首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endogenous content of methionine in isolated petals of Tradescantia was found to increase during petal senescence while the levels of S-methylmethionine and protein were found to decline. The increase in free methionine was, at least in part, the result of protein degradation. Methionine and homocysteine were shown to be intermediates in ethylene biosynthesis while S-methylmethionine was not involved. Application of 1-aminocyclopropane-1-carboxylic acid (ACC) to all floral tissues resulted in large stimulations of ethylene production. ACC was shown to be an endogenous amino acid the internal levels of which correlated positively with the rate of ethylene production. Application of l-methionine-[U-14C] led to a rapid appearance of radioactivity in both ethylene and ACC. The specific radioactivity of C-2 and C-3 of ACC and that of ethylene were found to be nearly identical which indicated that ACC was the immediate precursor of ethylene in senescing petals of Tradescantia.  相似文献   

2.
多效唑对花生叶片多胺含量及衰老的调节作用   总被引:7,自引:1,他引:7  
通过对大田条件下生殖生长期花生喷施不同浓度的多效唑,研究了多效唑对叶片内源多受及其它衰老指标的影响,结果证明多效唑对内源多胺的影响较复杂,多效唑降低了幼嫩叶片的多胺含量,却提高了成熟叶片衰老阶段的多胺含量,并起到延缓衰老的作用,讨论了多效唑影响多胺含量的可能原因。  相似文献   

3.
Twenty-five naturally occurring cytokinins and structurally related compounds were tested for their ability to promote ethylene production synergistica  相似文献   

4.
The spermine and spermidine content of pea pod tissue is not significantly altered by inoculation with the pisatin-inducing fungi, Fusarium solani. Although these polyamines induce pisatin, it appears that they do not accumulate in levels sufficient to serve as internal mediators of pisatin production in infected tissues.  相似文献   

5.
Ethylene biosynthesis and polyamine content were determined in [(2RS,3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pentan-3-ol] (paclobutrazol) pre-treated and non-treated water-stressed apple seedling leaves. Paclobutrazol reduced water loss, and decreased endogenous putrescine spermidine content. Gibberellic acid (GA) counteracted the inhibitory effect of paclobutrazol on polyamine content. Paclobutrazol also prevented accumulation of water stress-induced 1-aminocyclopropane-1-carboxylic acid (ACC), 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), ethylene production and polyamines in apple leaves. α-Difluoromethylarginine (DFMA), but not α-difluoromethylornithine (DFMO), inhibited the rise of putrescine and spermidine in stressed leaves. S-Adenosylmethionine (SAM) was maintained at a steady state level even when ethylene and the polyamines were actively synthesized in stressed apple seedling leaves. The conversion of ACC to ethylene did not appear to be affected by paclobutrazol treatment.  相似文献   

6.
The ability of putrescine, spermidine and spermine to replace Mg2+ ions in the charging reaction of tRNA was estimated for seventeen amino acids. The polyamines promoted only the transfer reaction in the case of Leu, Ile, Val, Tyr and Arg. A synergistic effect was observed when spermine was added to a suboptimal concentration of Mg2+ (charging at only 5% of the optimal level). This synergistic effect was not observed for Ala, Asp-NH2, His, Lys and Ser. Kinetic studies showed a slower aminoacylation rate in those experiments when spermine and Mg+2 (at 5% of the Mg2+ optimal concn) were used together than with Mg2+ (at the optimal concn) alone.  相似文献   

7.
Spermidine and spermine decrease betacyanin efflux from the discs of beet root storage tissue probably by stabilizing the cell membrane. The efflux reversal by spermine is not achieved at 47° probably due to irreversible membrane damage. Phytate alone has no effect on the efflux but reverses the effect of spermine. The destabilization produced by alcohol is reversed by spermine at low concentration but at high concentration both act synergistically to enhance the efflux.  相似文献   

8.
Responses of sunflower tissues to NaCl stress were studied in control (C), salt-stressed (S) and salt-adapted (T) calluses in terms of proline, polyamines and ethylene content for a period of 21 days. Salt-adapted calluses showed their adaptation to salinity by growing in the medium with 175 mM NaCl, at a similar rate than C calluses on medium without salt. Proline concentration was 27 times higher in salt-adapted calluses compared to control calluses at time 0, but salt stressed calluses (S calluses) were able to increase proline by day 21, demonstrating that proline was not just an osmoregulator but might be involved in other responses in sunflower salt-stressed calluses. Putrescine (Put) was the most abundant polyamine in C calluses at time 0, while spermidine (Spd) was the main polyamine in salt tolerant (T) calluses. Ethylene increased in C calluses until day 14, decreasing thereafter. In salt-adapted calluses, ethylene increased significantly over the concentration in C and S calluses by the end of the experiment. In control calluses, the highest level of total polyamines and the lowest of ethylene was found on day 21, while T calluses synthesized the highest ethylene level and had the lower polyamines level by this time. It seems that in salt-adapted calluses ethylene was related to stress tolerance and in salt sensitive tissues (S calluses), ethylene formation was related to senescence. The present data suggests a close relationship between proline, polyamines, ethylene and salt-stress tolerance in sunflower dedifferentiated tissues.  相似文献   

