首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite a growing knowledge of nutrient limitation for mangrove species and how mangroves adapt to low nutrients, there is scant information about the relative importance of N:P ratio and leaf phenolics variability in determining nutrient conservation. In this study, we evaluated possible nutrient conservation strategies of a mangrove Rhizophora stylosa under nutrient limitation. 1. The leaf nutrient concentrations of R. stylosa changed with season, with the highest N concentration in winter and the highest P concentration in spring for both mature and senescent leaves. Leaf N and P concentrations decreased significantly during leaf senescence. Based on N:P ratios R. stylosa forest was N-limited. Accordingly, the nitrogen resorption efficiency (NRE) was significantly higher than phosphorus resorption efficiency (PRE) for the R. stylosa leaves during leaf senescence. The NRE and PRE both reached the highest in the autumn. Average N and P concentrations in the senescent leaves were 0.15% and 0.06% for R. stylosa, respectively, indicating a complete resorption of N and an incomplete resorption of P. There was a significant negative correlation between nitrogen resorption proficiency (NRP) and NRE, meanwhile phosphorus resorption proficiency (PRP) and PRE correlation was also highly significantly. 2. R. stylosa leaves contained relatively high tannin level. Total phenolics, extractable condensed tannins and total condensed tannins contents increased during leaf senescence, and changed between seasons. The lowest concentrations of total phenolics, extractable condensed tannins and total condensed tannins occurred in summer, total phenolics concentrations were inversely related to nitrogen or phosphorus concentrations. 3. Our results confirmed that resorption efficiency during leaf senescence depends on the type of nutrient limitation, and NRE was much higher than PRE under N-limited conditions. R. stylosa forest developed several nutrient conservation strategies in the intertidal coastline surroundings, including high nitrogen resorption efficiency, low nutrient losses and high tannins level.  相似文献   

2.
慕军鹏  陈红利 《广西植物》2018,38(8):1088-1095
叶性状分化在自然界中较为普遍,不同的叶性状特征与植物对资源获得及利用效率密切关联,反映了植物适应特定环境所形成的生存对策。叶性状分化的生态功能一直以来备受生态学家和进化生物学家的广泛关注。自然界构树(Broussonetia papyifera)在个体发育过程中出现全缘叶和裂缺叶的分化,但其生态功能尚不清楚,推测两者的叶型分化是构树对虫害规避的结果。为了探讨构树叶性状分化对应的可能生态功能,该研究采用野外监测和室内分析的方法,对构树全缘叶和裂缺叶的虫害发生率、叶面积、与抗虫有关的酚类物质(总酚、缩合单宁、黄酮)含量进行了比较。结果表明:(1)相对于裂缺叶,全缘叶虫害发生率显著增加,全缘叶虫害发生率是裂缺叶的两倍。(2)自然条件下,全缘叶叶面积显著高于裂缺叶,增加了约44个百分点。(3)自然条件下,裂缺叶中总酚、缩合单宁、黄酮含量均显著高于全缘叶,分别提高了6.0%、4.2%和16.2%。(4)除黄酮外,虫害处理下裂缺叶中总酚、缩合单宁含量显著高于全缘叶,均提高了约5.0%。(5)人为移除部分叶片,裂缺叶中总酚、缩合单宁、黄酮含量均显著高于全缘叶,分别提高8.0%、1.6%和25.4%。这说明构树全缘叶和裂缺叶中酚类物质含量对外来损伤响应不一致,裂缺叶虫害发生率较全缘叶低可能由于两种类型叶片中酚类物质含量存在差异所引起。  相似文献   

