首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The new C-glycosyiflavone, 6-C-β-d-glucopyranosyl-8-C-β-d-galactopyranosylapigenin, has been isolated from Cerastium arvense and identified on the basis of UV, MS and 13C NMR spectral data and comparison with the product obtained from 6-C-galactosylation of vitexin.  相似文献   

2.
Permethylated 6-C-diglycosyl-8-C-glycosylflavones and 6-C-glycosyl-8-C-diglycosylflavones gave well defined EIMS including the molecular peak and a fragmentation pattern characteristic of the 6-C-glycosyl residue. X″′-O-glycosides (8-C-disaccharides) are thus easily distinguished from X″-O-glycosides (6-C-disaccharides) and, in the latter, the position of the O-glycosidic bond should be deduced from the MS, after acid hydrolysis. Three new C-glycosylflavones have been characterized in this way from Spergularia rubra and Stellaria holostea.  相似文献   

3.
8-C-Galactosylapigenin and 6-C-galactosyl-8-C-arabinosylapigenin were isolated from the leaves of Polygonatum multiflorum (L.) All. Structural assignments for the latter compound were made on the basis of mass, CD and 13C-NMR spectra.  相似文献   

4.
《Phytochemistry》1986,25(7):1772-1775
In addition to puerarin (7,4′-dihydroxyisoflavone 8-C-β-glucopyranoside), the air-dried tuberous roots of Pueraria mirifica have been found to contain a second, previously unreported, isoflavone C-glycoside. This new compound (mirificin), which has now been identified by chemical and spectroscopic (UV, 1H NMR, 13C NMR including GASPE) procedures as puerarin 6″-O-β-apiofuranoside is the first O″-glycoside of an isoflavone C-glycoside to be discovered in nature. Mirificin contains a rare 1 → 6 interglycosidic linkage between apiose and the glucose unit which is unique in flavonoids. It is proposed that 1 → 2 and 1 → 6 linked apioglucosides can be distinguished by 1H NMR spectroscopy in the same manner as used for the equivalent rhamnoglucosides.  相似文献   

5.
Corymboside, a new di-C-glycosylflavone from Carlina corymbosa roots, was shown to be 6-C-α-l-arabinopyranosyl-8-C-β-d-galactopyranosylapigenin by MS, CD, 1H and 13C NMR.  相似文献   

6.
Nine C-glycosyldeoxyanthocyanidins, 6-C-β-glucopyranosyl-7-O-methylapigeninidin, 6-C-β-glucopyranosyl-7-O-methylluteolinidin, 6-C-β-(2″-O-β-glucopyranosylglucopyranosyl)-7-O-methylapigeninidin, 6-C-β-(2″-O-β-glucopyranosylglucopyranosyl)-7,4′-di-O-methylapigeninidin, 8-C-β-glucopyranosylapigeninidin, 8-C-β-(2″-O-α-rhamnopyranosylglucopyranosyl)apigeninidin, 8-C-β-(2″-O-α-(4″′-O-acetylrhamnopyranosyl)glucopyranosyl)apigeninidin, 6,8-di-C-β-glucopyranosylapigeninidin (8), 6,8-di-C-β-glucopyranosyl-4′-O-methylluteolinidin (9), have been synthesized from their respective C-glycosylflavones (yields between 14% and 32%) by the Clemmensen reduction reaction using zinc-amalgam. The various precursors (C-glycosylflavones) of the C-glycosylanthocyanidins were isolated from either flowers of Iris sibirica L., leaves of Hawthorn ‘Crataegi Folium Cum Flore’, or lemons and oranges. This is the first time C-glycosylanthocyanidins have been synthesized. The structures of all flavonoids including the flavone rotamers were elucidated by 2D NMR techniques and high-resolution electrospray MS. The distribution of the various structural forms of 8 and 9 are different at pH 1.1, 4.5, and 7.0, however, the two pigments undergoes similar structural transformations at the various pH values. Pigments 8 and 9 with C-C linkages between the sugar moieties and the aglycone, were found to be far more stable towards acid hydrolysis than pelargonidin 3-O-glucoside, which has the typical anthocyanidin C-O linkage between the sugar and aglycone. This stability may extend the present use of anthocyanins as nutraceuticals, pharmaceuticals or colorants.  相似文献   

