首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the scolex-neck region of the adult Proteocephalus macrocephalus two types of eccrine gland cells are present. The first type of gland cells, localized in the frontal part of the scolex only, contains large, more or less round electron lucid granules. The second type of unicellular glands produces large electron dense granules. These electron dense granular gland cells are localized primarily in the neck region, only few are present in the scolex apex. The secretion of both types of gland cells is concentrated in the ducts opening to the exterior. The ducts are fixed to the plasmalemma of the tegument by septate junctions. The function of both types of gland cells is discussed.  相似文献   

2.
Scanning electron microscopy (SEM) of the surface of the adult tapeworm and the freshly evaginated scolex from the cysticercus indicated that in Taenia hydatigena there was a variety of microthrix form. This variety was found between different areas on the same specimen and between the adult and freshly evaginated scolex. In the latter there was a noticeable absence of pointed spikes from most areas. Artifacts attributable to techniques of preparation are also discussed.  相似文献   

3.
Using transmission electron microscopy of serially sectioned tentacles from the sea anemone Aiptasia pallida, we located and characterized two types of neuro‐spirocyte synapses. Clear vesicles were observed at 10 synapses and dense‐cored vesicles at five synapses. The diameters of vesicles at each neuro‐spirocyte synapse were averaged; clear vesicles ranged from 49–89 nm in diameter, whereas the dense‐cored vesicles ranged from 97–120 nm in diameter. One sequential pair of synapses included a neuro‐spirocyte synapse with clear vesicles (81 nm) and a neuro‐neuronal synapse with dense‐cored vesicles (168 nm). A second synapse on the same cell had dense‐cored vesicles (103 nm). An Antho‐RFamide‐labeled ganglion cell and three different neurites were observed adjacent to spirocytes, but no neuro‐spirocyte synapses were present. Many of the spirocytes also were immunoreactive to Antho‐RFamide. The presence of sequential neuro‐neuro‐spirocyte synapses suggests that synaptic modulation may be involved in the neural control of spirocyst discharge. The occurrence of either dense‐cored or clear vesicles at neuro‐spirocyte synapses suggests that at least two types of neurotransmitter substances control the discharge of spirocysts in sea anemones. J. Morphol. 241:165–173, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

4.
Summary The paired prominent ejaculatory ducts of the hermaphroditic polychaete Microphthalmus cf. listensis are surrounded by gland cells the processes of which penetrate the ducts themselves. These cells produce, in separate regions, two different types of spherical granules. Type I is composed of an electron dense and an electron lucent part. Type II granules contain a tubular filament that forms a single or double spiral in the periphery of a more or less unstructured electron dense material. Golgi vesicles give rise to this granule type. During the passage of sperm, these granules are obviously discharged into the lumen of the duct. Here they change form and probably dissolve. Their function is as yet unknown; capacitation of sperm is assumed.  相似文献   

5.
By means of electron microscopy cells in the human submandibular glands were studied. It was demonstrated that in acini two types of glandular cells were present: mucosal and seromucosal. In the latter, secretory granules are descrete with electron opaque cores in most of them. Mucocytes are filled with an electron transparent secrete; secretory granules often confluent and their membranes rupture. The acini are surrounded with myoepithelial cells. Intercalated ducts consist of cells with moderately electron opaque granules. In some granules there are dense bodies excentrically situated. In these cells there occur lipid inclusions. Striated ducts are composed of basal (electron transparent) and high cylindric (light and dark) cells. The cylindrical cells have a large amount of mitochondria, deep folds in their basal plasmolemma protruding into cytoplasma. Most of the cells in these parts contain small apically accumulated secretory granules with a dense matrix and separate larger ones scattered in the cell. It is possible to suggest that some secretory granules of ductal or, perhaps, acinar origin contain hormonal products.  相似文献   