3.
M. A. S. Graça  J. M. Poquet 《Oecologia》2014,174(3):1021-1032
We tested the hypothesis that water stress and soil nutrient availability drive leaf-litter quality for decomposers and detritivores by relating chemical and physical leaf-litter properties and decomposability of Alnus glutinosa and Quercus robur, sampled together with edaphic parameters, across wide European climatic gradients. By regressing principal components analysis of leaf traits [N, P, condensed tannins, lignin, specific leaf area (SLA)] against environmental and soil parameters, we found that: (1) In Q. robur the condensed tannin and lignin contents increased and SLA decreased with precipitation, annual range of temperature, and soil N content, whereas leaf P increased with soil P and temperature; (2) In A. glutinosa leaves N, P, and SLA decreased and condensed tannins increased with temperature, annual range of temperature, and decreasing soil P. On the other hand, leaf P and condensed tannins increased and SLA decreased with minimum annual precipitation and towards sites with low temperature. We selected contrasting leaves in terms of quality to test decomposition and invertebrate consumption. There were intraspecific differences in microbial decomposition rates (field, Q. robur) and consumption by shredders (laboratory, A. glutinosa). We conclude that decomposition rates across ecosystems could be partially governed by climate and soil properties, affecting litter quality and therefore decomposers and detritivores. Under scenarios of global warming and increased nutrients, these results suggest we can expect species-specific changes in leaf-litter properties most likely resulting in slow decomposition with increased variance in temperatures and accelerated decomposition with P increase.  相似文献   

4.
Changes in the total phenolics, condensed tannins (CT), protein-precipitable phenolics content and protein precipitation capacity were determined on mangrove leaves representing a range of maturation and senescence in the Jiulong River Estuary, Fujian, China. The results showed that the total phenolics, extractable condensed tannins, total condensed tannins, protein-precipitable phenolics content and protein precipitation capacity in young leaves were higher than those in mature and senescent leaves. With leaf maturation and senescence, total pehnolics decreased. The rapid loss of phenolics observed following senescence and abscission can be ascribed to leaching and degradation. Protein-bound CT and fibre-bound CT tended to increase with leaf maturity, and decreased with senescence. Protein-bound CT and fibre-bound CT increased with leaf decomposition, with CT binding more strongly to protein than to fibre. The increases in nitrogen contents and ash free caloric values, and declines in total phenolics and total condensed tannins of mangrove leaf litter suggests that partially decomposed mangrove detritus is a palatable heterotrophic substrate, and thus may be an important source of matter and energy for the estuarine food web. Handling editor: K. Martens  相似文献   

5.
Changes in the total phenolics, condensed tannins (CT), protein-precipitable phenolics content and protein precipitation capacity were determined on a series of mangrove leaves from two true viviparous mangrove species (Kandelia candel and Bruguiera gymnorrhiza) at various stages of development and decomposition in the Jiulong River Estuary, Fujian, China. Similar measurements were also done for the propagules at different developmental stages. The results showed that the total phenolics, extractable condensed tannins, total condensed tannins, protein-precipitable phenolics content and protein precipitation capacity in young leaves were higher than those in mature and senescent leaves. Tannin dynamics during leaf decomposition varied with species, and the rapid loss of phenolics observed during decomposition can be ascribed to leaching and degradation. Protein-bound CT and fibre-bound CT tended to increase with leaf decomposition, with CT binding more strongly to protein than to fibre. Protein-bound CT was higher than fibre-bound CT with the exception of mature leaves. Total phenolics, extractable CT and protein-precipitable phenolics contents in flower tissues were relatively lower than those in hypocotyls at different developmental stages. Protein precipitation capacity fluctuated with the development of propagules. Increases in nitrogen in decaying litter, and declines in contents of total phenolics and total condensed tannins of detritus support the general conclusion that decomposing mangrove detritus can be a more palatable heterotrophic substrate than living leaves.  相似文献   

6.
7.
MALDI-TOF mass spectrometry and 13C NMR spectroscopy were applied to unveil typical characteristics of condensed tannins of leaves and needles from willow (Salix alba), spruce (Picea abies) and beech (Fagus sylvatica) of three tree species that are ubiquitous in German forests and landscapes. For further evaluation, lime (Tilia cordata) was included. The 13C NMR spectroscopy confirmed the purity of the condensed tannin fractions and the efficiency of the procedure used for their extraction. While signals representative for procyanidin units are observable in all liquid-state 13C NMR spectra, resonance lines of prodelphinidin were only detected in those obtained from the condensed tannins of spruce needles and beech leaves. Typical signals in the chemical shift region between 70 and 90 ppm demonstrated the presence of stereoisomers (catechin/epicatechin; gallocatechin/ epigallocatechin). The MALDI-TOF mass spectra of the condensed tannins show signals of polymers of up to undecamers. Supporting the observations from the NMR spectroscopy, the mass spectra of the willow and lime leaf condensed tannins were identified as polymers with mainly procyanidin units, while the polymers of the spruce needle and beech leaves exhibit varying procyanidin/prodelphinidin ratios. Post source decay (PSD) fragmentation lead to a sequential loss of monomers and allowed a detailed characterization and sequencing of individual chains. In the case of the condensed tannins of lime this technique clearly excludes a pelargonidin terminal unit followed by a prodelphinidin unit, which would result in the same molecular masses as a polymer solely built up of procyanidin units.  相似文献   

