首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have designed a novel tiling array, AtMap1, for genomic deletion mapping. AtMap1 is a 60-mer oligonucleotide microarray consisting of 42 497 data probes designed from the genomic sequence of Arabidopsis thaliana Col-0. The average probe interval is 2.8 kb. The performance of the AtMap1 array was assessed using the deletion mutants mag2-2, rot3-1 and zig-2. Eight of the probes showed threefold lower signals in mag2-2 than Col-0. Seven of these probes were located in one region on chromosome 3. We considered these adjacent probes to represent one deletion. This deletion was consistent with a reported deleted region. The other probe was located near the end of chromosome 4. A newly identified deletion around the probe was confirmed by PCR. We also detected the responsible deletions for rot3-1 and zig-2. Thus we concluded that the AtMap1 array was sufficiently sensitive to identify a deletion without any a priori knowledge of the deletion. An analysis of the result of hybridization of Ler and previously reported polymorphism data revealed that the signal decrease tended to depend on the overlap size of sequence polymorphisms. Mutation mapping is time-consuming, laborious and costly. The AtMap1 array removes these limitations.  相似文献   

2.
3.
4.
Water-soluble heteroglycans (SHG) were isolated from leaves of wild-type Arabidopsis thaliana L. and from two starch-deficient mutants. Major constituents of the SHG are arabinose, galactose, rhamnose, and glucose. SHG was separated into low (<10 kDa; SHG(S)) and high (>10 kDa; SHG(L)) molecular weight compounds. SHG(S) was resolved into approximately 25 distinct oligoglycans by ion exchange chromatography. SHG(L) was further separated into two subfractions, designated as subfraction I and II, by field flow fractionation. For the intracellular localization of the various SHG compounds several approaches were chosen: first, leaf material was subjected to non-aqueous fractionation. The apolar gradient fractions were characterized by monitoring markers and were used as starting material for the SHG isolation. Subfraction I and SHG(S) exhibited a distribution similar to that of cytosolic markers whereas subfraction II cofractionated with crystalline cellulose. Secondly, intact organelles were isolated and used for SHG isolation. Preparations of intact organelles (mitochondria plus peroxisomes) contained no significant amount of any heteroglycan. In isolated intact microsomes a series of oligoglycans was recovered but neither subfraction I nor II. In in vitro assays using glucose 1-phosphate and recombinant cytosolic (Pho 2) phosphorylase both SHG(S) and subfraction I acted as glucosyl acceptor whereas subfraction II was essentially inactive. Rabbit muscle phosphorylase a did not utilize any of the plant glycans indicating a specific Pho 2-glycan interaction. As revealed by in vivo labeling experiments using 14CO2 carbon fluxes into subfraction I and II differed. Furthermore, in leaves the pool size of subfraction I varied during the light-dark regime.  相似文献   

5.
A proteomic approach was developed for the identification of membrane-bound proteins of Arabidopsis thaliana. A subcellular fraction enriched in vacuolar membranes was prepared from 4-week-old plants and was washed with various agents to remove peripheral membrane proteins and contaminating soluble proteins. The remaining membrane-bound proteins were then subjected to proteomic analysis. Given that these proteins were resolved poorly by standard two-dimensional gel electrophoresis, we subjected them instead to SDS-polyacrylamide gel electrophoresis and to protein digestion within gel slices with lysylendopeptidase. The resulting peptides were separated by reverse-phase high-performance liquid chromatography and subjected to Edman sequencing. From the 163 peptide peaks analyzed, 69 peptide sequences were obtained, 64 of which were informative. The proteins corresponding to these peptide sequences were identified as belonging to 42 families, including two subfamilies, by comparison with the protein sequences predicted from annotation of the A. thaliana genome. A total of 34 proteins was identified definitively with protein-specific peptide sequences. Transmembrane proteins detected in the membrane fraction included transporters, channels, receptors, and unknown molecules, whereas the remaining proteins, categorized as membrane-anchored proteins, included small GTPases, GTPase binding proteins, heat shock protein 70-like proteins, ribosomal proteins, and unknown proteins. These membrane-anchored proteins are likely attached to membranes by hydrophobic anchor molecules or through tight association with other membrane-bound proteins. This proteomic approach has thus proved effective for the identification of membrane-bound proteins.  相似文献   

