首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rickettsia prowazekii, the causative agent of epidemic typhus, is an obligate intracellular bacterium that grows directly within the cytoplasm of its host cell, unbounded by a vacuolar membrane. The obligate intracytoplasmic nature of rickettsial growth places severe restrictions on the genetic analysis of this distinctive human pathogen. In order to expand the repertoire of genetic tools available for the study of this pathogen, we have employed the versatile mariner-based, Himar1 transposon system to generate insertional mutants of R. prowazekii. A transposon containing the R. prowazekii arr-2 rifampin resistance gene and a gene coding for a green fluorescent protein (GFPUV) was constructed and placed on a plasmid expressing the Himar1 transposase. Electroporation of this plasmid into R. prowazekii resulted in numerous transpositions into the rickettsial genome. Transposon insertion sites were identified by rescue cloning, followed by DNA sequencing. Random transpositions integrating at TA sites in both gene coding and intergenic regions were identified. Individual rickettsial clones were isolated by the limiting-dilution technique. Using both fixed and live-cell techniques, R. prowazekii transformants expressing GFPUV were easily visible by fluorescence microscopy. Thus, a mariner-based system provides an additional mechanism for generating rickettsial mutants that can be screened using GFPUV fluorescence.  相似文献   

2.
Rickettsia prowazekii, the causative agent of epidemic typhus, grows only within the cytosol of eukaryotic host cells. This obligate intracellular lifestyle has restricted the genetic analysis of this pathogen and critical tools, such as replicating plasmid vectors, have not been developed for this species. Although replicating plasmids have not been reported in R. prowazekii, the existence of well-characterized plasmids in several less pathogenic rickettsial species provides an opportunity to expand the genetic systems available for the study of this human pathogen. Competent R. prowazekii were transformed with pRAM18dRGA, a 10.3 kb vector derived from pRAM18 of R. amblyommii. A plasmid-containing population of R. prowazekii was obtained following growth under antibiotic selection, and the rickettsial plasmid was maintained extrachromosomally throughout multiple passages. The transformant population exhibited a generation time comparable to that of the wild type strain with a copy number of approximately 1 plasmid per rickettsia. These results demonstrate for the first time that a plasmid can be maintained in R. prowazekii, providing an important genetic tool for the study of this obligate intracellular pathogen.  相似文献   

3.
Genetic analysis of Rickettsia prowazekii has been hindered by the lack of selectable markers and efficient mechanisms for generating rickettsial gene knockouts. We have addressed these problems by adapting a gene that codes for rifampin resistance for expression in R. prowazekii and by incorporating this selection into a transposon mutagenesis system suitable for generating rickettsial gene knockouts. The arr-2 gene codes for an enzyme that ADP-ribosylates rifampin, thereby destroying its antibacterial activity. Based on the published sequence, this gene was synthesized by PCR with overlapping primers that contained rickettsial codon usage base changes. This R. prowazekii-adapted arr-2 gene (Rparr-2) was placed downstream of the strong rickettsial rpsL promoter (rpsL(P)), and the entire construct was inserted into the Epicentre EZ::TN transposome system. A purified transposon containing rpsL(P)-Rparr-2 was combined with transposase, and the resulting DNA-protein complex (transposome) was electroporated into competent rickettsiae. Following selection with rifampin, rickettsiae with transposon insertions in the genome were identified by PCR and Southern blotting and the insertion sites were determined by rescue cloning and inverse PCR. Multiple insertions into widely spaced areas of the R. prowazekii genome were identified. Three insertions were identified within gene coding sequences. Transposomes provide a mechanism for generating random insertional mutations in R. prowazekii, thereby identifying nonessential rickettsial genes.  相似文献   

4.
The recA gene has been isolated from Rickettsia prowazekii, an obligate intracellular bacterium. Comparison of the amino acid sequence of R. prowazekii RecA with that of Escherichia coli RecA revealed that 62% of the residues were identical. The highest identity was found with RecA of Legionella pneumophila, in which 69% of the residues were identical. Amino acid residues of E. coli RecA associated with functional activities are conserved in rickettsial RecA, and the R. prowazekii recA gene complements E. coli recA mutants for UV light and methyl methanesulfonate sensitivities as well as recombinational deficiencies. The characterized region upstream of rickettsial recA did not contain a sequence homologous to an E. coli LexA binding site (SOS box), suggesting differences in the regulation of the R. prowazekii recA gene.  相似文献   

