共查询到20条相似文献,搜索用时 0 毫秒
1.
Cuveliers EL Volckaert FA Rijnsdorp AD Larmuseau MH Maes GE 《Molecular ecology》2011,20(17):3555-3568
Heavy fishing and other anthropogenic influences can have profound impact on a species' resilience to harvesting. Besides the decrease in the census and effective population size, strong declines in mature adults and recruiting individuals may lead to almost irreversible genetic changes in life-history traits. Here, we investigated the evolution of genetic diversity and effective population size in the heavily exploited sole (Solea solea), through the analysis of historical DNA from a collection of 1379 sole otoliths dating back from 1957. Despite documented shifts in life-history traits, neutral genetic diversity inferred from 11 microsatellite markers showed a remarkable stability over a period of 50 years of heavy fishing. Using simulations and corrections for fisheries induced demographic variation, both single-sample estimates and temporal estimates of effective population size (N(e) ) were always higher than 1000, suggesting that despite the severe census size decrease over a 50-year period of harvesting, genetic drift is probably not strong enough to significantly decrease the neutral diversity of this species in the North Sea. However, the inferred ratio of effective population size to the census size (N(e) /N(c) ) appears very small (10(-5) ), suggesting that overall only a low proportion of adults contribute to the next generation. The high N(e) level together with the low N(e) /N(c) ratio is probably caused by a combination of an equalized reproductive output of younger cohorts, a decrease in generation time and a large variance in reproductive success typical for marine species. Because strong evolutionary changes in age and size at first maturation have been observed for sole, changes in adaptive genetic variation should be further monitored to detect the evolutionary consequences of human-induced selection. 相似文献
2.
S. Yamamoto † K. Uchida ‡ T. Sato § K. Katsura T. Takasawa ¶ 《Journal of fish biology》2007,70(SB):191-201
The temporal and spatial population genetic structure of ayu Plecoglossus altivelis (Salmoniformes: Plecoglossidae), an amphidromous fish, was examined using analysis of variation at six microsatellite DNA loci. Intracohort genetic diversities, as measured by the number of alleles and heterozygosity, were similar among six cohorts (2001–2006) within a population (Nezugaseki River), with the mean number of alleles per cohort ranging from 11·0 to 12·5 and the expected heterozygosity ranging from 0·74 to 0·77. Intrapopulational genetic diversities were also similar across the three studied populations along the 50 km coast, with the mean number of alleles and the expected heterozygosity ranging from 11·33 to 11·67 and from 0·75 to 0·76, respectively. The authors observed only one significant difference in pair-wise population differentiation ( F ST -value) between the cohorts within a population and among three populations. Estimates of the effective population size ( N e ) based on maximum-likelihood method yielded small values (ranging from 94·8 to 135·5), whereas census population size ranged from c. 4800 to 24 000. As a result, the ratio of annual effective population sizes to census population size ( N e / N ) ranged from 0·004 to 0·023. These estimates of N e / N agree more closely with estimates for marine fishes than that of the larger estimates for freshwater fishes. The present study suggests that ayu which is highly fecund and shows low survival during the early life stages is also characterized by having low value of N e / N , similar to marine species with a pelagic life cycle. 相似文献
3.
In small planktonic organisms, large census sizes (N(c)) suggest large effective population sizes (N(e)), but reliable estimates are rare. Here, we present N(e)/N(c) ratios for two freshwater copepod species (Eudiaptomus sp.) using temporal samples of multilocus microsatellite genotypes and a pseudo-likelihood approach. N(e)/N(c) ratios were very small in both Eudiaptomus species (10(-7)-10(-8)). Although we hypothesized that the species producing resting eggs (E. graciloides) had a larger N(e) than the other (E. gracilis), estimates were not statistically different (E. graciloides: N(e) = 672.7, CI: 276-1949; E. gracilis: N(e) = 1027.4, CI: 449-2495), suggesting that the propagule bank of E. graciloides had no detectable influence on N(e). 相似文献
4.