7.
Eight flavone C-glycosides isolated from rice plant were found to act as probing stimulants for planthoppers. They have been identified as the known compounds schaftoside, neoschaftoside, carlinoside, isoorientin 2″-glucoside and the new constituents neocarlinoside (6-C-β-D-glucopyranosyl-8-C-β-L-arabinopyranosylluteolin), isoscoparin 2″-glucoside (chrysoeriol 6-C-β-D-(2-O-β-D-glucopyranosyl)glucopyranoside) and its 6?-p-coumaric and ferulic acid esters.  相似文献   

8.
Six known tricin and apigenin di-C-glycosides, including 2″-O-ferulylisoschaftoside, have been identified in gametophytic material of Metzgeria conjugata. M. leptoneura contains a new di-C-glycoside, tricin 6-C-xyloside-8-C-hexoside. The chemotaxonomic relevance of the flavonoid patterns is briefly discussed.  相似文献   

9.
《Carbohydrate research》1987,166(2):219-232
Effective general methods have been developed for the synthesis of 2′-C-methylnucleosides starting from d-glucose and d-ribose. 3-O-benzyl-1,2-O-isopropylidene-3-C-methyl-α-d-allofuranose was prepared in 5 steps from d-glucose and converted into 1,2,3-tri-O-acetyl-2-C-methyl-5-O-p-methylbenzoyl-d-ribofuranose (5), the starting compound for nucleoside synthesis. Compound 5 was also synthesised from 2-C-hydroxymethyl-2,3-O-isopropylidene-5-O-trityl-d-ribofuranose, prepared in 3 steps from d-ribose. Condensation of 5 with the bis-trimethylsilyl derivatives of uracil, N4-benzoylcytosine, and N6-benzoyladenine in the presence of F3CSO3OSiMe3 followed by removal of the protecting acyl groups yielded the corresponding 2′-C-methylnucleosides.  相似文献   

10.
6-C-α-l-Arabinopyranosyl- and furanosylacacetins have been synthesized. They are isomerized by short acid treatment to give a mixture of the four anomer/ring size combinations without any Wessely-Moser isomerization. In the same conditions molludistin (8-C-α-l-arabinopyranosylgenkwanin) led only to a mixture of molludistin and 8-C-α-l-arabinofuranosylgenkwanin. This is the first demonstration of ring sugar isomerization in C-glycosylflavones. In usual solvent systems, α-anomers are easily separated from β-anomers, whereas corresponding pyranosyl and furanosyl anomers are not. However, they are easily separated after permethylation and characteristic features are found in the mass spectra of PM 6-C-arabinofuranosyl isomers.  相似文献   

11.
Eleven flavone di-C-glycosides, including nine which are new, have been identified in gametophytic material of Apometzgeria pubescens. Tricetin 6,8-di-C-glucoside and tricin 6-C-arabinoside-8-C-pentoside are the major compounds. Another identified was ferulylisoschaftoside. The chemotaxonomic relevance of the flavonoid pattern of Apometzgeria pubescens is briefly discussed.  相似文献   

12.
Ten minutes after uptake of 2,4-dichlorophenoxyacetic acid-1-14C(2,4-D-1-14C) by excised Ribes sativum leaves, 37·8 % of the radioactivity in water-soluble metabolites was in glyoxylic acid. When 2,4-D- 2-14C was supplied under the same conditions, 23·0 % of the radioactivity of the water-soluble rnetabolites was in glyoxylic acid. Radioactive glycine and glyoxylic acid, isolated from Ribes sativum 6 hr after uptake of 2,4-D-1-14C, contained essentially all of the 14C in the carboxyl-carbon atoms. When 2,4-D-2-14C was the precursor, the glycine isolated contained 64·8 % of its radioactivity in C2, while 60·0 % of the radioactivity in glyoxylic acid was in C2. The side-chain label of 2,4-D-2-14C-4-36Cl was more efficiently incorporated into ethanol-insoluble plant residue than the ring-label. The metabolism of glyoxylic acid-1-14C and 2,4-D-1-14C in excised Ribes sativum leaves were compared. The data suggest a cleavage of the acetate-moiety of 2,4-D resulting in a C2 compound, perhaps glyoxylate.  相似文献   