6.
7.
Weakly bound cell wall proteins of Arabidopsis thaliana were identified using a proteomic and bioinformatic approach. An efficient protocol of extraction based on vacuum-infiltration of the tissues was developed. Several salts and a chelating agent were compared for their ability to extract cell wall proteins without releasing cytoplasmic contaminants. Of the 93 proteins that were identified, a large proportion (60%) was released by calcium chloride. From bioinformatics analysis, it may be predicted that most of them (87 out of 93) had a signal peptide, whereas only six originated from the cytoplasm. Among the putative apoplastic proteins, a high proportion (67 out of 87) had a basic pI. Numerous glycoside hydrolases and proteins with interacting domains were identified, in agreement with the expected role of the extracellular matrix in polysaccharide metabolism and recognition phenomena. Ten proteinases were also found as well as six proteins with unknown functions. Comparison of the cell wall proteome of rosettes with the previously published cell wall proteome of cell suspension cultures showed a high level of cell specificity, especially for the different members of several large multigenic families.  相似文献   

8.
An improved method to identify the T-DNA insertion site in transgenic Arabidopsis thaliana (Columbia ecotype) genome was presented. Firstly, the pre-adaptor was amplified by PCR from the plasmid pLASC11.12.8 and digested by HindIII to produce the adaptor. After treated with calf intestine alkaline phosphatase, the adaptor was ligated to the genomic restriction digested fragment with the same restriction endonucleases. Then two rounds of PCR (nested-PCR) were carried out and an unknown sequence between the T-DNA and the adaptor was amplified. Further analysis would reveal the accurate site of T-DNA insertion into transgenic A. thaliana genome. This text was submitted by the authors in English.  相似文献   

9.
10.
11.
Arabidopsis thaliana provides a useful model system for functional, evolutionary and ecological studies in plant biology. We have analysed natural genetic variation in A. thaliana in order to infer its biogeographical and historical distribution across Eurasia. We analysed 79 amplified fragment length polymorphism (AFLP) markers in 142 accessions from the species' native range, and found highly significant genetic isolation by distance among A. thaliana accessions from Eurasia and southern Europe. These spatial patterns of genetic variation suggest that A. thaliana colonized central and northern Europe from Asia and from Mediterranean Pleistocene refugia, a trend which has been identified in other species. Statistically significant levels of multilocus linkage disequilibrium suggest intermediate levels of disequilibrium among subsets of loci, and analysis of genetic relationships among accessions reveal a star or bush-like dendrogram with low bootstrap support. Taken together, it appears that there has been sufficient historical recombination in the A. thaliana genome such that accessions do not conform to a tree-like, bifurcating pattern of evolution - there is no 'ecotype phylogeny.' Nonetheless, significant isolation by distance provides a framework upon which studies of natural variation in A. thaliana may be designed and interpreted.  相似文献   

12.
The use of microarrays to study the anaerobic response in Arabidopsis   总被引:1,自引:0,他引:1  
  相似文献   

13.
Qin G  Gu H  Ma L  Peng Y  Deng XW  Chen Z  Qu LJ 《Cell research》2007,17(5):471-482
Carotenoids play an important role in many physiological processes in plants and the phytoene desaturase gene (PDS3) encodes one of the important enzymes in the carotenoid biosynthesis pathway. Here we report the identification and analysis of a T-DNA insertion mutant of PDS3 gene. Functional complementation confirmed that both the albino and dwarfphenotypes ofthepds3 mutant resulted from functional disruption of the PDS3 gene. Chloroplast development was arrested at the proplastid stage in thepds3 mutant. Further analysis showed that high level ofphytoene was accumulated in the pds3 mutant. Addition of exogenous GA3 could partially rescue the dwarf phenotype, suggesting that the dwarf phenotype ofthepds3 mutant might be due to GA deficiency. Microarray and RT-PCR analysis showed that disrupting PDS3 gene resulted in gene expression changes involved in at least 20 metabolic pathways, including the inhibition of many genes in carotenoid, chlorophyll, and GA biosynthesis pathways. Our data suggest that the accumulated phytoene in the pds3 mutant might play an important role in certain negative feedbacks to affect gene expression of diverse cellular pathways.  相似文献   

14.
15.
16.
17.
18.
19.
20.
蛋白质的亚细胞定位信息对于深入了解该蛋白质的功能具有重要意义。本文对一个预测的拟南芥叶绿体未知功能基因At4g22890编码蛋白进行了叶绿体定位研究。我们克隆了该基因5′端长208bp的DNA片段,与绿色荧光蛋白(GFP)基因构建重组表达载体pMON530-cTP-GFP,经农杆菌介导转化拟南芥。转基因植株经激光共聚焦显微镜观察,GFP荧光仅在叶绿体中观察到,表明所克隆的DNA序列编码的多肽能够将At4g22890编码蛋白质引导进入叶绿体,由此推测该蛋白质为叶绿体蛋白质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号