The amount of genetic variability at neutral marker loci is expected to decrease, and the degree of genetic differentiation among populations to increase, as a negative function of effective population size. We assessed the patterns of genetic variability and differentiation at seven microsatellite loci in the common frog (Rana temporaria) in a hierarchical sampling scheme involving three regions (208-885 km apart), three subregions within regions and nine populations (5-20 km apart) within subregions, and related the variability and differentiation estimates to variation in local population size estimates. Genetic variability within local populations decreased significantly with increasing latitude, as well as with decreasing population size and regional site occupancy (proportion of censured localities occupied). The positive relationship between population size and genetic variability estimates was evident also when the effect of latitude (cf. colonization history) was accounted for. Significant genetic differentiation was found at all hierarchical levels, and the degree of population differentiation tended to increase with increasing latitude. Isolation by distance was evident especially at the regional sampling level, and its strength increased significantly towards the north in concordance with decreasing census and marker-based neighbourhood size estimates. These results are in line with the conjecture that the influence of current demographic factors can override the influence of historical factors on species population genetic structure. Further, the observed reductions in genetic variability and increased degree of population differentiation towards the north are in line with theoretical and empirical treatments suggesting that effective population sizes decline towards the periphery of a species' range. 相似文献
5.
T. J. C. BEEBEE 《Molecular ecology》2009,18(23):4790-4797
The accuracy and precision of four single‐sample estimators of effective population size, Ne (heterozygote excess, linkage disequilibrium, Bayesian partial likelihood and sibship analysis) were compared using empirical data (microsatellite genotypes) from multiple natterjack toad (Bufo calamita) populations in Britain (n = 16) and elsewhere in Europe (n = 10). Census size data were available for the British populations. Because toads have overlapping generations, all of these methods estimated the number of effective breeders Nb rather than Ne. The heterozygote excess method only provided results, without confidence limits, for nine of the British populations. Linkage disequilibrium gave estimates for 10 British populations, but only six had finite confidence limits. The Bayesian and sibship methods both produced estimates with finite confidence limits for all the populations. Although the Bayesian method was the most precise, on most criteria (insensitivity to locus number, correlation with other effective and census size estimates and correlation with genetic diversity) the sibship method performed best. The results also provided evidence of genetic compensation in natterjack toads, and highlighted how the relationship between effective size and genetic diversity can vary as a function of geographical scale. 相似文献
6.
The Haute Island mouflon (Ovis aries) population is isolated on one small (6.5 km2) island of the remote Kerguelen archipelago. Given a promiscuous mating system, a cyclic demography and a strong female-biased sex ratio after population crashes, we expected a low effective population size (Ne). We estimated Ne using demographic and temporal genetic approaches based on genetic information at 25 microsatellite loci from 62 and 58 mouflons sampled in 1988 and 2003, respectively. Genetic Ne estimates were higher than expected, varying between 104 and 250 depending on the methods used. Both demographic and genetic approaches show the Haute Island Ne is buffered against population crashes. The unexpectedly high Ne likely results from the cyclic winter crashes that allow young males to reproduce, limiting the variance of male reproductive success. Based on individual-based simulations, we suggest that despite a strongly female-biased sex ratio, the effects of the mating system on the effective population size more closely resemble random mating or weak polygyny. 相似文献
7.
The effective population size (N(e) ) could be the ideal parameter for monitoring populations of conservation concern as it conveniently summarizes both the evolutionary potential of the population and its sensitivity to genetic stochasticity. However, tracing its change through time is difficult in natural populations. We applied four new methods for estimating N(e) from a single sample of genotypes to trace temporal change in N(e) for bears in the Northern Dinaric Mountains. We genotyped 510 bears using 20 microsatellite loci and determined their age. The samples were organized into cohorts with regard to the year when the animals were born and yearly samples with age categories for every year when they were alive. We used the Estimator by Parentage Assignment (EPA) to directly estimate both N(e) and generation interval for each yearly sample. For cohorts, we estimated the effective number of breeders (N(b) ) using linkage disequilibrium, sibship assignment and approximate Bayesian computation methods and extrapolated these estimates to N(e) using the generation interval. The N(e) estimate by EPA is 276 (183-350 95% CI), meeting the inbreeding-avoidance criterion of N(e) > 50 but short of the long-term minimum viable population goal of N(e) > 500. The results obtained by the other methods are highly consistent with this result, and all indicate a rapid increase in N(e) probably in the late 1990s and early 2000s. The new single-sample approaches to the estimation of N(e) provide efficient means for including N(e) in monitoring frameworks and will be of great importance for future management and conservation. 相似文献
8.