13.
A series of new thioimidazolylborate zinc thiolate complexes TtixylZnSR (2)-(5) (where R = C6H4-o-OH, C6H4-o-CH2OH, C6H4-o-NH2, and C6H4-p-OH, respectively) have been synthesized and characterized as structural and functional models of the active site of the Ada repair protein. Structural determination of complexes 2-4 reveals intramolecular N/O-H?S hydrogen-bonding interactions. The influence of these hydrogen bonding interactions on the methylation of the thiolate ligands is evident from the fact that the rate of methylation for these complexes is reduced ca. 2 orders of magnitude compared to that found in the case of the non-hydrogen bonding-containing complex, TtixylZnSC6H5 (1).  相似文献   

14.
《Phytochemistry》1986,25(7):1723-1726
Seventeen flavonoids, including seven new natural products, were isolated from a dichloromethane extract of Wyethia angustifolia. Known compounds are:8-C-prenyleriodictyol, 6-C-prenyleriodictyol, 8-C-prenylnaringenin, 6-C-prenylnaringenin, orobol 7-methyl ether, orobol 3′-methyl ether, naringenin 4′-methyl ether, orobol, eriodictyol and naringenin. The new compounds are 6-C-prenylorobol, 6-C-prenylorobol 3′-methyl ether, orobol 7,3′-dimethyl ether, 8-C-prenyldihydroisorhamnetin, 7,8-dihydrooxepinocriodictyol, 7,8-dihydrooxepinodihydroquercetin and 3′,4′-dihydrooxepino-6′-hydroxybutein. A dichloromethane extract of Wyethia heleniodes yielded eleven compounds only five of which were previously reported from the species. All these compounds appear to occur on the leaf surface.  相似文献   

15.
Five unprecedented furan-2-carbonyl C-glycosides, scleropentasides A–E, and two phenolic diglycosides, 4-hydroxy-3-methoxybenzyl 4-O-β-d-xylopyranosyl-(1  6)-β-d-glucopyranoside and 2,6-dimethoxy-p-hydroquinone 1-O-β-d-xylopyranosyl-(1  6)-β-d-glucopyranoside, were isolated from leaves and twigs of Scleropyrum pentandrum together with potalioside B, luteolin 6-C-β-d-glucopyranoside (isoorientin), apigenin 8-C-β-d-glucopyranoside (vitexin), apigenin 6,8-di-C-β-d-glucopyranoside (vicenin-2), apigenin 6-C-α-l-arabinopyranosyl-8-C-β-d-glucopyranoside (isoschaftoside), apigenin 6-C-β-d-glucopyranosyl-8-C-β-d-xylopyranoside, adenosine and l-tryptophan. Structure elucidations of these compounds were based on analyses of chemical and spectroscopic data, including 1D and 2D NMR. In addition, the isolated compounds were evaluated for their radical scavenging activities using both DPPH and ORAC assays.  相似文献   

16.
Triterpene alcohols and sterols of the red alga Rhodymenia palmata have been investigated. Cycloartanol, 31-nor-cycloartanol and the C26 sterol 24-dimethylchola-5,22-diene-3β-ol (1) have been identified. Feeding experiments have been performed using 1-14C-acetate, 5-14C-mevalonic acid or 14C-methylmethionine. The C27, C28 and C29 sterols incorporate radioactivities but the C26 sterol is unlabelled after each experiment; its possible origin is discussed.  相似文献   

17.
Substitution reaction of chloro η6-arene ruthenium N∩O-base complexes [(η6-arene)Ru(N∩O)Cl] [N∩O = pyrazine-2-carboxylic acid (pca-H), 8-hydroxyquinoline (hq-H); arene = p-iPrC6H4Me, N∩O = hq (1); arene = C6Me6, N∩O = hq (2)] with NaN3 yield the neutral arene ruthenium azido complexes of the general formula [(η6-arene)Ru(N∩O)N3] [N∩O = pca, arene = p-iPrC6H4Me (3), arene = C6Me6 (4); N∩O = hq, arene = p-iPrC6H4Me (5), arene = C6Me6 (6)]. These complexes undergo [3 + 2] dipolar cycloaddition reaction with activated alkynes dimethyl and diethyl acetylenedicarboxylates to yield the arene triazole complexes [(η6-arene)Ru(N∩O){N3C2(CO2R)2}] [N∩O = pca, R = Me, arene = p-iPrC6H4Me (7), C6Me6 (8); R = Et, arene = p-iPrC6H4Me (9), C6Me6 (10); N∩O = hq, R = Me, arene = p-iPrC6H4Me (11) C6Me6 (12); R = Et, arene = p-iPrC6H4Me (13), C6Me6 (14)]. On the bases of proton NMR study, in the above triazole complexes N(2) isomers are assigned with dimethylacetylenedicarboxylate whereas N(1) isomers with diethylacetylenedicarboxylate. All complexes have been characterized by IR and NMR spectroscopy as well as by elemental analysis. The molecular structures of the azido complexes [(η6-p-iPrC6H4Me)Ru(pca)N3] (3), [(η6-p-iPrC6H4Me)Ru(hq)N3] (5) and [(η6-C6Me6)Ru(hq)N3] (6) have been established by single crystal X-ray diffraction studies.  相似文献   

