首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seedlings from the white mustard, Sinapis alba, grown under continuous far-red light exhibit enhanced plastid enzyme activities when compared with dark-grown seedlings (for review, see Mohr 1981). These activities are even more pronounced upon illumination with white light during the etioplast/chloroplast transformation. Etioplasts and etiochloroplasts from the cotyledons of such seedlings show high prenyl-lipid-synthesizing activities when [1-14C]isopentenyl diphosphate is used as the precursor. They lack, however, any enzymatic activities for the formation of isopentenyl diphosphate via the mevalonate pathway, i.e. hydroxymethylglutaryl-CoA reductase, mevalonate kinase, phosphomevalonate kinase and diphosphomevalonate decarboxylase, which are present and easily detectable within the endoplasmic reticulum and cytoplasm. These results corroborate the view that the cytoplasm of the plant cell is the only site of isopentenyl-diphosphate formation via the mevalonate pathway.  相似文献   

2.
Klaus Kreuz  Hans Kleinig 《Planta》1981,153(6):578-281
Purified spinach chloroplast and daffodil chromoplast preparations do not use mevalonate, phosphomevalonate, and diphosphomevalonate for the synthesis of isopentenyl diphosphate. Isopentenyl diphosphate, on the other hand, is incorporated into plastidal polyprenoids in large amounts. In the presence of a cytoplasmic supernatant, however, mevalonate and the phosphomevalonates were incorporated into the plastidal polyprenoids in equally large amounts, which demonstrates that the enzymes mevalonate kinase (EC 2.7.1.36), phosphomevalonate kinase (EC 2.7.4.2), and diphosphomevalonate decarboxylase (EC 4.1.1.33) are soluble cytoplasmic enzymes and that they apparently do not occur as isoenzymes within the plastids. The concept is developed that isopentenyl diphosphate is a central intermediate in plant polyprenoid formation which is channeled into several compartment for different biosynthetic pathways.Abbreviation IPP isopentenyl diphosphate - ChlGG Chlorophyll a esterified with geranylgeraniol - HPLC high pressure liquid chromatography  相似文献   

3.
The mevalonate pathway accounts for conversion of acetyl-CoA to isopentenyl 5-diphosphate, the versatile precursor of polyisoprenoid metabolites and natural products. The pathway functions in most eukaryotes, archaea, and some eubacteria. Only recently has much of the functional and structural basis for this metabolism been reported. The biosynthetic acetoacetyl-CoA thiolase and HMG-CoA synthase reactions rely on key amino acids that are different but are situated in active sites that are similar throughout the family of initial condensation enzymes. Both bacterial and animal HMG-CoA reductases have been extensively studied and the contrasts between these proteins and their interactions with statin inhibitors defined. The conversion of mevalonic acid to isopentenyl 5-diphosphate involves three ATP-dependent phosphorylation reactions. While bacterial enzymes responsible for these three reactions share a common protein fold, animal enzymes differ in this respect as the recently reported structure of human phosphomevalonate kinase demonstrates. There are significant contrasts between observations on metabolite inhibition of mevalonate phosphorylation in bacteria and animals. The structural basis for these contrasts has also recently been reported. Alternatives to the phosphomevalonate kinase and mevalonate diphosphate decarboxylase reactions may exist in archaea. Thus, new details regarding isopentenyl diphosphate synthesis from acetyl-CoA continue to emerge.  相似文献   

4.
At least three different subcellular compartments, including peroxisomes, are involved in cholesterol synthesis. Recently, it has been demonstrated that peroxisomes contain a number of enzymes involved in cholesterol biogenesis that previously were considered to be cytosolic or located in the endoplasmic reticulum. Peroxisomes have been shown to contain acetoacetyl-CoA thiolase, HMG-CoA synthase, HMG-CoA reductase, mevalonate kinase, phosphomevalonate kinase, phosphomevalonate decarboxylase, isopentenyl diphosphate isomerase and FPP synthase. Moreover, the activities of these enzymes are also significantly decreased in liver tissue and fibroblast cells obtained from patients with peroxisomal deficiency diseases. In addition, the cholesterol biosynthetic capacity is severely impaired in cultured skin fibroblasts obtained from patients with peroxisomal deficiency diseases. These findings support the proposal that peroxisomes play an essential role in isoprenoid biosynthesis. This paper presents a review of peroxisomal protein targeting and of recent studies demonstrating the localization of cholesterol biosynthetic enzymes in peroxisomes and the identification of peroxisomal targeting signals in these proteins.  相似文献   