S Belmar-Lucero JL Wood S Scott AB Harbicht JA Hutchings DJ Fraser 《Ecology and evolution》2012,2(3):562-573
Lower effective sizes (N(e)) than census sizes (N) are routinely documented in natural populations, but knowledge of how multiple factors interact to lower N(e)/N ratios is often limited. We show how combined habitat and life-history influences drive a 2.4- to 6.1-fold difference in N(e)/N ratios between two pristine brook trout (Salvelinus fontinalis) populations occupying streams separated by only 750 m. Local habitat features, particularly drainage area and stream depth, govern trout biomass produced in each stream. They also generate higher trout densities in the shallower stream by favoring smaller body size and earlier age-at-maturity. The combination of higher densities and reduced breeding site availability in the shallower stream likely leads to more competition among breeding trout, which results in greater variance in individual reproductive success and a greater reduction in N(e) relative to N. A similar disparity between juvenile or adult densities and breeding habitat availability is reported for other species and hence may also result in divergent N(e)/N ratios elsewhere. These divergent N(e)/N ratios between adjacent populations are also an instructive reminder for species conservation programs that genetic and demographic parameters may differ dramatically within species. 相似文献
9.
1. There is growing evidence that sexually mature but morphologically juvenile males of Atlantic salmon (precocious or mature male parr) actively participate in reproduction and, therefore, in the genetic composition of the populations of this species. The impact of mature male parr on the effective population size (Ne) of such populations has been previously studied under experimental settings, but no studies have been performed directly on natural populations. 2. Continuous monitoring and sampling of all sea returns is possible in the Lérez River (northwest of Spain). From demographic data on variances of reproductive success and genetic data from six microsatellite marker loci we carried out parentage assignment and assessed the impact of male parr on demographic and genetic estimates of Ne in two consecutive years. 3. Our results reveal that: (i) approximately 60% of the total sire paternity is attributable to mature parr; (ii) mature parr decrease the variance of reproductive success of males by a threefold factor and increase the effective population size of males by a 10‐fold factor; (iii) however, they do not substantially affect the variance of reproductive success and the effective size of females; (iv) mature parr increase two‐to threefold the overall effective size of the population but the ratio Ne/N, where N is the population size including or not mature parr in each case, is not affected. 相似文献
10.
Conservation of species should be based on knowledge of effective population sizes and understanding of how breeding tactics and selection of recruitment habitats lead to genetic structuring. In the stream‐spawning and genetically diverse brown trout, spawning and rearing areas may be restricted source habitats. Spatio–temporal genetic variability patterns were studied in brown trout occupying three lakes characterized by restricted stream habitat but high recruitment levels. This suggested non‐typical lake‐spawning, potentially representing additional spatio–temporal genetic variation in continuous habitats. Three years of sampling documented presence of young‐of‐the‐year cohorts in littoral lake areas with groundwater inflow, confirming lake‐spawning trout in all three lakes. Nine microsatellite markers assayed across 901 young‐of‐the‐year individuals indicated overall substantial genetic differentiation in space and time. Nested gene diversity analyses revealed highly significant (≤P = 0.002) differentiation on all hierarchical levels, represented by regional lakes (FLT = 0.281), stream vs. lake habitat within regional lakes (FHL = 0.045), sample site within habitats (FSH = 0.010), and cohorts within sample sites (FCS = 0.016). Genetic structuring was, however, different among lakes. It was more pronounced in a natural lake, which exhibited temporally stable structuring both between two lake‐spawning populations and between lake‐ and stream spawners. Hence, it is demonstrated that lake‐spawning brown trout form genetically distinct populations and may significantly contribute to genetic diversity. In another lake, differentiation was substantial between stream‐ and lake‐spawning populations but not within habitat. In the third lake, there was less apparent spatial or temporal genetic structuring. Calculation of effective population sizes suggested small spawning populations in general, both within streams and lakes, and indicates that the presence of lake‐spawning populations tended to reduce genetic drift in the total (meta‐) population of the lake. 相似文献
11.
The anadromous Chinese sturgeon (Acipenser sinensis), mainly endemic to the Yangtze River in China, is an endangered fish species. The natural population has declined since
the Gezhouba Dam blocked its migratory route to the spawning grounds in 1981. In the near future, the completion of the Three
Gorges Dam, the world's largest hydroelectric project, may further impact this species by altering the water flow of the Yangtze
River. Little is currently known about the population genetic structure of the Chinese sturgeon. In this study, DNA sequence
data were determined from the control region (D-loop) of the mitochondrial genome of adult sturgeons (n = 106) that were collected between 1995–2000. The molecular data were used to investigate genetic variation, effective female
population size and population history of the Chinese sturgeon in the Yangtze River. Our results indicate that the reduction
in abundance did not change genetic variation of the Chinese sturgeon, and that the population underwent an expansion in the
past. AMOVA analysis indicated that 98.7% of the genetic variability occurred within each year's spawning populations, the
year of collection had little influence on the diversity of annual temporary samples. The relative large effective female
population size (N
ef) indicates that good potential exists for the recovery of this species in the future. Strikingly, the ratio of N
ef to the census female population size (N
f) is unusually high (0.77–0.93). This may be the result of a current bottleneck in the population of the Chinese sturgeon
that is likely caused by human intervention.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
12.