5.
Despite recent advances in our ability to genetically manipulate Rickettsia, little has been done to employ genetic tools to study the expression and localization of Rickettsia virulence proteins. Using a mariner-based Himar1 transposition system, we expressed an epitope-tagged variant of the actin polymerizing protein RickA under the control of its native promoter in Rickettsia parkeri, allowing the detection of RickA using commercially-available antibodies. Native RickA and epitope-tagged RickA exhibited similar levels of expression and were specifically localized to bacteria. To further facilitate protein expression in Rickettsia, we also developed a plasmid for Rickettsia insertion and expression (pRIE), containing a variant Himar1 transposon with enhanced flexibility for gene insertion, and used it to generate R. parkeri strains expressing diverse fluorescent proteins. Expression of epitope-tagged proteins in Rickettsia will expand our ability to assess the regulation and function of important virulence factors.  相似文献   

6.
G L Marks  H H Winkler  D O Wood 《Gene》1992,121(1):155-160
The gene coding for the major sigma factor of Rickettsia prowazekii, an obligate intracellular parasitic bacterium, has been isolated utilizing an oligodeoxyribonucleotide as a probe to a conserved region of major sigma factors. Nucleotide sequence analysis revealed an open reading frame of 1905 bp that could encode a protein of 635 amino acids (aa) with a calculated molecular size of 73 kDa (sigma 73). R. prowazekii sigma 73 displayed extensive homology with major sigma factors from a variety of eubacteria. Comparison of the major sigma factors from Escherichia coli and R. prowazekii revealed 44.9% aa identity. R. prowazekii sigma 73 produced in E. coli minicells migrated as a 85-kDa protein when analyzed by sodium dodecyl sulfate-polyacrylamide-gel electrophoresis. This anomalous migration is characteristic of eubacterial major sigma factors and agrees with the migration noted for the purified rickettsial sigma protein. Despite a similarity to the E. coli sigma 70 encoded by rpoD, R. prowazekii sigma 73 did not complement E. coli rpoD temperature-sensitive mutants.  相似文献   

7.
Rickettsia prowazekii, the causative agent of epidemic typhus, is an obligate, intracellular, parasitic bacterium that grows within the cytoplasm of eucaryotic host cells. Rickettsiae exploit this intracellular environment by using transport systems for the compounds available in the host cell's cytoplasm. Analysis of the R. prowazekii Madrid E genome sequence revealed the presence of a mutation in the rickettsial metK gene, the gene encoding the enzyme responsible for the synthesis of S-adenosylmethionine (AdoMet). Since AdoMet is required for rickettsial processes, the apparent inability of this strain to synthesize AdoMet suggested the presence of a rickettsial AdoMet transporter. We have confirmed the presence of an AdoMet transporter in the rickettsiae which, to our knowledge, is the first bacterial AdoMet transporter identified. The influx of AdoMet into rickettsiae was a saturable process with a K(T) of 2.3 micro M. Transport was inhibited by S-adenosylethionine and S-adenosylhomocysteine but not by sinfungin or methionine. Transport was also inhibited by 2,4-dinitrophenol, suggesting an energy-linked transport mechanism, and by N-ethylmaleimide. AdoMet transporters with similar properties were also identified in the Breinl strain of R. prowazekii and in Rickettsia typhi. By screening Escherichia coli clone banks for AdoMet transport, the R. prowazekii gene coding for a transporter, RP076 (sam), was identified. AdoMet transport in E. coli containing the R. prowazekii sam gene exhibited kinetics similar to that seen in rickettsiae. The existence of a rickettsial transporter for AdoMet raises intriguing questions concerning the evolutionary relationship between the synthesis and transport of this essential metabolite.  相似文献   

8.
We re-engineered a classic tool for mutagenesis and gene expression studies in Gram-negative bacteria. Our modified Tn5-based transposon contains multiple features that allow rapid selection for mutants, direct quantification of gene expression and straightforward cloning of the inactivated gene. The promoter-less gfp-km cassette provides selection and reporter assay depending on the activity of the promoter upstream of the transposon insertion site. The cat gene facilitates positive antibiotic selection for mutants, while the narrow R6Kγ replication origin forces transposition in recipient strains lacking the pir gene and enables cloning of the transposon flanked with the disrupted gene from the chromosome. The suicide vector pCKD100, a plasmid that could be delivered into recipient cells through biparental mating or electroporation, harbours the modified transposon. We used the transposon to mutagenize Pectobacterium versatile KD100, Pseudumonas coronafaciens PC27R and Escherichia coli 35150N. The fluorescence intensities of mutants expressing high GFP could be quantified and detected qualitatively. Transformation efficiency from conjugation ranged from 1600 to 1900 CFU per ml. We sequenced the upstream flanking regions, identified the putative truncated genes and demonstrated the restoration of the GFP phenotype through marker exchange. The mini-Tn5 transposon was also utilized to construct mutant a library of P. versatile for forward genetic screens.  相似文献   