5.
The response to different dietary conditions of the enzymes responsible for the transformation of mevalonic acid to isopentenyl pyrophosphate has been studied for the first time in the small bowel of the chick to elucidate the role of these enzymes in the regulation of intestinal cholesterogenesis. Feeding a 2% cholesterol diet from hatching resulted in a small but significant inhibition of mevalonate-5-pyrophosphate decarboxylase, while mevalonate kinase and mevalonate-5-phosphate kinase remained unaltered. Similar results were obtained for the three enzymes when 13-day-old chicks fed a standard fat-free diet were switched to a 5% cholesterol diet. Starved chicks exhibited lower intestinal decarboxylase activity than chicks fed a standard diet, while refeeding resulted in levels of activity similar or slightly greater than controls. None of the enzymes effecting the conversion of mevalonate to isopentenyl pyrophosphate in the small intestine presented diurnal variations. Results obtained suggest that mevalonate-5-pyrophosphate decarboxylase may play a significant role in the regulation of cholesterol synthesis in the small intestine.  相似文献   

6.
Our group and others have recently demonstrated that peroxisomes contain a number of enzymes involved in cholesterol biosynthesis that previously were considered to be cytosolic or located in the endoplasmic reticulum (ER). Peroxisomes have been shown to contain HMG-CoA reductase, mevalonate kinase, phosphomevalonate kinase, phosphomevalonate decarboxylase, isopentenyl diphosphate isomerase, and FPP synthase. Four of the five enzymes required for the conversion of mevalonate to FPP contain a conserved putative PTS1 or PTS2, supporting the concept of targeted transport into peroxisomes. To date, no information is available regarding the function of the peroxisomal HMG-CoA reductase in cholesterol/isoprenoid metabolism, and the structure of the peroxisomal HMG-CoA reductase has yet to be determined. We have identified a mammalian cell line that expresses only one HMG-CoA reductase protein, and which is localized exclusively to peroxisomes, to facilitate our studies on the function, regulation, and structure of the peroxisomal HMG-CoA reductase. This cell line was obtained by growing UT2 cells (which lack the ER HMG-CoA reductase) in the absence of mevalonate. The surviving cells exhibited a marked increase in a 90-kD HMG-CoA reductase that was localized exclusively to peroxisomes. The wild-type CHO cells contain two HMG-CoA reductase proteins, the well-characterized 97-kD protein localized in the ER, and a 90-kD protein localized in peroxisomes. We have also identified the mutations in the UT2 cells responsible for the lack of the 97-kD protein. In addition, peroxisomal-deficient Pex2 CHO cell mutants display reduced HMG-CoA reductase levels and have reduced rates of sterol and nonsterol biosynthesis. These data further support the proposal that peroxisomes play an essential role in isoprenoid biosynthesis.  相似文献   

7.
Incubation studies using [1-14C]isopentenyl diphosphate and [1-2H2]isopentenyl diphosphate as substrates revealed that isolated chromoplasts from flowers of Narcissus pseudonarcissus L. are able to synthesize monoterpene hydrocarbons and linalool in high yields. The enzymes involved are soluble in the chromoplast stroma. It is hypothesized that in the plant cell plastids are the site of monoterpene biosynthesis, whereas the formation of sesquiterpenes may be restricted to the cytoplasm/endoplasmic reticulum.  相似文献   