N. K. Jue 《Journal of fish biology》2006,69(SC):217-224
Using 11 microsatellite markers, genetic analyses of three successive year-classes of gag Mycteroperca microlepis juveniles across the north-eastern Gulf of Mexico revealed a lack of spatial structure and very little temporal variation between year-classes. These results are consistent with long-term effective population sizes on the order of 30 000 adults. The importance of reproductive-style and sex-ratio variation is discussed as an important influence on long-term effective sizes. 相似文献
13.
Matsumura S Forster P 《Proceedings. Biological sciences / The Royal Society》2008,275(1642):1501-1508
North Greenland Polar Eskimos are the only hunter-gatherer population, to our knowledge, who can offer precise genealogical records spanning several generations. This is the first report from Eskimos on two key parameters in population genetics, namely, generation time (T) and effective population size (Ne). The average mother-daughter and father-son intervals were 27 and 32 years, respectively, roughly similar to the previously published generation times obtained from recent agricultural societies across the world. To gain an insight for the generation time in our distant ancestors, we calculated maternal generation time for two wild chimpanzee populations. We also provide the first comparison among three distinct approaches (genealogy, variance and life table methods) for calculating Ne, which resulted in slightly differing values for the Eskimos. The ratio of the effective to the census population size is estimated as 0.6-0.7 for autosomal and X-chromosomal DNA, 0.7-0.9 for mitochondrial DNA and 0.5 for Y-chromosomal DNA. A simulation of alleles along the genealogy suggested that Y-chromosomal DNA may drift a little faster than mitochondrial DNA in this population, in contrast to agricultural Icelanders. Our values will be useful not only in prehistoric population inference but also in understanding the shaping of our genome today. 相似文献
14.
15.
DNA “fingerprinting” and the genetic management of a captive chimpanzee population (Pan troglodytes)
DNA fingerprinting probes are cloned sequences which simultaneously detect a large number of similar hypervariable loci in the target DNA. The resulting highly polymorphic pattern visualized on an autoradiograph allows resolution of questions concerning individual identification and parentage. M13 bacteriophage has been used as a DNA fingerprinting probe for paternity ascertainment among captive chimpanzees housed in multi-male groups as part of the National Chimpanzee Breeding and Research Program. In 31 cases of unknown paternity where DNA samples for mother, offspring, and all potential sires were available, DNA fingerprinting with M13 resulted in the unambiguous assignment of paternity for all 31 infants. Knowledge of pedigrees among the captive-born animals is used to address several issues important in the genetic management of captive breeding colonies, including estimation of effective population size and of the rate of decline in genetic variability, variance in male and female reproduction, and the effect of social dominance on male reproductive success. Our analysis demonstrates the beneficial effects of genetic management by comparing the managed dedicated cohort to the Bastrop colony as a whole. 相似文献
16.
We study the properties of gene genealogies for large samples using a continuous approximation introduced by R. A. Fisher. We show that the major effect of large sample size, relative to the effective size of the population, is to increase the proportion of polymorphisms at which the mutant type is found in a single copy in the sample. We derive analytical expressions for the expected number of these singleton polymorphisms and for the total number of polymorphic, or segregating, sites that are valid even when the sample size is much greater than the effective size of the population. We use simulations to assess the accuracy of these predictions and to investigate other aspects of large-sample genealogies. Lastly, we apply our results to some data from Pacific oysters sampled from British Columbia. This illustrates that, when large samples are available, it is possible to estimate the mutation rate and the effective population size separately, in contrast to the case of small samples in which only the product of the mutation rate and the effective population size can be estimated. 相似文献
17.