9.
Rhodococcus equi is a facultative intracellular opportunistic pathogen of immunocompromised people and a major cause of pneumonia in young horses. An effective live attenuated vaccine would be extremely useful in the prevention of R. equi disease in horses. Toward that end, we have developed an efficient transposon mutagenesis system that makes use of a Himar1 minitransposon delivered by a conditionally replicating plasmid for construction of R. equi mutants. We show that Himar1 transposition in R. equi is random and needs no apparent consensus sequence beyond the required TA dinucleotide. The diversity of the transposon library was demonstrated by the ease with which we were able to screen for auxotrophs and mutants with pigmentation and capsular phenotypes. One of the pigmentation mutants contained an insertion in a gene encoding phytoene desaturase, an enzyme of carotenoid biosynthesis, the pathway necessary for production of the characteristic salmon color of R. equi. We identified an auxotrophic mutant with a transposon insertion in the gene encoding a putative dual-functioning GTP cyclohydrolase II-3,4-dihydroxy-2-butanone-4-phosphate synthase, an enzyme essential for riboflavin biosynthesis. This mutant cannot grow in minimal medium in the absence of riboflavin supplementation. Experimental murine infection studies showed that, in contrast to wild-type R. equi, the riboflavin-requiring mutant is attenuated because it is unable to replicate in vivo. The mutagenesis methodology we have developed will allow the characterization of R. equi virulence mechanisms and the creation of other attenuated strains with vaccine potential.  相似文献   

10.
Rickettsia prowazekii, the etiologic agent of epidemic typhus, is an obligate, intracytoplasmic, parasitic bacterium. Recently, the transformation of this bacterium via electroporation has been reported. However, in these studies identification of transformants was dependent upon either selection of an R. prowazekii rpoB chromosomal mutation imparting rifampin resistance or expression of the green fluorescent protein and flow cytometric analysis. In this paper we describe the expression in R. prowazekii of the Escherichia coli ereB gene. This gene codes for an erythromycin esterase that cleaves erythromycin. To the best of our knowledge, this is the first report of the expression of a nonrickettsial, antibiotic-selectable gene in R. prowazekii. The availability of a positive selection for rickettsial transformants is an important step in the characterization of genetic analysis systems in the rickettsiae.  相似文献   

11.
Vibrio vulnificus, a halophilic estuarine bacterium causing a rapidly progressing fatal septicemia, is highly cytotoxic to eukaryotic cells. To identify new virulence factors associated with cytotoxicity, we constructed a mariner-based transposon (Tn Himar1) library of the highly virulent clinical isolate MO6-24/O having a double mutation in the hemolysin and protease genes. The Himar1 mutant library was extensively screened for the mutants showing decreased cytotoxicity to HeLa cells. We selected a cytotoxicity defective mutant having a Himar1 insertion in an open reading frame showing 96% identity to Vibrio parahaemolyticus FlgC, a flagella basal body rod protein. The Tn Himar1 insertion mutation also resulted in a significant decrease in motility, adhesion, cytotoxicity, and lethality to mice. This is the first report showing that flg genes, which are components of the flagellum biogenesis gene cluster, might play an important role in the virulence of V. vulnificus.  相似文献   

