首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Competitive inhibition binding studies on membranes from the rat pancreatic AR 4-2J cell line revealed the predominance (80%) of low selectivity CCK receptors (KD of 1 nM and 4 nM for, respectively, CCK-8 and gastrin-17I (G-17I] over selective receptors (20% with a KD of 1 nM and 1 microM for, respectively, CCK-8 and G-17I). Amylase secretion was stimulated by low concentrations of CCK-8, G-17I and CCK-4. G-17I-induced amylase secretion was unaffected by 100 nM of the selective peripheral CCK-A receptor antagonist L-364,718, suggesting that amylase hypersecretion followed non-selective CCK receptor activation, a function normally assumed by selective CCK-A receptors in rat pancreatic acini. Direct ultraviolet irradiation of AR 4-2J cell membranes preloaded with 125I-BH-CCK-33 or 125I(Leu)G(2-17)I resulted in covalent cross-linking with, respectively, a 90 kDa protein and a 106 kDa protein, both distinct from the 81 kDa CCK binding species revealed in normal rat pancreatic membranes. Gpp[NH]p increased the dissociation rate of CCK-8 and G-17I from AR 4-2J cell membranes, indicating a coupling of receptors with guanyl nucleotide regulatory protein(s) G. [32P]ADP-ribosylation of AR 4-2J cell membranes allowed to detect the presence of two Gs alpha (the 50 kDa form predominating over the 45 kDa form) and one Gi alpha (41 kDa). However, Gi and Gs may not be involved in gastrin stimulation of amylase secretion, as Bordetella pertussis toxin and cholera toxin pretreatment of cells did not suppress G-17I-dependent amylase secretion.  相似文献   

2.
Cholecystokinin (CCK) receptors were investigated in the tumoral acinar cell line AR 4-2 J derived from rat pancreas, after preincubation with 20 nM dexamethasone. At steady state binding at 37 degrees C (i.e., after a 5 min incubation), less than 10% of the radioactivity of [125I]BH-CCK-9 (3-(4-hydroxy-[125I]iodophenyl)propionyl (Thr34, Nle37) CCK(31-39)) could be washed away from intact cells with an ice-cold acidic medium, suggesting high and rapid internalization-sequestration of tracer. By contrast, more than 85% of the tracer dissociated rapidly after a similar acid wash from cell membranes prelabelled at steady state. In intact AR 4-2 J cells, internalization required neither energy nor the cytoskeleton framework. Tracer internalization was reversed partly but rapidly at 37 degrees C but slowly at 4 degrees C. In addition, two degradation pathways of the tracer were demonstrated, one intracellular and one extracellular. Intracellular degradation occurred at 37 degrees C but not at 20 degrees C and resulted in progressive intracellular accumulation of [125I]BH-Arg that corresponded, after 1 h at 37 degrees C, to 35% of the radioactivity specifically bound. This phenomenon was not inhibited by serine proteinase inhibitors and modestly only by monensin and chloroquine. Besides, tracer degradation at the external cell surface was still observable at 20 degrees C and yielded a peptide (probably [125I]BH-Arg-Asp-Tyr(SO3H)-Thr-Gly). This degradation pathway was partly inhibited by bacitracin and phosphoramidon while thiorphan, an inhibitor of endopeptidase EC 3.4.24.11, was without effect.  相似文献   

3.
1. Vasoactive intestinal peptide (VIP) receptors were investigated in the tumoral acinar cell line AR 4-2 J derived from rat pancreas [125I]Iodo-VIP binding to cell membranes showed the following IC50 values for unlabeled peptides: VIP, 0.3 nM; peptide His-IleNH2, 2 nM; helodermin, 30 nM; secretin, 100 nM. After incubation with 20 nM dexamethasone, the binding capacity increased twofold but affinities were unchanged. External [125I]iodo-VIP binding to intact cells reached steady state after 5 min at 37 degrees C, while the sequestration-internalization of the [125I]iodo-VIP-receptor complex (tested by cold acid washing) increased progressively, reaching 75% of total binding after 1 h. This phenomenon was blocked at 4 degrees C. Further data with dexamethasone, tunicamycin, cycloheximide, low temperature, and/or phenylarsine oxide, suggested a half-life of 2 days for VIP receptors and the necessity of N-glycosylation for proper translocation. 2. For chemical [125I]iodo-VIP cross-linking bis[2-(succinimidooxycarbonyloxy)ethyl]sulfone gave the best yield when compared with five other bifunctional reagents. In membranes, the main specifically cross-linked peptide had Mr 66,000 under nonreducing conditions, and migrated with lower velocity (-5%) under reducing conditions. Cross-linking was suppressed by VIP, peptide His-IleNH2 and helodermin (competitively) and also by GTP. In intact cells, the Mr of [125I]iodo-VIP-cross-linked peptides depended on the mode of cell solubilization. After direct solubilization, the major cross-linked radioactivity migrated as a smear of Mr 130,000-180,000 but an Mr-66,000 peptide was also detectable. In contrast, the solubilization of cross-linked cells detached by mild trypsinisation gave mainly the Mr-66,000 labeled peptide. This suggests that most VIP receptors in intact, attached cells were in a high-Mr complex and that mild cell treatment was sufficient to disrupt this complex.  相似文献   