8.
Young potted seedlings of the Mediterranean evergreen sclerophyll Ceratonia siliqua were grown in the field under two nutrient and water regimes during the spring growth period. As expected, plants receiving additional nutrients accumulated more above and below ground biomass while the reverse was true for water stressed plants. In accordance with the growth–differentiation balance hypothesis, total leaf phenolics and tannins (astringency) decreased under high nutrients and increased under water stress, with the effects being more pronounced in young leaves. However, the responses of the two tannin types to resource availability were not similar. Only condensed tannins were decreased by nutrient addition while both condensed and gallotannins were increased by water stress. This non-homogeneous behaviour may reflect the different biosynthetic origins of the two tannin types.  相似文献   

9.
Total phenols and condensed tannins in leaves of seven species of Eucalyptus ranged from 4–40% and 0–27% respectively of the leaf dry weight. The concentrations of these compounds were variable but usually high in young and older leaves throughout the growing season, and typically increased during winter, but no other trends with season or leafage were apparent. This pattern of seasonal variation in concentrations of total phenols and condensed tannins is different to that studied for other plant species. This difference may be related to repeated production of new leaves by Eucalyptus during the growing season, and the probability that these leaves will be attacked by herbivorous insects.  相似文献   

10.

Background and aims

Condensed tannins, a dominant class of plant secondary metabolites, play potentially important roles in plant-soil feedbacks by influencing the soil microbial community. Effects of condensed tannins on the soil microbial community and activity were examined by a short-term tannin-addition experiment under field and laboratory conditions.

Methods

Condensed tannins were extracted from the leaves of a dominant conifer (Dacrydium gracilis) in a tropical montane forest on Mt. Kinabalu, Borneo. The extracted tannins were added to soils beneath the conifer and a dominant broadleaf (Lithocarpus clementianus) to evaluate the dependence of the response to tannin addition on the initial composition of the soil microbial community.

Results

Enzyme activities in the field tannin-addition treatment were lower than in the deionized-water treatment. Carbon and nitrogen mineralization were also inhibited by tannin-addition. The fungi-to-bacteria ratio after tannin-addition was higher compared with the distilled-water treatment in the laboratory experiment.

Conclusions

Based on our results, we suggest that the higher concentration of condensed tannins in the leaf tissues of Dacrydium than in those of Lithocarpus is a factor influencing the microbial community and activity. This may have influences on subsequent plant performance, which induces plant-soil feedback processes that can control dynamics of the tropical montane forest ecosystem.  相似文献   

11.
为了解入侵植物牛膝菊的入侵机理,研究其应对昆虫取食的响应,在开花前喷洒不同浓度(5、10、20 mmol·L-1)的茉莉酸甲酯(MeJA)来模拟不同程度的昆虫取食,试验结束时测定其株高、叶片数、花序数、生物量、比叶面积、叶上表皮毛密度,以及叶和花序中的缩合单宁、总酚、黄酮含量.结果表明:5 mmol·L-1 MeJA处...  相似文献   

