membranes containing rhodopsin.31P NMR of the recombined membrane (containing the deuterated phospholipid) showed two overlapping resonances. One resembled a normal phospholipid bilayer, and the other was much broader, representing a motionally restricted phospholipid headgroup environment. The population of phospholipids in the motionally restricted environment can be modulated by conditions in the media.2H NMR spectra of the same recombined membranes showed only one component. These experimental results agree with a theoretical analysis that predicts an insensitivity of2H NMR to lipids bound to membrane proteins. A model containing at least three different phospholipid environments in the presence of the membrane protein rhodopsin is described.Deceased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号