首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A hereditary dysmyelinating mutation, named myelin deficient (shi(mld)), is characterized by reduced expression of myelin basic protein (MBP). In shi(mld), the MBP gene is duplicated and its reduced expression is mainly determined by the level of mRNA. We have characterized the structure and function of the promoter regions of the duplicated MBP genes in shi(mld). Among the lambda clones containing promoter regions of the duplicated MBP genes in shi(mld), one (gene 1) had the same restriction enzyme pattern as that in control mice, but another (gene 2) had a rearrangement on a distal part of the promoter. A 712-bp nucleotide sequence upstream of the first exons of both of the duplicated MBP genes of shi(mld) was completely consistent with that of the control. Promoter activities of 1.3-kb 5'-flanking regions from respective genes of shi(mld) measured by in vitro run-off assay using HeLa whole-cell extracts were indistinguishable from that of the control MPB gene. Chromosomal mapping by in situ hybridization suggested that the duplicated MBP genes were located closely to each other at the distal part of chromosome 18. A recombinational event including the inversion seemed to have occurred within gene 1 and its possible relationship to the reduced expression of MBP is discussed.  相似文献   

3.
Mice homozygous for the mutation myelin deficient (mld), an allele of shiverer, exhibit decreased CNS myelination, tremors, and convulsions of progressively increasing severity leading to an early death. In this report we demonstrate in mld mice that the gene encoding myelin basic protein (MBP) is expressed at decreased levels and on an abnormal temporal schedule relative to the wild-type gene. Southern blot analyses, field-inversion gel electrophoresis studies, and analyses of mld MBP cosmid clones indicate that there are multiple linked copies of the MBP gene in mld mice. We have introduced an MBP transgene into mld mice and found that myelination increases and tremors and convulsions decrease. Mld and shiverer mice with zero, one, or two copies of the MBP transgene express distinct levels of MBP mRNA and myelin. The availability of a range of mice expressing graded levels of myelin should facilitate quantitative analysis of the roles of MBP in the myelination process and of myelin in nerve function.  相似文献   

4.
Mice homozygous for the autosomal recessive mutation shiverer (shi) lack myelin basic protein (MBP) and exhibit a distinct behavioral pattern including tremors (shivering), convulsions, and early death. We have previously demonstrated that shiverer mice have a partial deletion in the gene encoding MBP. We now have introduced the wild-type MBP gene into the germ line of shiverer mice by microinjection into fertilized eggs. Transgenic shiverer mice homozygous for the introduced gene have MBP mRNA and protein levels that are approximately 25% of normal, and produce compacted myelin with major dense lines. Correct temporal and spatial expression of the MBP gene is achieved with a genomic MBP cosmid clone containing 4 kb of 5' flanking sequence and 1 kb of 3' flanking sequence. Moreover, the four different forms of MBP produced by alternative patterns of RNA splicing are present. These homozygous transgenic shiverer mice no longer shiver nor die prematurely.  相似文献   

5.
We report (a) that the shiverer mutation has pleiotropic phenotypic effects on myelin basic protein expression in the CNS of homozygous (shi/shi) mice and (b) that each of the effects of the shiverer allele is expressed co-dominantly with the wild-type allele in heterozygous (+/shi) animals. First, the total amount of myelin basic protein, as determined by radioimmunoassay, that accumulates in the CNS is approximately 0.1% of the wild-type amount in shi/shi animals and approximately 50% in +/shi animals. Second, the four major forms of myelin basic protein, with molecular weights of 21,500, 18,500, 17,000, and 14,000, that are present in wild-type mouse CNS are undetectable in either whole brain or purified myelin of shi/shi animals, and each of the four proteins is reduced commensurately in brain and myelin of +/shi animals. Third, the small amount of myelin basic protein-related material that does accumulate in the shi/shi brain consists of several polypeptides, with molecular weights ranging from 25,000 to 100,000, the pattern of which is different from that found in wild-type brain. The pattern of myelin basic protein-related polypeptides in +/shi brain is a composite of the wild type and the shiverer mutant. Fourth, messenger RNA from shi/shi brain, when translated in vitro, encodes a set of myelin basic protein-related polypeptides qualitatively similar to that encoded by wild-type messenger RNA, except that the 18,500 and 14,000 translation products are greatly reduced, while other myelin basic protein-related translation products are spared. The pattern of myelin basic protein-related translation products for +/shi messenger RNA is intermediate between the patterns for +/+ and shi/shi messenger RNAs. The results suggest that the genetic lesion in the shiverer mutation impinges on the structural gene (or genes) encoding myelin basic protein or on a cis-acting regulatory element controlling that gene (or genes).  相似文献   