12.
Dias MV  Basso LR  Coelho PS 《Gene》2008,417(1-2):13-18
Transposon elements are important tools for gene function analysis, for example they can be used to easily create genome-wide collections of insertion mutants. Transposons may also carry sequences coding for an epitope or fluorescent marker useful for protein expression and localization analysis. We have developed three new Tn5-based transposons that incorporate a GFP (green fluorescent protein) coding sequence to generate fusion proteins in the important fungal pathogen Candida albicans. Each transposon also contains the URA3 and Kan(R) genes for yeast and bacterial selection, respectively. After in vitro transposition, the insertional allele is transferred to the chromosomal locus by homologous recombination. Transposons Tn5-CaGFP and Tn5-CaGFP-URA3::FLIP can generate C-terminal truncated GFP fusions. A URA3 flipper recycling cassette was incorporated into the transposon Tn5-CaGFP-URA3::FLIP. After the induction of Flip recombinase to excise the marker, the heterozygous strain is transformed again in order to obtain a GFP-tagged homozygous strains. In the Tn5-CaGFP-FL transposon the markers are flanked by a rare-cutting enzyme. After in vitro transposition into a plasmid-borne target gene, the markers are eliminated by restriction digestion and religation, resulting in a construct coding for full-length GFP-fusion proteins. This transposon can generate plasmid libraries of GFP insertions in proteins where N- or C-terminal tagging may alter localization. We tested our transposon system by mutagenizing the essential septin CDC3 gene. The results indicate that the Cdc3 C-terminal extension is important for correct septin filament assembly. The transposons described here provide a new system to obtain global gene expression and protein localization data in C. albicans.  相似文献   

13.
Copy number of the 16S rRNA gene in Rickettsia prowazekii.   总被引:3,自引:3,他引:0       下载免费PDF全文
The obligate intracellular parasite, Rickettsia prowazekii, is a slowly growing bacterium with a doubling time of 8 to 12 h. The copy number of the 16S rRNA gene in the rickettsial chromosome was determined to be one. Genomic DNA from R. prowazekii was digested either by a variety of restriction enzymes known not to cut at any site in the rickettsial 16S rRNA gene or by a combination of these noncutting enzymes and SmaI, which cuts the gene only once. Only one DNA fragment in these digests hybridized to a biotinylated probe containing a portion of the rickettsial 16S rRNA gene. Moreover, the density of the rickettsial 16S rRNA gene fragment after hybridization was equal to the density of each of the seven 16S rRNA gene fragments in Escherichia coli.  相似文献   

14.
The pepA gene, encoding a protein with leucine aminopeptidase activity, was isolated from Rickettsia prowazekii, an obligate intracellular parasitic bacterium. Nucleotide sequence analysis revealed an open reading frame of 1,502 bp that would encode a protein of 499 amino acids with a calculated molecular weight of 53,892, a size comparable to that of the protein produced in Escherichia coli minicells containing the rickettsial gene. Also, heat-stable leucine aminopeptidase activity was demonstrable in an E. coli peptidase-deficient strain containing R. prowazekii pepA. Comparison of the amino acid sequence of the R. prowazekii PepA with the characterized leucine aminopeptidases from E. coli, Arabidopsis thaliana, and bovine eye lens revealed that 39.8, 34.9, and 34.0% of the residues were identical, respectively. Residues proposed to be part of the active site or involved in the binding of metal ions in the bovine metalloenzyme were all conserved in R. prowazekii PepA. However, despite the structural and enzymatic similarity to E. coli PepA, the R. prowazekii protein was unable to complement the cer site-specific, PepA-dependent recombination system found in E. coli that resolves ColE1-type plasmid multimers into their monomeric forms.  相似文献   

15.
The obligate intracellular bacterium Rickettsia prowazekii has recently been shown to transport the essential metabolite S-adenosylmethionine (SAM). The existence of such a transporter would suggest that the metK gene, coding for the enzyme that synthesizes SAM, is unnecessary for rickettsial growth. Genome sequencing has revealed that this is the case for the metK genes of the spotted fever group and the Madrid E strain of R. prowazekii, which contain recognizable inactivating mutations. However, several strains of the typhus group rickettsiae possess metK genes lacking obvious mutations. In order to determine if these genes code for a product that retains MAT function, an Escherichia coli metK deletion mutant was constructed in which individual rickettsial metK genes were tested for the ability to complement the methionine adenosyltransferase deficiency. Both the R. prowazekii Breinl and R. typhi Wilmington metK genes complemented at a level comparable to that of an E. coli metK control, demonstrating that the typhus group rickettsiae have the capability of synthesizing as well as transporting SAM. However, the appearance of mutations that affect the function of the metK gene products (a stop codon in the Madrid E strain and a 6-bp deletion in the Breinl strain) provides experimental support for the hypothesis that these typhus group genes, like the more degenerate spotted fever group orthologs, are in the process of gene degradation.  相似文献   