6.
We analyzed the development of the pancreatic ducts in grass snake Natrix natrix L. embryos with special focus on the three‐dimensional (3D)‐structure of the duct network, ultrastructural differentiation of ducts with attention to cell types and lumen formation. Our results indicated that the system of ducts in the embryonic pancreas of the grass snake can be divided into extralobular, intralobular, and intercalated ducts, similarly as in other vertebrate species. However, the pattern of branching was different from that in other vertebrates, which was related to the specific topography of the snake's internal organs. The process of duct remodeling in Natrix embryos began when the duct walls started to change from multilayered to single‐layered and ended together with tube formation. It began in the dorsal pancreatic bud and proceeded toward the caudal direction. The lumen of pancreatic ducts differentiated by cavitation because a population of centrally located cells was cleared through cell death resembling anoikis. During embryonic development in the pancreatic duct walls of the grass snake four types of cells were present, that is, principal, endocrine, goblet, and basal cells, which is different from other vertebrate species. The principal cells were electron‐dense, contained indented nuclei with abundant heterochromatin, microvilli and cilia, and were connected by interdigitations of lateral membranes and junctional complexes. The endocrine cells were electron‐translucent and some of them included endocrine granules. The goblet cells were filled with large granules with nonhomogeneous, moderately electron‐dense material. The basal cells were small, electron‐dense, and did not reach the duct lumen.  相似文献   

7.
Microscopic anatomy of the digestive system in embryos and larvae of the terrestrial isopod crustacean Porcellio scaber was investigated by light bright field, fluorescence and electron microscopy. During marsupial ontogenetic development the event-dependent staging was used to discriminate the various embryonic stages. At the late embryo stage the differentiation of the ectodermal part of the gut into the complex filtering foregut and the hindgut with absorptive and transporting functions is accomplished. The gut of the marsupial manca larva is fully developed and similar to that of the adult. In early embryos the endodermal midgut gland primordia are filled with yolk and lipid globules. In late embryos the epithelium of paired midgut gland tubes is composed of two cell types; one of them exhibits orange autofluorescence. The endodermal cells located between the foregut and the midgut glands of late embryos form the prospective midgut. The cells have electron dense cytoplasm, abundant glycogen fields, endoplasmic reticulum, dictyosomes and numerous vesicles. In the adults the endodermal cells of the midgut remain only in the midgut gland ducts which connect the midgut glands and the foregut. Details of the cellular ultrastructure and morphogenesis of the ectodermal and endodermal parts of the digestive system during embryonic development of Porcellio scaber provide data for further phylogenetic and comparative studies in peracaridan crustaceans and other arthropods.  相似文献   

8.
In order to observe the antigenic localization in the tissues of Metagonimus yokogawai in growth stages, immunogoldlabeling method was applied to using serum of the cat which infected with isolated metacercariae from Plecoglossus altivelis. The sectioned worm tissues from each growth stages were embedded in Lowicryl HM 20 medium, stained with infected serum IgG and protein A gold complex (particle size: 12 nm) and observed by electron microscopy. In the worm tissues of all experimental groups, the gold particles were specifically concentrated on the tegumental syncytium and cytoplasm of the tegumental cell as well as the secretory granules in the parenchymal tissue. In the 16th and 20th week grown worm tissues, the gold particles were specifically concentrated on the vesicles in the tegumental syncytium and cytoplasm of the tegumental cell. The gold particles were specifically concentrated on the caecal epithelia of the 4th, 8th and 12th week growth groups but slightly concentrated on those of the 16th and 20th week.  相似文献   

9.
A 24-kDa collagenase was localized in the Gymnorhynchus gigas plerocercoid immunohistochemically by peroxidase complex staining using polyclonal antibodies from NMRI mouse sera immunized with purified enzyme. Immunoreactivity was determined at different parts of the body (scolex, vesicle and caudal region) and mainly localized in microtriches and parenchymal tissues of the scolex and vesicle. These results, along with the absence of the enzyme in the plerocercoid excretion-secretion products, suggest that the 24-kDa collagenase is produced by parenchymal cells in the anterior region and transported to the outer regions of the worm It is possible that the enzyme plays an important role in degrading parasite tissues during the moulting process.  相似文献   