4.
We characterized highly selective receptors for PACAP, the pituitary adenylate cyclase activating peptide, in the tumoral acinar cell line AR 4-2J derived from the rat pancreas. PACAP, a novel hypothalamic peptide related to vasoactive intestinal peptide (VIP), was tested as the full natural 38-residue peptide (PACAP-38) and as an N-terminal amidated 27-residue derivative (PACAP-27). The binding sites showed considerable affinity for [125I]PACAP-27 (Kd = 0.4 nM) and PACAP-38, while their affinity for VIP and the parent peptide helodermin was 1000-fold lower. These receptors were coupled to adenylate cyclase, the potency of PACAP-38 and PACAP-27 (Kact = 0.2 nM) being much higher than that of VIP (Kact = 100 nM) and helodermin (Kact = 30 nM). Chemical cross-linking of [125I]PACAP-27 followed by SDS-PAGE and autoradiography revealed a specifically cross-linked peptide with an Mr of 68,000 (including 3000 for one PACAP-27 molecule).  相似文献   

5.
The effects of glucocorticoids on somatostatin binding and cAMP response in the rat pancreatic acinar carcinoma AR4-2J cell line were examined. Dexamethasone treatment reduced the number of somatostatin receptors 2.5 fold without any change in receptor affinity. In addition, dexamethasone increased the sensitivity of the cells to somatostatin-inhibited cAMP formation and restored the biphasic pattern of cAMP response to somatostatin previously observed in normal pancreatic acinar cells. Such effect may be associated with the glucocorticoid-promoted cellular pancreatic differentiation of AR4-2J cells.  相似文献   

6.
Rab3D is a small GTPase implicated in regulated exocytosis, and is a marker of secretory granules in exocrine cells. We have previously shown that rab3D undergoes reversible carboxyl-methylation in adult rat pancreatic acinar cells, and that carboxyl-methylation of rab3D is developmentally regulated concomitantly with the maturation of the regulated secretory apparatus in rat pancreas. We also observed that dexamethasone treatment of the rat pancreatic acinar tumor cell line, AR42J, led to a significant increase in the size of the unmethylated pool of a rab3-like protein. The current study was designed to further characterize this rab3-like protein. Here we show that AR42J cells express rab3D, and that the protein focuses on 2D gels as two spots with pI values of 4.9 and 5.0. Treatment of AR42J cells with N-acetyl-S-geranylgeranyl-l-cysteine, an inhibitor of carboxyl-methylation, led to a decrease in the basic form of rab3D and a proportional increase in the acidic form. In contrast, N-acetyl-S-farnesyl-l-cysteine, which inhibits carboxyl-methylation of farnesylated proteins, had no effect. Lovastatin, an inhibitor of geranylgeranylation, also induced an accumulation of the acidic form of rab3D. Taken together, these data indicate that rab3D can undergo reversible carboxyl-methylation in AR42J cells by a geranylgeranyl-specific methyltransferase. The 2D gel and immunoblotting analyses indicated that dexamethasone treatment of AR42J cells led to an increase in the proportion of the unmethylated form of rab3D concurrent to inducing a regulated secretory pathway, similar to the rab3D profile change in developing rat pancreas. Our data, along with previous studies done on developing rat pancreas, indicate that the tumor cell line AR42J represents a good model system for studying the regulated secretory pathway, and that carboxyl-methylation of rab3D may play a role in the acquisition of stimulus-secretion coupling.  相似文献   