José G. García-Franco Valeria Souza Luis E. Eguiarte Victor Rico-Gray 《Plant Systematics and Evolution》1998,210(3-4):271-288
The genetic population structure inBdallophyton bambusarum, an endoparasite, was studied in ten subpopulations from a subdeciduous tropical forest in Veracruz Mexico. The sample was analyzed using seven polymorphic loci in cellulose acetate electrophoresis. Isozyme data indicated that the subpopulations ofB. bambusarum contained high genetic variability (Hep = 0.452 ± 0.045, S.E.). Our analysis suggests that almost each inflorescence ofB. bambusarum is an individual. The subpopulations studied were genetically similar (average Nei's genetic identity 0.941 ± 0.051 and F
st
values 0.097 ± 0.026), suggesting that genetic differentiation among subpopulations was small. Direct estimates of effective population size was derived from observations of three fluorescent dyes, and from the genetic neighborhood area derived from these data. The neighborhood area, multiplied by the total density of individuals, gave an Ne = 124.84 plants, and when corrected to consider the proportion of males and females gave an Ne = 118.59 individuals. An indirect estimate of Nm was obtained from the F
st
values (mean Nm=2.037), giving an indirect estimate of the effective population size Nb = 12.8 individuals. Both values are relatively high when compared to other plant studies. The gene flow and/or effective populations size of the studied subpopulations ofB. bambusarum are believed to be large enough to prevent differentiation among subpopulations due to genetic drift. 相似文献
18.
Lee AM Engen S Sæther BE 《Proceedings. Biological sciences / The Royal Society》2011,278(1722):3303-3312
Ratios of effective populations size, N(e), to census population size, N, are used as a measure of genetic drift in populations. Several life-history parameters have been shown to affect these ratios, including mating system and age at sexual maturation. Using a stochastic matrix model, we examine how different levels of persistent individual differences in mating success among males may affect N(e)/N, and how this relates to generation time. Individual differences of this type are shown to cause a lower N(e)/N ratio than would be expected when mating is independent among seasons. Examining the way in which age at maturity affects N(e)/N, we find that both the direction and magnitude of the effect depends on the survival rate of juveniles in the population. In particular, when maturation is delayed, lowered juvenile survival causes higher levels of genetic drift. In addition, predicted shifts in N(e)/N with changing age at maturity are shown to be dependent on which of the commonly used definitions of census population size, N, is employed. Our results demonstrate that patterns of mating success, as well as juvenile survival probabilities, have substantial effects on rates of genetic drift. 相似文献
19.
The effective population size is a central concept for understanding evolutionary processes in a finite population. We employ Fisher's reproductive value to estimate the ratio of effective to actual population size for an age‐structured population with two sexes using random samples of individual vital rates. The population may be subject to environmental stochasticity affecting the vital rates. When the mean sex ratio at birth is known, improved efficiency is obtained by utilizing the records of total number of offspring rather than considering separately female and male offspring. We also show how to incorporate uncertain paternity. 相似文献
20.
NICOLAS GOUIN CATHERINE SOUTY‐GROSSET JÉSSICA BÓRQUEZ ANGÉLINE BERTIN FRÉDÉRIC GRANDJEAN 《Freshwater Biology》2011,56(10):2105-2118
1. Habitat fragmentation of stream ecosystems often results in decreased connectivity between populations and lower population sizes. Hence, understanding how habitat fragmentation affects genetic erosion is important for the preservation of freshwater biodiversity, in particular, as small populations suffer from loss of genetic diversity through genetic drift and loss of fitness because of inbreeding, increasing the risk of extinction. 2. Here, we assess the impact of demographic factors on population differentiation in the endangered freshwater crayfish Austropotamobius pallipes by analysing population genetic structure, estimating effective population sizes and comparing levels of polymorphism at five microsatellite loci with density estimates of 10 populations within a small French catchment that has become progressively confined to headwaters over the last six decades. 3. Levels of expected heterozygosity and allelic richness per population were relatively low (0.214–0.396 and 1.6–2.6, respectively). We found strong genetic differentiation between these geographically close populations (FST = 0.283), with weak statistical evidence for a pattern of isolation by distance. Estimates of effective population size were low (<150) in most populations, but potentially reached several thousands in three populations. 4. Population density and allelic richness were strongly positively correlated. A robust relationship between population density and heterozygosity values was also noted, but only after discarding two populations for which significant genetic signatures of a recent bottleneck were found; these two populations displayed high expected heterozygosity compared with a very low density. Populations with the highest densities of individuals had the highest effective population size estimates and vice versa. 5. Our results clearly show the importance of demographic factors and genetic drift on A. pallipes populations. Furthermore, analysis of genetic and population density data is a pragmatic and efficient approach to corroborate inferences from genetic data and can be particularly useful in the identification of populations experiencing a bottleneck and therefore in conservation genetics studies aiming at identifying priority populations for conservation. 相似文献