首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ascomycetous fungus Fusarium graminearum is an important plant pathogen causing Fusarium head blight disease of wheat and barley. To understand early developmental stages of this organism, we followed the germination of macroconidia microscopically to understand the timing of key events. These events, recorded after suspension of spores in liquid germination medium, included spore swelling at 2h, germination tube emergence and elongation from conidia at 8h and hyphal branching at 24h. To understand changes in gene expression during these developmental changes, RNA was isolated from spores and used to interrogate the F. graminearum Affymetrix GeneChip. RNAs corresponding to 5813 genes were detected in fresh spores and 5146, 5249 and 5993, respectively, in spores incubated in germination medium after 2, 8 or 24h (P<0.001). Gene expression data were used to predict the cellular and physiological state of each developmental stage for known processes. Predictions were confirmed microscopically for several previously unreported developmental events such as manifestation of peroxisomes in fresh spores and nuclear division resulting in binuclear cells within macroconidia prior to spore germination. Knowledge of stage-specific gene expression and changes in gene expression levels between developmental stages are an important first step to understanding the molecular mechanisms responsible for spore germination and development.  相似文献   

2.
唾液乳杆菌抑制镰孢霉的研究   总被引:2,自引:0,他引:2  
目的 研究唾液乳杆菌抑制产毒镰孢霉的生物学性能,初步探索抑菌机制.方法 以禾谷镰孢霉和尖孢镰孢霉2种典型霉菌为指示菌,唾液乳杆菌为测试对象,对霉菌孢子萌芽、孢子生长和菌丝体生长3个生理阶段进行抑制效应观察.结果 10%的唾液乳杆菌耗尽上清就能抑制83%的禾谷镰孢霉孢子和50%尖孢镰孢霉孢子萌芽;耗尽上清24 h内能显著抑制镰孢霉孢子的生长;96 h内孢霉菌丝体的生长.结论 唾液乳杆菌产生的有机酸对禾谷镰孢霉和尖孢镰孢霉生长起主要抑制作用.  相似文献   

3.
丁布对小麦赤霉病菌和玉米小斑病菌的抑制作用   总被引:7,自引:0,他引:7  
采用菌丝生长速率法和孢子萌发试验法检测了抗菌化合物丁布对小麦赤霉病菌和玉米小斑病菌的抑菌作用。结果表明,丁布在PDA培养基中浓度为0.2-1.0 mg/ml时对两种供试病菌的菌丝生长无抑制作用;丁布浓度为0.4-1.0 mg/ml时对两种供试病菌孢子悬浮液中孢子的萌发具有显著抑制作用;1.0 mg/ml丁布药液中培育15h的小麦赤霉病菌和培育5h的玉米小斑病菌的孢子萌发抑制率分别达到100%和83.6%。  相似文献   

4.
Fusarium graminearum Schwabe (teleomorph Gibberella zeae) is a plant pathogen causing scab disease on wheat and barley that reduces crop yield and grain quality. F. graminearum also causes stalk and ear rots of maize and is a producer of mycotoxins such as the trichothecenes that contaminate grain and are harmful to humans and livestock (Goswami and Kistler, 2004). The fungus produces two types of spores. Ascospores, the propagules resulting from sexual reproduction, are the main source of primary infection. These spores are forcibly discharged from mature perithecia and dispersed by wind (Francl et al 1999). Secondary infections are mainly caused by macroconidia which are produced by asexual means on the plant surface. To study the developmental processes of ascospores in this fungus, a procedure for their collection in large quantity under sterile conditions was required. Our protocol was filmed in order to generate the highest level of information for understanding and reproducibility; crucial aspects when full genome gene expression profiles are generated and interpreted. In particular, the variability of ascospore germination and biological activity are dependent on the prior manipulation of the material. The use of video for documenting every step in ascospore production is proposed in order to increase standardization, complying with the increasingly stringent requirements for microarray analysis. The procedure requires only standard laboratory equipment. Steps are shown to prevent contamination and favor time synchronization of ascospores.  相似文献   