10.
The ultrastructure of the male accessory glands of the blow fly, Chrysomya megacephala (Fabricius), was presented using light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A pair of accessory glands was separated at opposite sites. Morphometric results using LM yield evidenced no significant difference in the median of either length or width of the left and right glands. A significant increment in both length and width was seen to plateau between three to six days. SEM observation showed that the surface of the glands revealed a faint irregular groove pattern throughout, and it was occasionally penetrated by tracheoles. Each gland was a slender, elongated sac‐like tubule having apical rounded ends, with a slight constriction at the sub‐apical part of the gland being observed occasionally. TEM analyses of three‐day‐old males showed that the glands consisted of external capsular cells with a basement membrane underneath, glandular cells, and gland lumen. The capsular cell was flat and contained a nucleus with electron dense material in the nuclear envelope. The glandular cell, appearing as columnar, consisted of a vacuolated component that contained a large oval nucleus centrally or sub‐basally located, with dense mitochondria, numerous rough endoplasmic reticulum, and secretory vesicles containing electron‐lucent materials. In the gland lumen, the cross‐section through the middle portion revealed dense secretory materials, characterized by electron‐dense materials. Some sections revealed a large lumen where secretion accumulates within the delicate sac. The seven‐day‐old glands exhibited a remarkable change in the lumen, where the whole space contained a large amount of secretory materials, with the electron‐dense materials being characterized as similar to those observed in three‐day‐old glands. About four prominent types of secretions were observed on the basis of difference in electron‐density.  相似文献   

11.
Males of a solitary digger wasp, the European beewolf, Philanthus triangulum, possess large mandibular glands that have been reported to produce a scent marking pheromone. We analysed the morphology and ultrastructure of these glands using light microscopy as well as scanning and transmission electron microscopy. The paired glands are located laterally in the head and each side consists of a larger and a smaller part. Both parts possess a collecting duct each with distinct openings at the mandible base. However, the collecting duct of the larger part is additionally connected to the pharynx through a lateral extension. The collecting ducts are bordered by a monolayered epithelium lined with cuticle that exhibits conspicuous ramified protuberances. About 1400 acini consisting of class 3 gland cells surround the ducts and are connected to them through conducting canals. The main components in the cytoplasm of these gland cells are mitochondria, well-developed smooth endoplasmatic reticulum, and electron lucent vesicles suggesting a high secretory activity. The connection between the large gland parts and the pharynx suggests that the secretion of the mandibular glands might not only be delivered directly onto the mandibles but might also be transported to and stored in the postpharyngeal gland.  相似文献   

12.
Abstract. The ribbon‐shaped salivary glands in Bulla striata were studied with light microscopy and transmission electron microscopy (TEM). Secretion is produced in tubules formed by two types of secretory cells, namely granular mucocytes and vacuolated cells, intercalated with ciliated cells. A central longitudinal duct lined by the same cell types collects the secretion and conducts it to the buccal cavity. In granular mucocytes, the nucleus is usually central and the secretory vesicles contain oval‐shaped granular masses attached to the vesicle membrane. Glycogen granules can be very abundant, filling the space around the secretory vesicles. These cells are strongly stained by PAS reaction for polysaccharides. Their secretory vesicles are also stained by Alcian blue, revealing acidic mucopolysaccharides, and the tetrazonium reaction detects proteins in minute spots at the edge of the vesicles, corresponding to the granular masses observed in TEM. Colloidal iron staining for acidic mucopolysaccharides in TEM reveals iron particles in the electron‐lucent region of the vesicles, while the granular masses are free of particles. In vacuolated cells, which are thinner and less abundant than the granular mucocytes, the nucleus is basal and the cytoplasm contains large electron‐lucent vesicles. These vesicles are very weakly colored by light microscopy techniques, but colloidal iron particles could be observed within them. The golf tee‐shaped ciliated cells contain some electron‐dense lysosomes in the apical region. In these cells, the elongated nucleus is subapically located, and bundles of microfibrils are common in the slender cytoplasmic stalk that reaches the basal lamina. The morphological, histochemical, and cytochemical data showed some similarities between salivary glands in B. striata and Aplysia depilans. These similarities could reflect the phylogenetic relationship between cephalaspidean and anaspidean opisthobranchs or result from a convergent adaptation to an identical herbivorous diet.  相似文献   