12.
Cottonwoods are dominant riparian trees of the western United States and are known for their propensity to hybridize. We compared the decomposition of leaf litter from two species (Populus angustifolia and P. fremontii) and their hybrids. Three patterns were found. First, in one terrestrial and two aquatic experiments, decomposition varied twofold among tree types. Second, backcross hybrid leaves decomposed more slowly than those of either parent. Third, the variation in decomposition between F1 and backcross hybrids was as great as the variation between species. These results show significant differences in decomposition in a low-diversity system, where >80% of the leaf litter comes from just two species and their hybrids. Mechanistically, high concentrations of condensed tannins in leaves appear to inhibit decomposition (r 2=0.63). The initial condensed tannin concentration was high in narrowleaf leaves, low or undetectable in Fremont leaves, and intermediate in F1 hybrid leaves (additive inheritance). Backcross hybrids were high in condensed tannins and were not different from narrowleaf (dominant inheritance). Neither nitrogen (N) concentration nor the ratio of ash-free dry weight to N (a surrogate for carbon:nitrogen ratio) were significantly correlated with decomposition. The N content of leaf material at the end of each year’s experiment was inversely correlated with rates of litter mass loss and varied 1.6- to 2.1-fold among tree classes. This result suggests that hybrids and their parental species are used differently by the microbial community. Received: 7 April 1999 / Accepted: 2 November 1999  相似文献   

13.
Abstract. 1. Community level oak–tannin–insect patterns have been largely unexplored since Paul Feeny's ground‐breaking research. Two hypotheses were tested for Quercus velutina and Q. alba in the Missouri Ozarks: abundance and richness of leaf‐chewing herbivores are negatively correlated with foliar condensed tannin concentrations and variation in condensed tannin concentrations explains variation in herbivore community structure. 2. In 2001, foliar condensed tannins in the understorey and canopy of these two oak species were quantified simultaneously with censuses of herbivores in May, during leaf expansion, and in June and August, when leaves were fully expanded. Thirty‐eight of the 134 species encountered had densities sufficient to be analysed individually (n = 10). Of those, Acronicta increta (Noctuidae) and Attelabus sp. (Curculionidae), both oak specialists, were negatively correlated with condensed tannins in the canopy of Q. alba. One additional specialist, Chionodes pereyra (Gelechiidae), was marginally negatively correlated with condensed tannins in the understorey of Q. velutina. Understorey species richness of May Q. velutina herbivores was negatively correlated with condensed tannins, as were total canopy insect density and species richness of August herbivores on Q. alba. 3. Principal component analysis (PCA) of insect abundances indicated that understorey and canopy Q. velutina and Q. alba had different communities of leaf‐chewing insects. Furthermore, condensed tannin levels contributed significantly to variation in PCA scores for Q. velutina, explaining 25% of the total variation. 4. Overall, these results indicate that specialists were more likely than generalists both to correlate negatively with condensed tannins and to occur in lower tannin habitats; abundance and richness of both early and late season fauna correlated negatively with tannins; and species were more likely to correlate negatively with condensed tannins when feeding on Q. alba than on Q. velutina and when feeding in the canopy than in the understorey. Future studies of tannin–insect interactions should manipulate leaf quality in combination with manipulations of other factors that likely influence community structure.  相似文献   

14.
Condensed tannins in plants are found free and attached to protein and fibre but it is not known whether these fractions influence rumen degradation and microbial colonisation. This study explored the rumen degradation of tropical tannin-rich plants and the relationship between the disappearance of free and bound condensed tannin fractions and microbial communities colonising plant particles using in situ and in vitro experiments. Leaves from Calliandra calothyrsus, Gliricidia sepium, and Leucaena leucocephala, pods from Acacia nilotica and the leaves of two agricultural by-products: Manihot esculenta and Musa spp. were incubated in situ in the rumen of three dairy cows to determine their degradability for up to 96 h. Tannin disappearance was determined at 24 h of incubation, and adherent microbial communities were examined at 3 and 12 h of incubation using a metataxonomic approach. An in vitro approach was also used to assess the effects of these plants on rumen fermentation parameters. All plants contained more than 100 g/kg of condensed tannins with a large proportion (32–61%) bound to proteins. Calliandra calothyrsus had the highest concentration of condensed tannins at 361 g/kg, whereas Acacia nilotica was particularly rich in hydrolysable tannins (350 g/kg). Free condensed tannins from all plants completely disappeared after 24-h incubation in the rumen. Disappearance of protein-bound condensed tannins was variable with values ranging from 93% for Gliricidia sepium to 21% for Acacia nilotica. In contrast, fibre-bound condensed tannin disappearance averaged ~ 82% and did not vary between plants. Disappearance of bound fractions of condensed tannins was not associated with the degradability of plant fractions. The presence of tannins interfered with the microbial colonisation of plants. Each plant had distinct bacterial and archaeal communities after 3 and 12 h of incubation in the rumen and distinct protozoal communities at 3 h. Adherent communities in tannin-rich plants had a lower relative abundance of fibrolytic microbes, notably Fibrobacter spp. whereas, archaea diversity was reduced in high-tannin-containing Calliandra calothyrsus and Acacia nilotica at 12 h of incubation. Concurrently, in vitro methane production was lower for Calliandra calothyrsus, Acacia nilotica and Leucaena leucocephala although for the latter total volatile fatty acids production was not affected and was similar to control. Here, we show that the total amount of hydrolysable and condensed tannins contained in a plant govern the interaction with rumen microbes affecting degradability and fermentation. The effect of protein- and fibre-bound condensed tannins on degradability is less important.  相似文献   