9.
We previously found that the ethylene inhibitor Ag+ could overcome the inhibitory effect of nitrate on nodulation of soybean ( Glycine max ) cv. Bragg. The same treatment increased nodulation quantitatively under non-inhibitory conditions, strongly suggesting involvement of ethylene in the control of nodulation in this species. Supernodulation mutants that lack internal autoregulation of nodulation, however, had biosynthesis capacity similar to the wild type. In the present work, the effects of ethylene on nodulation of 'Bragg' and two separate, but allelic, supernodulating mutants ( nts382 and nts1007 ) were compared. The nodulation process appeared much more sensitive than plant growth and development to ethylene, which reduced the number of nodules per plant, but nearly twofold more in the wild type than in the supernodulation mutants. The cause–effect relationship is established by the counteracting effect of Ag+ and the fact that the stronger the inhibition by ethylene, the higher the recovery of nodulation ability with the ethylene antagonist. This higher tolerance of or lower sensitivity to ethylene in nts382 persists even under low inoculum dose, where nodule number and mass could be decreased to wild-type levels. Differences between the mutant and the wild type in the triple response test do not appear to support differences in ethylene perception on a whole-plant basis. The results suggest that sensitivity of nodulation to ethylene might have been affected in supernodulation mutants.  相似文献   

10.
Effect of substrate-dependent microbial ethylene production on plant growth   总被引:1,自引:0,他引:1  
Various compounds have been identified as precursors/substrates for the synthesis of ethylene (C2H4) in soil. This study was designed to compare the efficiency of four substrates, namely L-methionine (L-MET), 2-keto-4-methylthiobutyric acid (KMBA), 1-aminocyclopropane-1-carboxylic acid (ACC), and calcium carbide (CaC2), for ethylene biosynthesis in a sandy clay loam soil by gas chromatography. The classic “triple” response in etiolated pea seedling was employed as a bioassay to demonstrate the effect of substrate-dependent microbial production of ethylene on plant growth. Results revealed that an amendment with L-MET, KMBA, ACC (up to 0.10 g/kg soil) and CaC2 (0.20 g/kg soil) significantly stimulated ethylene biosynthesis in soil. Overall, ACC proved to be the most effective substrate for ethylene production (1434 nmol/kg soil), followed by KMBA, L-MET, and CaC2 in descending order. Results further revealed that ethylene accumulation in soil from these substrates caused a classic “triple” response in etiolated pea seedlings with different degrees of efficacy. A more obvious classic “triple” response was observed at 0.15, 0.10, and 0.20 g/kg soil of L-MET, KMBA/ACC, and CaC2, respectively. Similarly, direct exposure of etiolated pea seedlings to commercial ethylene gas also modified the growth pattern in the same way. A significant direct correlation (r = 0.86 to 0.97) between substrate-derived C2H4 and the classic triple response in etiolated pea seedlings was observed. This study demonstrated that the presence of substrate(s) in soil may lead to increased ethylene concentration in the air of the soil, which may affect plant growth in a desired direction. Published in Russian in Mikrobiologiya, 2006, Vol. 75, No. 2, pp. 277–283. The text was submitted by the authors in English.  相似文献   

11.
The polyamines putrescine and spermine were effective in delaying the senescence of carnation buds, but were ineffective when applied to flowers of which the petals had already opened, and were 90° with respect to the stem. Higher levels of endogenous putrescine were detected in the open flowers than in the buds, and this may explain the negative effect obtained when polyamines were applied to open flowers that were picked for commercial distribution.Abbreviations AOA amino-oxyacetic acid - AVG amino-ethoxyvinyl-glycine - SAM S-adenosyl methionine - STS silver thiosulphate  相似文献   