7.
The characteristics of Ca2+ entry activated by surface receptor agonists and membrane depolarization were studied in the rat pancreatoma cell line, AR4-2J. Ca2+ mobilization activated by substance P, bombesin, or muscarinic receptor stimulation was found to involve both Ca2+ release and entry. In addition, depolarization of the surface membrane of AR4-2J cells with elevated concentrations of K+ activated Ca2+ entry. Ca2+ entry induced by membrane depolarization was inhibited by the L-channel antagonist, nimodipine, while that due to surface receptor agonists was not inhibited by this agent. The microsomal Ca(2+)-ATPase inhibitor, thapsigargin, caused both depletion of the agonist-sensitive intracellular Ca2+ pool and sustained Ca2+ influx indistinguishable from that produced by bombesin or methacholine. These results confirm that, unlike the pancreatic acinar cells from which they are presumably derived, AR4-2J cells express voltage-sensitive, dihydropyridine-inhibitable Ca2+ channels. However, in contrast to previous reports with this cell line, in the AR4-2J cells in use in our laboratory, and under our experimental conditions, surface receptor agonists (including substance P) do not cause Ca2+ influx through voltage-sensitive Ca2+ channels. Instead, we conclude that agonist-activated Ca2+ mobilization is initiated by (1,4,5)IP3-mediated intracellular Ca2+ release and that Ca2+ influx is regulated primarily, if not exclusively, by the state of depletion of the (1,4,5)IP3-sensitive intracellular Ca2+ pool.  相似文献   

8.
For the first time, we have demonstrated in AR4-2J cells, an experimental model of azaserine-induced carcinoma in the rat exocrine pancreas, the co-expression of α1 subunit of dihydropyridine-sensitive Ca2+ channel and the α1 sub-unit of ω-conotoxin-sensitive Ca2+ channel RNA messengers which share homologous sequences with, respectively, rbC II and rbB I sub-types described in the rat brain. These two types of voltage-dependent Ca2+ channels which are functionally expressed, emphasize the acquisition during carcinogenesis of neuroendocrine features of AR4-2J cells. Additionally, using antisense phosphorothioate oligodeoxynucleotide, we demonstrated clearly the involvement of dihydropyridine-sensitive Ca2+ channels in the control of AR4-2J cell proliferation.  相似文献   

9.
VIP receptors on AR42J rat pancreatic cells were analyzed by competition binding, affinity labeling and by N-glycanase digestion analyses. These studies revealed the presence of specific, high affinity (Kd approximately 1 nM) VIP receptors with a mass of 67 kDa or 59 kDa under reducing or non-reducing conditions, respectively. N-glycanase digestion of affinity labeled membranes generated a core receptor protein of approximately 44 kDa and evidence for at least two N-linked glycans on the mature receptor. The receptor lacked O-linked oligosaccharides but contained terminal sialic acid residues on its N-linked glycan(s) based on digestions with O-glycanase and neuraminidase. The similarity of the AR42J VIP receptor to the recently cloned cDNA for human VIP receptors makes this cell line an attractive model for further analysis of VIP receptor signal transduction events.  相似文献   

10.
11.
Apoptosis linked to oxidative stress has been implicated in pancreatitis. We investigated whether NADPH oxidase mediates apoptosis in cerulein-stimulated pancreatic acinar AR42J cells. We report here that cerulein treatment resulted in the activation of NADPH oxidase, as determined by ROS production, translocation of cytosolic subunits p 47(phox) and p 67(phox) to the membrane, and interaction between NADPH oxidase subunits. Cerulein induced Ca(2+) oscillation, the expression of apoptotic genes p53 and bax, and apoptotic indices (DNA fragmentation, TUNEL staining, caspase 3 activity, decrease in cell viability) in AR42J cells. Treatment with a Ca(2+) chelator, BAPTA-AM, or transfection with antisense oligonucleotides for NADPH oxidase subunits p22(phox) and p 47(phox) inhibited cerulein-induced ROS production, translocation of NADPH oxidase cytosolic subunits p 47(phox) and p 67(phox) to the membrane, and the expression of apoptotic genes and apoptotic indices, as compared to the cells without treatment and those transfected with the corresponding sense oligonucleotides. These results indicate that NADPH oxidase may mediate ROS-induced apoptosis in pancreatic acinar cells in a Ca(2+)-dependent manner.  相似文献   

12.
13.
Ca2 channelsandamylasesecreti0ninAR4-2Jce1lsAR4-2Jisacelllineoriginallyderivedfr0matransp1antable,azaserine-inducedmurinetumour[1,2],whichc0ntainssignificantamount0famylaseandotherdiges-tiveenzymes'Thiscelllinecontainsanumberofreceptorsystems:substanceP[3…  相似文献   

14.
15.
GP2 is the major membrane protein present in secretory granules of the exocrine pancreas. GP2's function is unknown, but a role in digestive enzyme packaging or secretion from secretory granules has been proposed. In addition, GP2 has been proposed to influence endocytosis and membrane recycling following stimulated secretion. Adenovirus-mediated GP2 overexpression in the rat pancreatic cell line AR4-2J was used to study its impact on digestive enzyme secretion and membrane recycling. Immunoelectron microscopy showed that GP2 and amylase co-localized in secretory granules in infected AR4-2J cells. CCK-8 stimulation resulted in a fourfold increase in amylase secretion with or without GP2 expression. GP2 expression also did not influence endocytosis following CCK-8 stimulation. Thus, GP2 expression in AR4-2J cells does not affect amylase packaging in secretory granules or stimulated secretion. GP2 expression also does not influence membrane recycling in response to stimulated stimulation in AR4-2J cells.  相似文献   