15.
Turtlegrass, Thalassia testudinum, produces high concentrations of proanthocyanidins (condensed tannins) which we hypothesized are induced by grazing, as a component of a general wound response. To test this we quantified condensed tannins in a variety of turtlegrass tissues following simulated fish grazing, grazing by the urchin Lytechinus variegatus, and treatment with the natural plant wound hormone jasmonic acid. We observed that simulated fish grazing triggered rapid induction of condensed tannins by an average of 10 mg tannin g−1 dry mass (DM) after 5 days. Condensed tannin accumulations were correlated with a reduction of blade extension rates. Further, we observed that constitutive tannin levels in developing first-rank leaves were strongly correlated with the width of second-rank leaves on each shoot, with an increase of 7.7 mg tannin g−1 tissue dry mass per millimeter blade width on average. We propose that wider source leaves provide additional resources for phenolic biosynthesis. There was no induction of tannins in leaves, meristematic or sheath tissues in response to grazing by the urchin L. variegatus, the presence of potential waterborne cues from nearby grazed plants, or to treatment with 5 mM jasmonic acid. However, urchin grazing did induce tannin production in root/rhizome tissues, where they accumulated to levels 3–4 times higher than in blades (up to 350 mg tannin g−1 tissue dry mass). These results confirm the potential for rapid wound-induced condensed tannin accumulations in T. testudinum. The link between blade widths and the tannin content of new leaves indicates that leaf morphology may be a useful bioindicator for predicting herbivore and disease-resistance in the field.  相似文献   

16.
We documented temporal patterns in phytochemical composition of Populus tremuloides Michx. during leaf senescence, and the influence of genotype and soil nutrient availability on such patterns. Levels of foliar nitrogen, carbohydrates, phenolic glycosides and condensed tannins were quantified for four aspen genotypes grown in a common garden, with low and high levels of soil nutrients. Levels of all compounds tended to decline over time, although the magnitude of change was influenced by plant genotype and nutrient availability. Genetic variation in concentrations of phytochemicals was much greater for phenolic glycosides and tannins than for nitrogen and carbohydrates, and these phenolic signatures generally persisted through leaf abscission. Our results suggest that genotypic and nutrient effects on patterns of chemical change during senescence will likely influence the performance of late-season herbivores on aspen. Moreover, nutrient and especially genotypic variation in phytochemistry of abscised leaves is likely to affect litter decomposition rates.  相似文献   

17.
Two forage legumes, birdsfoot trefoil (Lotus corniculatus L.) and sainfoin (Onobrychis viciifolia Scop.), containing condensed tannins in their leaves and stems were used as source material to study condensed tannins in tissue culture. More protoplasts were isolated from mesophyll tissue of a low tannin-containing strain of birdsfoot trefoil than from a high tannin-containing strain, but more tannin-filled protoplasts were observed in the latter. Growth rates of leaf explant-derived callus tissue were greater for the high-tannin than for the low-tannin strain. In sainfoin, callus cultures from leaf explants produced numerous tannin-filled cells by 21 days. Explants from sainfoin cotyledons and roots, tissues which normally do not contain tannins, also formed callus with tannin-filled cells in 21 days but in almost every case, a cytokinin was required for tannin formation to occur. The occurrence of tannin-filled cells in callus from root and cotyledon explants was variable and genotype specific. These results show that endogenous tannins can affect protoplast isolation and possibly callus growth in birds-foot trefoil, and that the formation of condensed tannins in sainfoin callus culture can be influenced by a growth regulator.Abbreviations BAP benzylaminopurine - KIN kinetin - NAA naphthaleneacetic acid - PAR photosynthetically active radiation Contribution no. 920 of Agriculture Canada Research Station, 107 Science Cres., Saskatoon, Saskatchewan, Canada S7N OX2  相似文献   