12.
In vitro-development of Lemna inflorescences on minimal medium is known to differ in long day (LDP) and short day (SDP) plants (Z. Pfl, physiol. 77, 395). In LDP pistil growth predominates, while in SDP stamen growth predominates. This indicates that LDP and SDP inflorescences differ in endogenous hormones and depend for a balanced male-female development on different plant-supplied factors (Z. Pfl. physiol. 80, 283 and 298). Here inflorescences of the LDP L. gibba and the SDP L. aequinoctialis were tested for differences in ethylene-polyamine (PA) relations, as ethylene and PAs are inversely related (shared precursor, mutual inhibition of synthesis), and exogenous ethylene has been shown previously to restore male-female balance in SDP inflorescences (Z. Pfl. physiol. 80, 283). Promotion of pistil or stamen growth indicates a predominance of ethylene and PAs in LDP and SDP, respectively. Hence, in LDP, exogenous PAs and inhibitors of ethylene synthesis, and in SDP, an inhibitor of PA-synthesis, were applied to restore the male-female balance in vitro. In L. aequinoctialis (SDP), application of methylglyoxal-bis(guanylhydrazone) (MGBG), an inhibitor of spermidine (SD) synthesis, resulted in near normal development via stamen inhibition and/or pistil promotion. In L. gibba (LDP), ethylene inhibition was effective, especially by aminoethoxyvinylglycine (AVG), which reduced pistil growth. Effects of alpha-aminooxyacetic acid (AOA) were less clear. Putrescine (PUT) promoted stamen growth under certain circumstances, perhaps acting as a precursor for the more active SD. SD effects were concentration-dependent for pistil and stamen. Most importantly, increases in SD turned pistil promotion into inhibition and almost normalised floral development. Spermine (SM) enhanced stamen growth. Results are conclusive that PA-ethylene relationships are involved in inflorescence development in a contrasting manner in LDP and SDP. It is apparent that in whole plants the LDP supplies the inflorescences with factors inhibiting ethylene and/or stimulating PA-synthesis. In SDP the converse is true.  相似文献   

13.
月季切花瓶插过程中,内源腐胺在前2天略有增加,内源亚精胺、精胺、多胺总量则呈下降趋势,乙烯释放速率在第3天达到最高峰;多胺抑制剂甲基乙醛-双咪腙处理抑制了亚精胺、精胺的合成,增加了乙烯的释放速率;乙烯抑制剂氨氧乙酸处理推迟腐胺高峰的到来,降低了乙烯的释放速率,而且在瓶插期的前2天内源亚精胺、精胺含量较高。结果表明,具乙烯跃变型特征的月季切花衰老过程中,多胺与乙烯在其生物合成过程中相互竞争S-腺苷甲硫氨酸作为其合成的前体。  相似文献   

14.
Role of polyamines and ethylene as modulators of plant senescence   总被引:12,自引:0,他引:12  
Under optimal conditions of growth, senescence, a terminal phase of development, sets in after a certain physiological age. It is a dynamic and closely regulated developmental process which involves an array of changes at both physiological and biochemical levels including gene expression. A large number of biotic and abiotic factors accelerate the process. Convincing evidence suggests the involvement of polyamines (PAs) and ethylene in this process. Although the biosynthetic pathways of both PAs and ethylene are interrelated, S-adenosylmethionine (SAM) being a common precursor, their physiological functions are distinct and at times antagonistic, particularly during leaf and flower senescence and also during fruit ripening. This provides an effective means for regulation of their biosynthesis and also to understand the mechanism by which the balance between the two can be established for manipulating the senescence process. The present article deals with current advances in the knowledge of the interrelationship between ethylene and PAs during senescence which may open up new vistas of investigation for the future.  相似文献   

15.
M. -L. Botha  C. S. Whitehead 《Planta》1992,188(4):478-483
Senescence of Petunia hybrida L. flowers is accompanied by a climacteric pattern in ethylene production and a rapid decline in the levels of putrescine and spermidine during the preclimacteric phase. The decrease in spermidine is caused by the decline in the availability of putrescine which is initially synthesized from L-arginine via agmatine and N-carbamoylputrescine. Inhibition of putrescine and polyamine synthesis resulted in a rapid drop in the levels of putrescine and spermidine without resulting in a concomitant increase in ethylene production. These results indicate that polyamine synthesis is not involved in the control of ethylene synthesis through its effect on the availability of S-adenosylmethionine, and is confirmed by the results obtained with pollinated flowers. Treatment with polyamines may stimulate or suppress ethylene production in the corolla, depending on the concentrations applied. In unpollinated flowers the onset of the climacteric rise in ethylene production was accelerated after treatment with polyamines. However, in pollinated flowers this process was delayed as a result of treatment with low concentrations of polyamines. The effects of exogenous polyamines on ethylene production in both pollinated and unpollinated flowers indicate that ethylene synthesis in these flowers is not regulated by a feedback control mechanism. Although polyamines do not play a key role in the control of ethylene production during the early stages of senescence through their effect on the availability of S-adenosylmethionine, it appears that they play an important role in some of the other processes involved in senescence.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - MGBG methylglyoxal bis-(guanylhydrazone) - SAM S-adenosylmethionine  相似文献   