13.
This study describes spermatogenesis in a majid crab (Maja brachydactyla) using electron microscopy and reports the origin of the different organelles present in the spermatozoa. Spermatogenesis in M. brachydactyla follows the general pattern observed in other brachyuran species but with several peculiarities. Annulate lamellae have been reported in brachyuran spermatogenesis during the diplotene stage of first spermatocytes, the early and mid‐spermatids. Unlike previous observations, a Golgi complex has been found in mid‐spermatids and is involved in the development of the acrosome. The Golgi complex produces two types of vesicles: light vesicles and electron‐dense vesicles. The light vesicles merge into the cytoplasm, giving rise to the proacrosomal vesicle. The electron‐dense vesicles are implicated in the formation of an electron‐dense granule, which later merges with the proacrosomal vesicle. In the late spermatid, the endoplasmic reticulum and the Golgi complex degenerate and form the structures–organelles complex found in the spermatozoa. At the end of spermatogenesis, the materials in the proacrosomal vesicle aggregate in a two‐step process, forming the characteristic concentric three‐layered structure of the spermatozoon acrosome. The newly formed spermatozoa from testis show the typical brachyuran morphology. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
We used transmission electron microscopy to study the pancreatic main endocrine cell types in the embryos of the grass snake Natrix natrix L. with focus on the morphology of their secretory granules. The embryonic endocrine part of the pancreas in the grass snake contains four main types of cells (A, B, D, and PP), which is similar to other vertebrates. The B granules contained a moderately electron‐dense crystalline‐like core that was polygonal in shape and an electron‐dense outer zone. The A granules had a spherical electron‐dense eccentrically located core and a moderately electron‐dense outer zone. The D granules were filled with a moderately electron‐dense non‐homogeneous content. The PP granules had a spherical electron‐dense core with an electron translucent outer zone. Within the main types of granules (A, B, D, PP), different morphological subtypes were recognized that indicated their maturity, which may be related to the different content of these granules during the process of maturation. The sequence of pancreatic endocrine cell differentiation in grass snake embryos differs from that in many vertebrates. In the grass snake embryos, the B and D cells differentiated earlier than A and PP cells. The different sequence of endocrine cell differentiation in snakes and other vertebrates has been related to phylogenetic position and nutrition during early developmental stages.  相似文献   

15.
Summary The female accessory glands include the tubular poison gland, the paired, lemon-shaped uterus glands, and Dufour's gland, an unbranched tubular organ. They consist essentially of a single layer of epithelium cells surrounded by a basement membrane. The lumen is lined by cuticle. The proteinaceous secretion of the poison gland is released into intracellular ducts provided with microvilli, each connected to a channel lined with cuticle which leads to the central lumen of the gland. The channel is formed by special canal cells. Nerve endings are interspersed among the gland cells. The uterus gland consists of four cell types derived from a single type of precursor cell found in newly hatched wasps. Type I cells are covered by type II cells and are thus without contact to the luminal surface of the gland. They contain stacks or whorls of mitochondria and smooth cisternae in an alternating arrangement. Vesicles with a secretory product are found in cells of types II and III. Deep anastomosing infoldings of the plasmalemma, stabilized by microtubules and dense material at the branchings, are characteristic for type II cells. Most secretory vesicles are found in type III cells, the prevalent cell type which is thought to be the source of the lipoprotein secretion. Coated vesicles are present at deep infoldings of the plasmalemma. The greatly enlarged apical surface area of type IV cells and the presence of mitochondria in slender outgrowths is suggestive of an osmoregulatory function. In Dufour's gland, two cell types appear in succession, the first with a very dense cytoplasm, the second with dense inclusions and many seemingly empty vesicles of smooth endoplasmic reticulum. The secretion products, lecithin and a cholesterol ester, are thought to be formed by the second cell type. The dense inclusion might be lecithin, which reacts with osmium tetroxide. The cholesterol ester could have been washed out of the empty vesicles by the embedding procedure.  相似文献   