16.
This report describes the construction and characterization of a mariner-based transposon system designed to be used in Bacillus subtilis, but potentially applicable to other gram-positive bacteria. Two pUC19-derived plasmids were created that contain the mariner-Himar1 transposase gene, modified for expression in B. subtilis, under the control of either sigmaA- or sigmaB-dependent promoters. Both plasmids also contain a transposable element (TnYLB-1) consisting of a Kan r cassette bracketed by the Himar1-recognized inverse terminal repeats, as well as the temperature-sensitive replicon and Erm r gene of pE194ts. TnYLB-1 transposes into the B. subtilis chromosome with high frequency (10(-2)) from either plasmid. Southern hybridization analyses of 15 transposants and sequence analyses of the insertion sites of 10 of these are consistent with random transposition, requiring only a "TA" dinucleotide as the essential target in the recipient DNA. Two hundred transposants screened for sporulation proficiency and auxotrophy yielded five Spo- clones, three with insertions in known sporulation genes (kinA, spoVT, and yqfD) and two in genes (ybaN and yubB) with unknown functions. Two auxotrophic mutants were identified among the 200 transposants, one with an insertion in lysA and another in a gene (yjzB) whose function is unknown.  相似文献   

17.
18.
J Cai  R R Speed    H H Winkler 《Journal of bacteriology》1991,173(4):1471-1477
Rickettsia prowazekii, an obligate intracellular parasitic bacterium, was shown to have a ribonucleotide reductase that would allow the rickettsiae to obtain the deoxyribonucleotides needed for DNA synthesis from rickettsial ribonucleotides rather than from transport. In the presence of hydroxyurea, R. prowazekii failed to grow in mouse L929 cells or SC2 cells (a hydroxyurea-resistant cell line), which suggested that R. prowazekii contains a functional ribonucleotide reductase. This enzymatic activity was demonstrated by the conversion of ADP to dADP and CDP to dCDP, using (i) a crude extract of Renografin-purified R. prowazekii that had been harvested from infected yolk sacs and (ii) high-performance liquid chromatographic analysis. The rickettsial ribonucleotide reductase utilized ribonucleoside diphosphates as substrates, required magnesium and a reducing agent, and was inhibited by hydroxyurea. ADP reduction was stimulated by dGTP and inhibited by dATP. CDP reduction was stimulated by ATP and adenylylimido-diphosphate and inhibited by dATP and dGTP. These characteristics provided strong evidence that the rickettsial enzyme is a nonheme iron-containing enzyme similar to those found in mammalian cells and aerobic Escherichia coli.  相似文献   

19.
The specific mechanisms by which Leptospira spp. acquire iron from their ecological niches are unknown. A major factor contributing to our ignorance of spirochetal biology is the lack of methods for genetic analysis of these organisms. In this study, we have developed a system for random transposon mutagenesis of Leptospira biflexa using a mariner transposon, Himar1. To demonstrate the validity of Himar1 in vivo transposon mutagenesis in L. biflexa, a screen of mutants for clones impaired in amino acid biosynthesis was first performed, enabling the identification of tryptophan and glutamate auxotrophs. To investigate iron transporters, 2,000 L. biflexa transposon mutants were screened onto media with and without hemin, thus allowing the identification of five hemin-requiring mutants, and the putative genes responsible for this phenotype were identified. Three mutants had distinct insertions in a gene encoding a protein which shares homology with the TonB-dependent receptor FecA, involved in ferric citrate transport. We also identified two mutants with a Himar1 insertion into a feoB-like gene, the product of which is required for ferrous iron uptake in many bacterial organisms. Interestingly, the growth inhibition exhibited by the fecA and feoB mutants was relieved by deferoxamine, suggesting the presence of a ferric hydroxamate transporter. These results confirm the importance of iron for the growth of Leptospira and its ability to use multiple iron sources.  相似文献   

20.
Thymidylate biosynthesis via the methylation of dUMP is required for DNA replication in Rickettsia prowazekii, an obligate intracytoplasmic bacterium. In theory, dUMP synthesis could occur either by the deamination of deoxycytidine nucleotides or by the reduction of uridine nucleotides. Accordingly, the incorporation of both radiolabeled cytidine and uridine into the thymidylate of R. prowazekii was examined. After DNA hydrolysis and high-performance liquid chromatography, it was determined that 85% of the rickettsial thymidylate was derived from cytidine and the remaining 15% was derived from uridine. These findings were supported by the identification of a dCTP deaminase activity in extracts of R. prowazekii. Extracts of R. prowazekii deaminated 1.7 +/- 0.3 nmol of dCTP/min/mg of protein (a value calculated to suffice for rickettsial growth), and no measurable activity was observed with dCMP as the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号