18.
《Phytochemistry》1986,25(2):558-559
From the stem and the root bark of Almeidea guyanensis were identified isoswertisin, 6,8-di-C-arabinosylapigenin and two new compounds 2″-O-xylosyl-8-C-arabinosylgenkwanin, and 6-C-glucosyl-8-C-arabinosylgenkwanin.  相似文献   

19.
The following primary sulphonates have been converted into the corresponding deoxyfluoro derivatives by reaction with potassium fluoride in ethylene glycol:1,2:3,4-di-O-isopropylidene-6-O-tosyl α-D-galactopyranose (1), methyl 2,3-O2-isopropyliden-5-O-tosyl-α,β-D-ribofuranoside (2), 1,2:3,4-di-O-methylene-6-O-tosyl-α-D-glucofuranose (3), 3,5-di-O-benzylidene-1,2-O-isopropylidene-6-O-tosyl-α-D-glucofuranose (4), and 1,2:3,5-di-O-isopropylidene-6-O-tosyl-α-D-glucofuranose (5). The yields were generally poor; in the reaction of 1, a major by-product was 6-O-(2-hydroxyethyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose (11). The reaction of the primary hydroxyl precursor of each of the above tosylates with N2-(2-chloro- 1,1,2-trifluoroethyl)-N,N-diethylamine generally yielded the O-chlorofluoroacetyl derivative; however, 1,2:3,5-di-O-methylene-α-D-glucofuranose (12) was converted into the 6-deoxy-6-fluoro derivative (8). The 19F resonances of compounds containing the CH2F moiety fall between φC +213 and φC +235 p.p.m. The differences between the vicinal19F-1H couplings of compounds having the D-gluco and D-galacto configurations clearly reflect the influence of the C-4O-4 substitutents on the populations of the C-5C-6 rotamers. A novel type of noise-modulated, heteronuclear decoupling experiment is described.  相似文献   

20.
The reactivity of Mo(PMe3)6 towards 6-membered heterocyclic aromatic nitrogen compounds, namely pyridine, pyrazine, pyrimidine and triazine, has been investigated as part of an effort to define the coordination chemistry of molybdenum relevant to hydrodenitrogenation. For example, Mo(PMe3)6 reacts with pyridine to yield initially (η2-N,C-pyridyl)Mo(PMe3)4H, an uncommon example of an η2-pyridyl-hydride complex. The formation of (η2-N,C-pyridyl)Mo(PMe3)4H is reversible and treatment with PMe3 regenerates Mo(PMe3)6 and pyridine. At elevated temperatures, (η2-N,C-pyridyl)Mo(PMe3)4H dissociates PMe3 and converts to the η6-pyridine complex (η6-pyridine)Mo(PMe3)3. Pyrazine, pyrimidine and 1,3,5-triazine likewise react with Mo(PMe3)6 to yield (η2-N,C-pyrazinyl)Mo(PMe3)4H, (η2-N,C-pyrimidinyl)Mo(PMe3)4H and (η2-N,C-triazinyl)Mo(PMe3)4H, respectively. At elevated temperatures (η2-N,C-pyrazinyl)Mo(PMe3)4H and (η2-N,C-pyrimidinyl)Mo(PMe3)4H dissociate PMe3 and convert to (η6-pyrazine)Mo(PMe3)3 and (η6-pyrimidine)Mo(PMe3)3 in which the heterocycle coordinates to molybdenum in an unprecedented η6-manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号