6.
7.
8.
Abstract: Myelin-deficient ( mld ) is a complex mutation affecting the myelin basic protein (MBP) locus of the mouse. It consists of duplication and partial inversion of the MBP gene and results in a dysfunctional MBP locus. The mutant phenotype is reversed, both in vivo and in vitro, in ∼5% of mld oligodendrocytes. One possible mechanism for the somatic reversion is recombination between homologous sequences of the duplicated gene copies to reconstitute a functional MBP locus. There are several possible recombination events that could reconstitute a functional MBP locus by DNA rearrangement. Two of these would result in reinversion and circularization of specific MBP gene sequences, respectively. In this work polymerase chain reaction analysis was used to detect both reinverted and circularized MBP gene sequences in mld mouse tissues, indicating that DNA rearrangement at the MBP locus does occur. Analysis of individually harvested cells showed that in revertant MBP-positive mld oligodendrocytes DNA rearrangement at the MBP locus was correlated with reactivation of the MBP gene. Fluctuation analysis showed that reactivation of the MBP locus is a stochastic event occurring with a frequency of ∼1.4 × 10−6 per cell per cell cycle during oligodendrocyte development. The frequency of rearrangement and reactivation of the MBP locus was comparable in double mutant ( mld/mld , scid/scid ) and single mutant ( mld/mld , + scid /+ scid ) mice, indicating that the scid factor is not required for MBP gene reactivation in mld . The significance of DNA rearrangement in mammalian development is discussed.  相似文献   

9.
10.
1. Myelin is an important structure for facilitating the conduction of impulses along the axons both in the central nervous system (CNS) and peripheral nervous system (PNS). 2. Myelin basic protein (MBP) is a major protein in CNS myelin. 3. MBP is expressed specifically in the nervous system. 4. The MBP gene has been cloned and characterized. 5. Two mutant mice, Shiverer (shi) and myelin-deficient (mld. shimid), are autosomal recessive mutants that show severe symptoms such as intentional tremor. They have been found to have a mutation in the MBP gene that results in poor myelination in the central nervous system. 6. It was found that rearrangement within the MBP gene results in low expression of the gene. 7. In Shiverer, the MBP gene is partially deleted (from exons 3 to 7), and in mld, the gene is duplicated tandemly and a large portion of the duplication is inverted upstream of the intact copy. 8. In mld, anti-sense RNA complementary to exons 3-7, which correspond to the inverted segment, was detected by RNase protection studies, and presumed to be responsible for the reduced expressions of MBP. 9. The mechanism of gene rearrangement in MBP was also characterized. 10. This article reviews the recent progress in the study of the MBP gene, especially the rearrangement of the gene and its expression in mutant mice.  相似文献   

11.
The neurological mutant mice shiverer (shi) and myelin deficient (shimld) lack a functional gene for the myelin basic proteins (MBP), have virtually no myelin in their CNS, shiver, seize, and die early. Mutant mice homozygous for an MBP transgene have MBP mRNA and MBP in net amounts approximately 25% of normal, have compact myelin, do not shiver or seize, and live normal life spans. We bred mice with various combinations of the normal, transgenic, shi, and shimld genes to produce mice that expressed MBP mRNA at levels of 0, 5, 12.5, 17.5, 50, 62.5, and 100% of normal. The CNS of these mice were analyzed for MBP content, tissue localization of MBP, degree of myelination, axon size, and myelin thickness. MBP protein content correlated with predicted MBP gene expression. Immunocytochemical staining localized MBP to white matter in normal and transgenic shi mice with an intensity of staining comparable to the degree of MBP gene expression. An increase in the percentage of myelinated axons and the thickness of myelin correlated with increased gene expression up to 50% of normal. The percentage of myelinated axons and myelin thickness remained constant at expression levels greater than 50%. The presence of axons loosely wrapped with oligodendrocytic membrane in mice expressing lower amounts of MBP mRNA and protein suggested that the oligodendroglia produced sufficient MBP to elicit axon wrapping but not enough to form compact myelin. Mean axon circumference of myelinated axons was greater than axon circumference of unmyelinated axons at each level of gene expression, further evidence that oligodendroglial cells preferentially myelinate axons of larger caliber.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Abstract: We have conditionally immortalized oligodendrocytes isolated from normal and shiverer primary mouse brain cultures through the use of the retroviral vector ZIPSVtsA58. This vector encodes an immortalizing thermolabile simian virus 40 large T antigen (Tag) and allows for clonal selection by conferring neomycin (G418) resistance. We isolated 14 shiverer and 10 normal lines that expressed the early oligodendrocyte marker 2′,3′-cyclic nucleotide 3′-phosphodiesterase mRNA. These cell lines grew continuously at the permissive temperature (34°C) and displayed Tag nuclear immunostaining. On shifting to nonpermissive temperatures (39°C), the cells showed rapid arrested cell growth and loss of Tag staining. One line (N20.1) engineered from normal oligodendrocytes also expressed myelin basic protein (MBP) and proteolipid protein (PLP) mRNAs, genes normally expressed by mature, differentiated oligodendrocytes. No differences in any of the myelin-specific protein mRNA levels were observed in N20.1 cells grown at 39°C for >9 days compared with cells maintained at 34°C. Immunocytochemical staining revealed N20.1 cells to be positive for the oligodendrocyte surface markers—galactocerebroside, A007, and A2B5. However, MBP and PLP polypeptides could not be detected by western blot or immunocytochemical staining at either the permissive or nonpermissive temperature. Cell-free protein synthesis experiments indicated that the MBP mRNAs isolated from N20.1 cells were translatable and directed the synthesis of the 17-, 18.5-, and 21.5-kDa MBP isoforms. Analysis of the PLP/DM20 gene splice products by polymerase chain reaction indicated that the expression of DM20 mRNA predominated over that of PLP mRNA in this cell line. Because the cell line expressed the MBP and PLP genes, it represents a “mature” oligodendrocyte, but the splicing patterns of these genes indicate that it is at an early stage of “maturation’. This cell line has now been passaged >40 times with fidelity of phenotype and genotype.  相似文献   