8.
Mevalonate (MVA) metabolism provides the isoprenoids used in archaeal lipid biosynthesis. In synthesis of isopentenyl diphosphate, the classical MVA pathway involves decarboxylation of mevalonate diphosphate, while an alternate pathway has been proposed to involve decarboxylation of mevalonate monophosphate. To identify the enzymes responsible for metabolism of mevalonate 5-phosphate to isopentenyl diphosphate in Haloferax volcanii, two open reading frames (HVO_2762 and HVO_1412) were selected for expression and characterization. Characterization of these proteins indicated that one enzyme is an isopentenyl phosphate kinase that forms isopentenyl diphosphate (in a reaction analogous to that of Methanococcus jannaschii MJ0044). The second enzyme exhibits a decarboxylase activity that has never been directly attributed to this protein or any homologous protein. It catalyzes the synthesis of isopentenyl phosphate from mevalonate monophosphate, a reaction that has been proposed but never demonstrated by direct experimental proof, which is provided in this account. This enzyme, phosphomevalonate decarboxylase (PMD), exhibits strong inhibition by 6-fluoromevalonate monophosphate but negligible inhibition by 6-fluoromevalonate diphosphate (a potent inhibitor of the classical mevalonate pathway), reinforcing its selectivity for monophosphorylated ligands. Inhibition by the fluorinated analog also suggests that the PMD utilizes a reaction mechanism similar to that demonstrated for the classical MVA pathway decarboxylase. These observations represent the first experimental demonstration in H. volcanii of both the phosphomevalonate decarboxylase and isopentenyl phosphate kinase reactions that are required for an alternate mevalonate pathway in an archaeon. These results also represent, to our knowledge, the first identification and characterization of any phosphomevalonate decarboxylase.  相似文献   

9.
The mevalonate pathway and the glyceraldehyde 3-phosphate (GAP)-pyruvate pathway are alternative routes for the biosynthesis of the central isoprenoid precursor, isopentenyl diphosphate. Genomic analysis revealed that the staphylococci, streptococci, and enterococci possess genes predicted to encode all of the enzymes of the mevalonate pathway and not the GAP-pyruvate pathway, unlike Bacillus subtilis and most gram-negative bacteria studied, which possess only components of the latter pathway. Phylogenetic and comparative genome analyses suggest that the genes for mevalonate biosynthesis in gram-positive cocci, which are highly divergent from those of mammals, were horizontally transferred from a primitive eukaryotic cell. Enterococci uniquely encode a bifunctional protein predicted to possess both 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and acetyl-CoA acetyltransferase activities. Genetic disruption experiments have shown that five genes encoding proteins involved in this pathway (HMG-CoA synthase, HMG-CoA reductase, mevalonate kinase, phosphomevalonate kinase, and mevalonate diphosphate decarboxylase) are essential for the in vitro growth of Streptococcus pneumoniae under standard conditions. Allelic replacement of the HMG-CoA synthase gene rendered the organism auxotrophic for mevalonate and severely attenuated in a murine respiratory tract infection model. The mevalonate pathway thus represents a potential antibacterial target in the low-G+C gram-positive cocci.  相似文献   

10.
The five-carbon metabolic intermediate isopentenyl diphosphate constitutes the basic building block for the biosynthesis of all isoprenoids in all forms of life. Two distinct pathways lead from amphibolic intermediates to isopentenyl diphosphate. The Gram-positive cocci and certain other pathogenic bacteria employ exclusively the mevalonate pathway, a set of six enzyme-catalyzed reactions that convert 3 mol of acetyl-CoA to 1 mol each of carbon dioxide and isopentenyl diphosphate. The survival of the Gram-positive cocci requires a fully functional set of mevalonate pathway enzymes. These enzymes therefore represent potential targets of inhibitors that might be employed as antibiotics directed against multidrug-resistant strains of certain bacterial pathogens. A rapid throughput, bioreactor-based assay to assess the effects of potential inhibitors on several enzymes simultaneously should prove useful for the survey of candidate inhibitors. To approach this goal, and as a proof of concept, we employed enzymes from the Gram-positive pathogen Enterococcus faecalis. Purified recombinant enzymes that catalyze the first three reactions of the mevalonate pathway were immobilized in two kinds of continuous flow enzyme bioreactors: a classical hollow fiber bioreactor and an immobilized plug flow bioreactor that exploited a novel method of enzyme immobilization. Both bioreactor types employed recombinant acetoacetyl-CoA thiolase, HMG-CoA synthase, and HMG-CoA reductase from E. faecalis to convert acetyl-CoA to mevalonate, the central intermediate of the mevalonate pathway. Reactor performance was monitored continuously by spectrophotometric measurement of the concentration of NADPH in the reactor effluent. Additional potential applications of an Ni(++) affinity support bioreactor include using recombinant enzymes from extremophiles for biosynthetic applications. Finally, linking a Ni(++) affinity support bioreactor to an HPLC-mass spectrometer would provide an experimental and pedagogical tool for study of metabolite flux and pool sizes of intermediates to model regulation in intact cells.  相似文献   