16.
The effect of cis-propenylphosphonic acid (PPOH), a structural analoge of ethylene, on flower wilting and ethylene production was investigated using cut carnation flowers which are very sensitive to ethylene. Wilting (petal in-rolling) of the flowers was delayed by continuously immersing the stems in a 5–20 mM PPOH solution. In addition, the continuous treatment with PPOH markedly reduced autocatalytic ethylene production of the petals accompanying senescence. This reduction of autocatalytic ethylene production was considered responsible for the inhibitory effect of PPOH on flower wilting. The inhibitory activity of trans-propenylphosphonic acid (trans-PPOH), on both flower wilting and the autocatalytic ethylene production accompanying senescence was markedly lower than that of PPOH, suggesting that PPOH action is stereoselective. PPOH may be of interest as a new, water-soluble inhibitor of wilting and autocatalytic ethylene production in cut carnation flowers.  相似文献   

17.
Summary The role of ethylene in embryogenesis of cultured potato anthers was studied indirectly by testing various substances known to affect ethylene formation. The reducing agents ascorbic acid and L-cysteine prevented browning of anther cultures and significantly stimulated embryogenesis. Embryogenesis was also promoted by the use of the ethylene inhibitors AgNO3 and n-propyl-gallate and by the polyamines spermidine and putrescine. The use of the ethylene releasing compound ethrel significantly inhibited embryogenesis.Abbreviations MS Murashige & Skoog - PVP polyvinylpyrrolidone - MW molecular weight - ACC 1-aminocyclopropane-1-carboxylic acid - ethrel 2-chloroethylphosphonic acid (ethephon)  相似文献   

18.
1—MCP处理对油桃果实硬度、呼吸及乙烯合成的影响   总被引:8,自引:4,他引:8  
研究了1-MCP处理对“秦光”油桃果实硬度,呼吸,乙烯,EFE活性的影响。结果表明:1-MCP处理可抑制油桃果实乙烯的合成,显著地降低了乙烯峰值,仅为对照的一半,推迟了乙烯峰和呼吸峰的出现,但提高了呼吸峰值,延缓了果实硬度的下降,介对EFE活性无明显影响。  相似文献   

19.
Leaves of soybean ( Glyxine max. L., var. Progress) were subjected to desiccation, which brought about varying degree of membrane damage as checked with the conductivity method. Progress of injury up to 30% was associated with promotion of ethylene synthesis and with accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC) and 1-(malonylamino)cyclopropane-l-carboxylic acid (MACC) in the cells, as well as with activation of lipoxygenase, the enzyme which is involved in lipid peroxidation and which is capable of forming activated oxygen. The stress-induced promotion of ethylene synthesis was inhibited by the ACC synthase inhibitor aminooxyacetate (AOA). as well as by n-propyl gallate (PG), a free radical scavenger and inhibitor of lipoxygenase. Pretreatment of non-stressed soybean leaves with different concentrations of PG also resulted in the corresponding inhibition of lipoxygenase activity and ethylene formation, the former effect being less pronounced than the latter one. In the tissues pretreated with propyl gallate, the ACC level was not affected, whereas the MACC substantially increased. In leaves showing 40% membrane damage neither lipoxygenase activity nor ethylene synthesis increased any further, despite a further increase in the ACC and MACC levels. Therefore, we propose that there are two prerequisites for effective in vivo synthesis of stress ethylene: promotion of ACC synthesis and activation of a free radical-generating system, which is responsible for the non-enzymatic conversion of ACC to ethylene. The latter effect seems to be due to the activation of the membrane-associated lipoxygenase, which depends on stress-induced alterations in membrane properties.  相似文献   

20.
Twenty cyclopropenes were prepared and their anti-ethylene activity was evaluated in the fruit ripening and plant senescence bioassays. The treatment of banana fruits with developed antagonists led to delay of fruit ripening. Some antagonists were capable to extend exhibition life of cut mini carnation flowers as well as delay senescence of bean leaves. The potency of ethylene antagonists declined with increase in molecular weight and reduction in their solubility in water, irrespective of bioassay used. Published in Russian in Fiziologiya Rastenii, 2006, Vol. 53, No. 4, pp. 585–591. The text was submitted by the author in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号