16.
Little is known about gastrodermal neurons and synapses in the tentacles of sea anemones. Using transmission electron microscopy of serial thin sections of Calliactis parasitica, we have identified both a sensory cell and a ganglion cell with granular vesicles originating from the Golgi complex and have identified four types of synapses in the tentacular gastrodermal nerve plexus. The sensory cell has a recessed apical cilium with a basal body and a perpendicularly oriented centriole, below which are several strands of striated rootlets surrounded by mitochondria. The ganglion cell lacks a cilium and resembles a bipolar neuron, with oppositely directed processes lying parallel to the basally located circular smooth muscle. Both one-way and two-way interneuronal synapses are present with 60- to 90-nm granular vesicles of various densities aligned at the paired electron-dense membranes and fine cross filaments in the intervening 13-nm cleft. Two types of neuroeffector synapses have been located. Dense granular vesicles are present at neuromuscular synapses, whereas less dense vesicles are present at neuroglandular synapses. Most of the synaptic vesicles range from 60 to 120 nm in diameter. Two types of nerve cells and a variety of synaptic loci provide morphological substrates for the spontaneous SS2 conduction pulses in the tentacular gastrodermis of C. parasitica. J Morphol 231:217–223, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Transmission electron microscopy reveals that the somatic testicular tissues and sperm ducts are elaborations of the epithelial lining of the tail coelom. The testes consist of closely packed spermatogonia embedded between specialized lateral field cells. These cells contain few organelles and appear to function mainly as a compartment boundary. Masses of spermatogenic cells are released into the tail coelom from the anterior end of the testes. The sperm ducts, lined by simple cuboidal ciliated epithelium, collect mature spermatozoa from the tail coelom and convey them to the blindly ending seminal vesicles. The sperm ducts also modify coelomic fluid entering them along with the spermatozoa. The seminal vesicles consist of a simple glandular lining epithelium embedded in the stratified epidermis. Secretions of the lining epithelium surround the enclosed sperm mass and correspond in position to a noncellular spermatophore coat visible by light microscopy around released sperm masses. Spermatophores leave the seminal vesicles through a temporary split that forms between microfilament-containing suture cells. Maturation of spermatozoa and filling of the seminal vesicles is cyclical, occurring late each day. © 1994 Wiley-Liss, Inc.  相似文献   

18.
Summary The innervation of the pancreas of the domestic fowl was studied electron microscopically. The extrapancreatic nerve is composed mostly of unmyelinated nerve fibers with a smaller component of myelinated nerve fibers. The latter are not found in the parenchyma. The pancreas contains ganglion cells in the interlobular connective tissue. The unmyelinated nerve fibers branch off along blood vessels. Their synaptic terminals contact with the exocrine and endocrine tissues. The synaptic terminals can be divided into four types based on a combination of three kinds of synaptic vesicles. Type I synaptic terminals contain only small clear vesicles about 600 Å in diameter. Type II terminals are characterized by small clear and large dense core vesicles 1,000 Å in diameter. Type III terminals contain small clear vesicles and small dense core vesicles 500 Å in diameter. Type IV terminals are characterized by small and large dense core vesicles. The exocrine tissue receives a richer nervous supply than the endocrine tissue. Type II and IV terminals are distributed in the acinus, and they contact A and D cells of the islets. B cells and pancreatic ducts are supplied mainly by Type II terminals, the blood vessels by Type IV terminals.This work was supported by a scientific research grant (No. 144017) and (No. 136031) from the Ministry of Education of Japan to Prof. M. Yasuda  相似文献   

19.
Summary The anthelmintic compound mebendazole caused the disappearance of microtubules in the intestinal cells ofAscaridia galli. Electron microscopy revealed that soon after the microtubules disappeared there was an accumulation of secretory vesicles near the golgi areas. subsequently many of these vesicles aggregated forming dense large vesicles near the terminal web of the intestinal cells. This provides further evidence for the involvement of microtubules in the secretion of products from eukaryotic cells. It seems likely that inhibition of microtubule directed secretory functions in various cell types is an important function in the anthelmintic activity of the benzimidazole carbamates.  相似文献   

20.
Cysticercoids of the sheep tapeworm Moniezia expansa have been grown in oribatid mites in the laboratory. Three species of mite became infected: Xenillus tegeocranus, Platynothrus peltifer and Euzetes globulus, the latter not previously recorded as a host of anoplocephalines. Cysticercoids aged 15 and 28 weeks were examined with the electron microscope. Four distinct types of cells were found in the 15-week cysticercoid. Subsequent cyst development involves a transformation from a cellular to a mainly fibrous structure. The fibres, arranged in three layers, resemble collagen fibres described elsewhere. The outer epidermis of the cyst is replaced by an amorphous, electron-dense outer coat whose nature is unknown. The inner part of the cyst becomes condensed to a myelin-like structure. The scolex develops features characteristic of the adult tapeworm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号