11.
A gene cluster encoding enzymes responsible for the mevalonate pathway was isolated from Streptomyces griseolosporeus strain MF730-N6, a terpenoid-antibiotic terpentecin producer, by searching a flanking region of the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase gene, which had been previously isolated by complementation. By DNA sequencing of an 8.9-kb BamHI fragment, 7 genes encoding geranylgeranyl diphosphate synthase (GGDPS), mevalonate kinase (MK), mevalonate diphosphate decarboxylase (MDPD), phosphomevalonate kinase (PMK), isopentenyl diphosphate (IPP) isomerase, HMG-CoA reductase, and HMG-CoA synthase were suggested to exist in that order. Heterologous expression of these genes in E. coli and Streptomyces lividans, both of which have only the nonmevalonate pathways, suggested that the genes for the mevalonate pathway were included in the cloned DNA fragment. The GGDPS, MK, MDPD, PMK, IPP isomerase, and HMG-CoA synthase were expressed in E. coli. Among them, the recombinant GGDPS, MK, and IPP isomerase were confirmed to have the expected activities. This is the first report, to the best of our knowledge, about eubacterial MK with direct evidence.  相似文献   

12.
13.
There are two structural classes of HMG-CoA reductase, the third enzyme of the mevalonate pathway of isopentenyl diphosphate biosynthesis-the Class I enzymes of eukaryotes and the Class II enzymes of certain eubacteria. Structural requirements for ligand binding to the Class II HMG-CoA reductase of Pseudomonas mevalonii were investigated. For conversion of mevalonate to HMG-CoA the -CH(3), -OH, and -CH(2)COO(-) groups on carbon 3 of mevalonate were essential for ligand recognition. The statin drug Lovastatin inhibited both the conversion of HMG-CoA to mevalonate and the reverse of this reaction. Inhibition was competitive with respect to HMG-CoA or mevalonate and noncompetitive with respect to NADH or NAD(+). K(i) values were millimolar. The over 10(4)-fold difference in statin K(i) values that distinguishes the two classes of HMG-CoA reductase may result from differences in the specific contacts between the statin and residues present in the Class I enzymes but lacking in a Class II HMG-CoA reductase.  相似文献   

14.
The lack of a few conserved enzymes in the classical mevalonate pathway and the widespread existence of isopentenyl phosphate kinase suggest the presence of a partly modified mevalonate pathway in most archaea and in some bacteria. In the pathway, (R)-mevalonate 5-phosphate is thought to be metabolized to isopentenyl diphosphate via isopentenyl phosphate. The long anticipated enzyme that catalyzes the reaction from (R)-mevalonate 5-phosphate to isopentenyl phosphate was recently identified in a Cloroflexi bacterium, Roseiflexus castenholzii, and in a halophilic archaeon, Haloferax volcanii. However, our trial to convert the intermediates of the classical and modified mevalonate pathways into isopentenyl diphosphate using cell-free extract from a thermophilic archaeon Thermoplasma acidophilum implied that the branch point intermediate of these known pathways, i.e. (R)-mevalonate 5-phosphate, is unlikely to be the precursor of isoprenoid. Through the process of characterizing the recombinant homologs of mevalonate pathway-related enzymes from the archaeon, a distant homolog of diphosphomevalonate decarboxylase was found to catalyze the phosphorylation of (R)-mevalonate to yield (R)-mevalonate 3-phosphate. The product could be converted into isopentenyl phosphate, probably through (R)-mevalonate 3,5-bisphosphate, by the action of unidentified T. acidophilum enzymes fractionated by anion-exchange chromatography. These findings demonstrate the presence of a third alternative “Thermoplasma-type” mevalonate pathway, which involves (R)-mevalonate 3-phosphotransferase and probably both (R)-mevalonate 3-phosphate 5-phosphotransferase and (R)-mevalonate 3,5-bisphosphate decarboxylase, in addition to isopentenyl phosphate kinase.  相似文献   