5.
The effects of temperature (4–20°C), relative humidity (RH, 0–100%), pH (3–7), availability of nutrients (0–5 g/l sucrose) and artificial light (0–494 μmol/m2/s) on macroconidial germination of Fusarium graminearum were studied. Germ tubes emerged between 2 and 6 h after inoculation at 100% RH and 20°C. Incubation in light (205 ± 14 μmol/m/s) retarded the germination for approximately 0.5 h in comparison with incubation in darkness. The times required for 50% of the macroconidia to germinate were 3.5 h at 20°C, 5.4 h at 14°C and 26.3 h at 4°C. No germination was observed after an incubation period of 18 h at 20°C in darkness at RH less than 80%. At RH greater than 80%, germination increased with humidity. Germination was observed when macroconidia were incubated in glucose (5 g/l) or sucrose (concentration range from 2.5 × 10?4 to 5 g/l) whereas no germination was observed when macroconidia were incubated in sterile deionized water up to 22 h. Macroconidia germinated quantitatively within 18 h at pH 3–7. Repeated freezing (?15°C) and thawing (20°C) water agar plates with either germinated or non‐germinated macroconidia for up to five times did not prevent fungal growth after thawing. However, the fungal growth rate of mycelium was negatively related to the number of freezing events the non‐germinated macroconidia experienced. The fungal growth rate of mycelium was not significantly affected by the number of freezing events the germinated spores experienced. Incubation of macroconidia at low humidity (0–53% RH) suppressed germination and decreased the viability of the spores.  相似文献   

6.
Germination of Microsporum gypseum macroconidia was accompanied by the release of alkaline protease, calcium ions, and inorganic phosphate into the germination fluid. The rate of germination was greatest during the first 2 hr, decreasing thereafter. This decrease in rate was accompanied by a decrease in protease activity, which was caused by an interaction of the enzyme with the inorganic phosphate released from the spores and accumulated in the germination medium after 2 hr. Germination of high spore densities was regulated by the ratio of released phosphate to protease protein, resulting in a constant percentage of germination at both high and low spore densities. A germination-defective mutant strain failed to germinate normally and released excessively high concentrations of phosphate into the germination medium during the initial 2 hr of incubation. Addition of calcium ions to germination mutant macroconidia stabilized spore morphology, prevented protease inactivation, and allowed normal germ-tube outgrowth. The germination of macroconidia appears to be regulated by the release of phosphate ions, which then inhibit the alkaline protease.  相似文献   

7.
Differences in the effect of volatile and gaseous metabolites of germinating pea seeds on the germination of spores of Mucor racemosus and macroconidia of Fusarium oxysporum are described. Germination of spores of M. racemosus was inhibited by seed metabolites whereas germination of macroconidia of F. oxysporum was stimulated during the first two days and inhibition occurred only after further two days of germination of the seeds. A pronounced inhibition of germination of spores of both micromycetes took place due to absorption of CO2 from volatile and gaseous metabolites. Absorption of some components of seed metabolites in a KMnO4 solution led to a decrease of the inhibitory effect on germination of spores of M. racemosus and stimulatory effect on germination of macroconidia of F. oxysporum.  相似文献   

8.
Macroconidia of Microsporum gypseum release free amino acids into the medium during germination. A single alkaline protease is also found in the germination supernatant fraction. The purified protease is capable of hydrolyzing isolated spore coats in vitro. Phenyl methyl sulfonyl fluoride (PMSF) is an effective inhibitor of the protease. Incorporation of PMSF at 10(-4)m into the germination system inhibits spore germination and the release of free amino nitrogen. Addition of PMSF after germ tube emergence is completed has no effect on subsequent outgrowth. The addition of exogenous purified protease to quiescent spores results in more than a 2.5-fold increase in germinated spores. It is concluded that spore coat proteolysis is an essential event in the germination of dermatophyte macroconidia. A model system to explain macroconidial germination response to inhibition, temperature shift, and addition of protease is presented.  相似文献   

9.
Harris SD 《Mycologia》2005,97(4):880-887
Fusarium graminearum (teleomorph Gibberella zeae) is a significant pathogen of wheat and corn. F. graminearum forms multicellular macroconidia that play an important role in dissemination of the disease. The spatial pattern of morphogenesis in germinating macroconidia is described. Germ tubes preferentially emerge from the apical cells in a bipolar pattern that appears to be common to filamentous fungi. Chitin deposition occurs at two locations: the spore apices and cortical regions of macroconidial cells that subsequently produce a germ tube. The spatial pattern of morphogenesis requires the presence of functional microtubules, which may be responsible for the transport of key polarity factors to specific sites. These observations suggest that F. graminearum possesses a regulatory system that marks germ tube emergence sites. Perturbation of this system may represent an effective approach for inhibiting colonization of host plant surfaces.  相似文献   