16.
17.
P Feick  S Gilhaus  R Blum  F Hofmann  I Just  I Schulz 《FEBS letters》1999,451(3):269-274
Disruption of the actin cytoskeleton in AR4-2J pancreatic acinar cells led to an increase in cytosolic protein tyrosine phosphatase activity, abolished bombesin-induced tyrosine phosphorylation and reduced bombesin-induced amylase secretion by about 45%. Furthermore, both tyrosine phosphorylation and amylase secretion induced by phorbol ester-induced activation of protein kinase C were abolished. An increase in the cytosolic free Ca2+ concentration by the Ca2+ ionophore A23187 had no effect on tyrosine phosphorylation but induced amylase release. Only when added together with phorbol ester, the same level of amylase secretion as with bombesin was reached. This amylase secretion was inhibited by about 40%, by actin cytoskeleton disruption similar to that induced by bombesin. We conclude that actin cytoskeleton-controlled protein tyrosine phosphatase activity downstream of protein kinase C activity regulates tyrosine phosphorylation which in part is involved in bombesin-stimulated amylase secretion.  相似文献   

18.
This paper reviews the relationships between the effects of glucocorticoids on rat pancreatic acinar AR42J cell polyamine levels and cellular growth and differentiation. Glucocorticoids inhibit the growth of AR42J cells. Glucocorticoids either stimulate or inhibit the formation of polyamines in a variety of cell types. Cells require polyamines for normal growth. Therefore, we tested the hypothesis that polyamines mediate the effects of glucocorticoids on AR42J cells. First, to confirm that AR42J cells required polyamines for growth we examined the effects of inhibiting ornithine decarboxylase (ODC). ODC is the most important and generally rate-limiting enzyme in the synthesis of the polyamines. As expected, the ODC inhibitor difluoromethylornithine (DFMO) inhibited AR42J cell DNA synthesis, and the addition of exogenous putrescine reversed this effect. The levels of growth inhibition by glucocorticoids and DFMO treatment were similar. Second, we examined the effects of glucocorticoids on ODC. Surprisingly, glucocorticoids increased levels of AR42J cell ODC mRNA, ODC activity, and putrescine. Glucocorticoids increased these parameters over a similar time-course as they decreased DNA synthesis. Analog specificity studies indicated that a glucocorticoid receptor mediated both the growth inhibitory and ODC stimulatory effects. Dose-response studies indicated, however, that growth inhibition was more sensitive to dexamethasone (DEX) than were ODC levels. Therefore, polyamines do not account for the effects of glucocorticoids on AR42J cell growth. In these cells, glucocorticoids have opposite and independent effects on ODC and growth.  相似文献   

19.
We recently reported in AR42J pancreatic acinar cells that glucocorticoids increased the synthesis, cell content, and mRNA levels for amylase (Logsdon, C.D., Moessner, A., Williams, J.A., and Goldfine, I.D. (1985) J. Cell Biol. 100, 1200-1208). In addition, in these cells glucocorticoids increased the volume density of secretory granules and rough endoplasmic reticulum. In the present study we investigate the effects of glucocorticoids on the receptor binding and biological effects of cholecystokinin (CCK) on AR42J cells. Treatment with 10 nM dexamethasone for 48 h increased the specific binding of 125I-CCK. This increase in binding was time-dependent, with maximal effects occurring after 48 h, and dose-dependent, with a one-half maximal effect elicited by 1 nM dexamethasone. Other steroid analogs were also effective and their potencies paralleled their relative effectiveness as glucocorticoids. Analyses of competitive binding experiments conducted at 4 degrees C to minimize hormone internalization and degradation revealed the presence of a single class of CCK binding sites with a Kd of approximately 6 nM and indicated that dexamethasone treatment nearly tripled the number of CCK receptors/cell with little change in receptor affinity. Treatment with 10 nM dexamethasone increased both basal amylase secretion and the amylase released in response to CCK stimulation. In addition, dexamethasone increased the sensitivity of the cells to CCK. The glucocorticoid decreased the concentration of CCK required for one half-maximal stimulation of amylase secretion from 35 +/- 6 to 8 +/- 1 pM. These data indicate, therefore, that glucocorticoids induce an increase in the number of CCK receptors in AR42J cells, and this increase leads to enhanced sensitivity to CCK.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号