15.
3-Hydroxy-3-methylglutaryl-CoA reductase, mevalonate kinase, mevalonate-5-phosphate kinase and mevalonate-5-pyrophosphate decarboxylase activities have been determined in brain, liver, intestine and kidneys from 19-day-old chick embryo. Levels of brain reductase and decarboxylase were clearly higher than those found in the other tissues assayed. However, only small differences were observed in the activity of both kinases among the different tissues. Mevalonate metabolism by sterol and nonsterol pathways has been investigated in chick embryo at the same developmental stage. Mevalonate incorporation into total nonsaponifiable lipids was maximal in liver, followed by intestine, brain and kidneys. The shunt pathway of mevalonate not leading to sterols was negligible in both brain and liver, while a clear CO2 production was observed in intestine and kidneys. Sterols running in TLC as lanosterol and cholesterol were the major sterols formed from mevalonate by brain and kidney slices, while squalene and squalene oxide(s) were found to be mainly synthesized by liver slices. Minor differences in the percentage of different sterols were observed in chick embryo intestine. The importance of free and esterified cholesterol accumulation in the different tissues on the inhibition of cholesterogenic activity is discussed.  相似文献   

16.
Archaea have been shown to produce isoprenoids from mevalonate; however, genome analysis has failed to identify several genes in the mevalonate pathway on the basis of sequence similarity. A predicted archaeal kinase, coded for by the MJ0044 gene, was associated with other mevalonate pathway genes in the archaea and was predicted to be the "missing" phosphomevalonate kinase. The MJ0044-derived protein was tested for phosphomevalonate kinase activity and was found not to catalyze this reaction. The MJ0044 gene product was found to phosphorylate isopentenyl phosphate, generating isopentenyl diphosphate. Unlike other known kinases associated with isoprene biosynthesis, Methanocaldococcus jannaschii isopentenyl phosphate kinase is predicted to be a member of the aspartokinase superfamily.  相似文献   

17.
At least three different subcellular compartments, including peroxisomes, are involved in cholesterol synthesis. The peroxisomal targeting signals for phosphomevalonate kinase and isopentenyl diphosphate isomerase have been identified. In the current study we identify the peroxisomal targeting signals required for four other enzymes of the cholesterol biosynthetic pathway: acetoacetyl-CoA (AA-CoA) thiolase, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) synthase, mevalonate diphosphate decarboxylase (MPPD), and farnesyl diphosphate (FPP) synthase. Data are presented that demonstrate that mitochondrial AA-CoA thiolase contains both a mitochondrial targeting signal at the amino terminus and a peroxisomal targeting signal (PTS-1) at the carboxy terminus. We also analyze a new variation of PTS-2 sequences required to target HMG-CoA synthase and MPPD to peroxisomes. In addition, we show that FPP synthase import into peroxisomes is dependent on the PTS-2 receptor and identify at the amino terminus of the protein a 20-amino acid region that is required for the peroxisomal localization of the enzyme.These data provide further support for the conclusion that peroxisomes play a critical role in cholesterol biosynthesis.  相似文献   

18.
19.
Abstract— Phenyl and phenolic acids are known to inhibit metabolism of mevalonate in rat brain. The site of inhibition has been found to be mevalonate-5-pyrophosphate decarboxylase. Phenolic acids also inhibited mevalonate-5-phosphate kinase on preincubation. The kinetics showed that p -coumaric acid and isoferulic acid were competing with substrates, mevalonate-5-phosphate or mevalonate-5-pyre phosphate, whereas others showed an uncompetitive type of inhibition. Chlorophenoxyisobutyrate, a hypocholesterolaemic drug, had no effect on these enzymes. An improved method for the synthesis of mevalonate-5-phosphate and mevalonate-5-pyrophosphate, labeled at carbon-1, is described.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号