10.
Polyunsaturated fatty acids (PUFAs), namely, oleic (C18:1), linoleic (C18:2), and gamma-linolenic acid (C18:3), constituted the majority in the total fatty acid content (44%) of sporangiospores of Mucor rouxii. At 30 degrees C, the germination begins within 1h at which time spore swelling occurs, followed by germ tube emergence within 3-4h. Throughout germination, an increase in gamma-linolenic acid (GLA) was observed and its content was highest at germ tube emergence. It took longer for sporangiospores of M. rouxii to germinate at sub-optimal temperatures (15 and 35 degrees C). However, the content of GLA was higher at the germ tube initiation than at the mycelial stage at all temperatures, suggesting the association of GLA and germination of sporangiospores. This finding was substantially confirmed by differential expression of delta9-, delta12-, and delta6-desaturase genes measured during spore germination. The expression of three desaturase genes parallels the pattern of GLA synthesis. By using RT-PCR techniques to follow gene expression, we found that mRNA of delta12- and delta6-desaturase genes were translated as soon as the spores were introduced into a fresh medium while the mRNA of delta9-desaturase gene could not be detected until 2h after introduction. A sharp increase in mRNA of delta6-desaturase genes correlated well with an increase in GLA content at germ tube emergence (4h). These results demonstrated that changes in fatty acid composition of sporangiospore of M. rouxii and differential expression of desaturase genes occurred during germination, and that extensive changes in GLA synthesis associated with some events in germination process.  相似文献   

11.
12.
Vorobeĭ AV  Pinchuk SV 《Biofizika》2008,53(5):797-801
The influence of photodynamic action with protoporphyrin IX as a sensitizer on the state of the components of hydrated spores of Fusarium fungi and germination of conidia in growth medium was investigated. It was shown, that protoporphyrin IX in micromole concentrations sensitizes the photooxidation of proteins and lipids from hydrated spores of Fusarium poae and Fusarium culmorum under illumination of their suspensions in doses of 50 - 200 kJ/m2. It was found that the photosensitized oxidation of cellular components leads to the disturbance of conidium membrane permeability and inhibition of spore germination during their subsequent cultivation in growth medium.  相似文献   

13.
The total dry mass of Fusarium roseum spores and contained lipid bodies were determined before and after spores germinated using quantitative interference microscopy. The mean for spore dry mass before germination was about 57 pg. Lipid bodies accounted for about 61% of that. Areas of lipid bodies in spores before and after germination were about 23 % but the contents of the lipid bodies accounted for only 10% of the spore dry mass after germination. The total dry mass of the spore and germ tube(s) greatly exceeded that of the spore before germination. We infer that nutrients for germ tube growth are derived from within the germinating spore and from the medium which must contain nutrients leached from non-germinating spores.  相似文献   

14.
Bacteria were isolated from a cultivated soil and screened for antagonistic activity against Fusarium graminearum, a predominant agent of ear rot and head blight in cereal crops. Based on its in vitro effectiveness, isolate D1/2 was selected for characterization and identified as a strain of Bacillus subtilis by phenotypic tests and comparative analysis of its 16S ribosomal RNA gene (rDNA) sequence. It inhibited the mycelial growth of a collection of common fungal phytopathogens, including eight Fusarium species, three other ascomycetes, and one basidiomycete. The cell-free culture filtrate of D1/2 at different dilutions was active against macroconidium germination and hyphal growth of F. graminearum, depending on the initial macroconidium density. It induced the formation of swollen hyphal cells in liquid cultures of this fungus grown from macroconidia. A bioassay also demonstrated that D1/2 offered in planta protection against the damping-off disease in alfalfa seedlings caused by F. graminearum, while the type strain of B. subtilis was ineffective. Hence, B. subtilis D1/2 or its culture filtrate has potential application in controlling plant diseases caused by Fusarium.  相似文献   