18.
Does Mangrove Leaf Chemistry Help Explain Crab Herbivory Patterns?   总被引:3,自引:0,他引:3  
We examined feeding by the mangrove tree crab Aratus pisonii in Tampa Bay, Florida, in relation to the percent dry weight of carbohydrate, protein, phenolics, condensed tannins, ash, carbon, nitrogen, carbonmitrogen ratio, water content, and sclerophylly for leaves of the red mangrove Rhizophora mangle. Comparisons of leaf chemistry were made among leaves that experienced variable levels of crab damage. Because R. mangle is the crab's preferred food source based on damage patterns in the field, comparisons of R. mangle leaf chemistry were made in relation to that of the black mangrove Avicennia germinans and the white mangrove Laguncularia racemosa. We observed a negative relationship between level of leaf damage and percent dry weight of nitrogen, carbohydrates, condensed tannins, and sclerophylly. In contrast, a positive relationship was found between leaf damage and the carbon:nitrogen ratio. The chemical constituents that provided the best explanation for differences in damage among the three mangrove species include condensed tannins, nitrogen, carbon:nitrogen ratio, carbohydrates, phenolics, water content, and ash. The results from this study suggest that chemistry only partially explains food preference by A. pisonii. It appears that A. pisonii feeding behavior and preference may be influenced by a more complex series of factors and interactions, which may include reproduction by, predation on, and interspecific competition with A. pisonii.  相似文献   

19.
In a survey of 29 species in the 12 seagrass genera, those in the Potamogetonaceae that characteristically have tannin cells in the leaves (Posidonioideae: Posidonia; Cymodoceoideae: Halodule, Syringodium, Cymodocea, Thalassodendron, Amphibolis) contained compounds with the Rf values and color reactions typical of condensed tannins. Species in the Potamogetonaceae that are not characterized by tannin cells in the leaves (Zosteroideae: Zostera, Phyllospadix, Heterozostera) contained compounds with the Rf values associated with condensed tannins but without the typical staining reactions. Two of the three genera in the Hydrocharitaceae (Enhalus, Thalassia) are characterized by tannin cells in the leaves and contain compounds with the Rf values of condensed tannins but only some of the typical staining reactions. The third genus, Halophila, lacks tannin cells in the leaves and contains compounds with the Rf values of condensed tannins without the typical staining reactions. The role of condensed tannins as feeding deterrents because of their protein-binding properties has been well established for many land plants, but their role in seagrass biology has not been assessed fully.  相似文献   

20.
1. Trees present herbivorous insects with the greatest diversity of resources of any plant growth form. Both ontogeny and shading can alter suitability for arboreal insect herbivores. 2. We conducted a longitudinal study of tagged ‘mature’ (>12 months old) Eucalyptus camaldulensis leaves to compare the suitability of understorey and canopy trees for the leaf senescence-inducing psyllid, Cardiaspina albitextura. We quantified sugars and tannins as possible predictors of nymphal abundance. 3. Canopy leaves hosted double the number of nymphs as understorey leaves. Variation among individual trees (understorey and canopy) was the most important source of heterogeneity explaining psyllid abundance, although relative leaf age significantly influenced oviposition on canopy leaves. The diversity of foliar sugars was higher among canopy leaves than among understorey leaves. There was significant between-tree diversity in total hydrolysable tannins (HTs) and total condensed tannins (CTs) among understorey trees but not among canopy trees. Heterogeneity among understorey and canopy trees was explained by greater diversity of ellagitannins (HTs) than of CTs. 4. Shading is detrimental to the survival of nymphs on both host types, but sugars are unlikely to explain variation in suitability. Vescalagin (an ellagitannin) was negatively correlated with the abundance of nymphs on both host types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号