13.
14.
Shiverer gene maps near the distal end of chromosome 18 in the house mouse   总被引:7,自引:0,他引:7  
Several mouse mutations cause unstable locomotion, tremor, seizures, and a reduced lifespan because of deficient myelin formation in the central nervous system. Mutant alleles at the shiverer (shi) locus are the only ones in this series with a selective molecular defect, namely, in myelin basic proteins (MBPs), which are virtually absent in shi homozygotes and 50% reduced in heterozygotes. In the present study, backcross and intercross matings indicate recombination of 21.2 +/- 3.3% between myelin deficient, shimld, and fused phalanges, syfp, a marker near the middle of chromosome 18. Recombination of shimld with twirler (Tw), a marker near the centromere, is 45.7 +/- 4.9%. Thus, the shi locus maps near the distal end of mouse chromosome 18 and is the first available marker for this region. Given the evidence of other workers that an MBP locus maps to the same mouse chromosome, and that part of this chromosome may be syntenic with an MBP-PEPA region on human chromosome 18, it is likely that shi is in or near an MBP gene.  相似文献   

15.
16.
Theiler's virus persists in the white matter of the spinal cord of genetically susceptible mice and causes primary demyelination. The virus persists in macrophages/microglial cells, but also in oligodendrocytes, the myelin-forming cells. Susceptibility/resistance to this chronic infection has been mapped to several loci including one tentatively located in the telomeric region of chromosome 18, close to the myelin basic protein locus (Mbp locus). To determine if the MBP gene influences viral persistence, we inoculated C3H mice bearing the shiverer mutation, a 20-kb deletion in the gene. Whereas control C3H mice were of intermediate susceptibility, C3H mice heterozygous for the mutation were very susceptible, and those homozygous for the mutation were completely resistant. This resistance was not immune mediated. Furthermore, C3H/101H mice homozygous for a point mutation in the gene coding for the proteolipid protein of myelin, the rumpshaker mutation, were resistant. These results strongly support the view that oligodendrocytes are a necessary viral target for the establishment of a persistent infection by Theiler's virus.  相似文献   

17.
The myelin basic proteins (MBPs) are a set of peripheral membrane polypeptides that are required for the compaction of the major dense line of central nervous system myelin. We have used primary cultures of oligodendrocytes from MBP-deficient shiverer mice as host cells for the expression by cDNA transfection of each of the four major MBP isoforms. The distributions of the encoded polypeptides were studied by immunofluorescence and confocal microscopy and compared with patterns of MBP expression in normal mouse oligodendrocytes in situ and in culture. The exon II-containing 21.5- or 17-kD MBPs were distributed diffusely in the cytoplasm and in the nucleus of the transfectants, closely resembling the patterns obtained in myelinating oligodendrocytes in 9-d-old normal mouse brains. By contrast, the distribution of the 14- and 18.5-kD MBPs in the transfectants was confined to the plasma membrane and mimicked the distribution of MBP in cultures of normal adult oligodendrocytes. Our results strongly suggest that the exon II-containing MBPs are expressed first and exclusively during oligodendrocyte maturation, where they may play a role in the early phase of implementation of the myelination program. In contrast, the 14- and 18.5-kD MBPs that possess strong affinity for the plasma membrane are likely to be the principle inducers of myelin compaction at the major dense line.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号