15.
Pretreatment with ethidium bromide (5 μg/ml) followed by a water wash had no effect on unheated Bacillus subtilis spores, but the viability of these spores after heating was much lower than that of similarly heated spores exposed to water alone. The fate of water- or ethidium bromide-treated spores, unheated or heated, was followed by allowing them to germinate and outgrow in a minimal or a complex liquid medium. Spores exposed to ethidium bromide and then heated (85°C, 10 min) exhibited a developmental block during germination and outgrowth. Many of them were blocked at the stage when the bacterium emerged from the germinated spore. When 0.35 μg of ethidium bromide per ml was added to heated spores in the germination-growth medium, the outgrowth of heated spores was inhibited to the same extent as were pretreated spores. Ethidium bromide acted in the first hour of germination of heated spores since addition after this time was ineffective in inhibiting recovery events. Repair of heat-damaged spore DNA was detected during the first 2 h of germination. The addition of ethidium bromide (final concentration, 0.35 μg/ml) inhibited DNA repair during early outgrowth. Increased sensitivity of spores to heat after pretreatment with sublethal concentrations of ethidium bromide was due to the inhibition of the repair of heat-damaged DNA.  相似文献   

16.
17.
The photodynamic effect on the state of hydrated spores of micopathogen genus Fusarium and germination of conidia on a nutrient medium was studied using protoporphyrin IX as a sensitizer. It was shown that micromolar concentrations of protoporphyrin IX sensitize photooxidation of proteins and lipids in hydrated spores of Fusarium poae and Fusarium culmorum fungi under illumination of their suspensions at doses of 50–200 kJ/m2. Photosensitized oxidation of cell components leads to damage the permeability of membranes and suppress spore germination during their further cultivation on the nutrient medium.  相似文献   

18.
Treatment of Fusarium sulphureum macroconidial cells with five thiols alters their morphology. Macroconidial cells incubated in dithiothreitol (DTT), dithioerythritol (DTE), or thiourea differentiate into thick-walled, chlamydospore-like cells (thiol-induced spores). These cells appear similar in size and shape to chlamydospores in the light microscope, but differ markedly in cell wall structure when viewed in the electron microscope (EM). Incubation of macroconidia with both DTT and DTE also leads to the formation of large swollen cells (giant cells) which have a parietal cytoplasm and electron-tranparent cell walls; most of these giant cells lyse within 3 to 7 days of incubation. Thiourea-induced spores are characterized by the deposition of a thick, electron-dense, extracellular layer and an accumulation of mitochondria. DTT and DTE, at the concentrations used, inhibit macroconidial germination while thiourea, mercaptoethanol, and cysteine do not. With the latter three thiols, the newly formed hyphal cells become elongated with either one or both ends swollen. Mercaptoethanol-treated cells contain an abundance of mitochondria. The DTT-induced spore differs from both macroconidia and chlamydospores with respect to cellular lipid and cell wall composition. While the thiols have different effects on the macroconidia, the fact that they all induce cell expansion suggests that they react at some common sites.  相似文献   

19.
Microsporum gypseum macroconidia germinated at 37 C possessed from one to eight nuclei per germinated spore compartment. The distribution of nuclei per spore compartment was the result of a random packaging of nuclei from the available nuclear population. Partial inhibition of germination by incubation at 25 C or at 37 C in the presence of 10(-4)m phenyl methyl sulfonyl-fluoride resulted in an enrichment of germinated spores containing high numbers of nuclei per compartment. The selection for higher nuclear numbers was statistically significant. Compartments possessing high numbers of nuclei appeared to be precommitted to spore germination since they were not sensitive to germination inhibition. The effect of incubation temperature variation on spore germination is discussed with respect to the organism's natural environment.  相似文献   

20.
Fusarium graminearum causes head blight (FHB) and crown rot (CR) diseases in wheat. Compared with FHB, CR symptom development occurs slowly, usually taking 4 to 8 weeks to become visible. To characterize CR development, we used histological and real-time quantitative polymerase chain reaction analyses to assess fungal colonization during a timecourse of infection. Three distinct phases of infection were identified: i) initial spore germination with formation of a superficial hyphal mat at the inoculation point, ii) colonization of the adaxial epidermis of the outer leaf sheath and mycelial growth from the inoculation point to the crown, concomitant with a drop in fungal biomass, and iii) extensive colonization of the internal crown tissue. Fungal gene expression was examined during each phase using Affymetrix GeneChips. In total, 1,839 F. graminearum genes were significantly upregulated, including some known FHB virulence genes (e.g., TRI5 and TRI14), and 2,649 genes were significantly downregulated in planta compared with axenically cultured mycelia. Global comparisons of fungal gene expression with published data for FHB showed significant similarities between early stages of FHB and CR. These results indicate that CR disease development involves distinct phases of colonization, each of which is associated with a different fungal gene expression program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号